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Abstract 

In this paper, travelling wave solutions to the nonlinearly dispersive Schrödinger equation are computed in the case of one-

dimensional non-relativistic electron confined to a cylindrical quantum well. Investigations gave evidence to the possibility of 

simplified continuous solutions which are in good agreement with the probabilistic interpretation of this equation. 
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1. Introduction 

The well-known nonlinearly dispersive Schrödinger equation 

[1-8], described as:  
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where u is the unknown function which determines the 

probability distribution, µ  is a given parameter and m and n 

are positive integers and denote the intensity of the nonlinear 

term. This equation arises in a large number of mathematical 

and engineering problems such fluid mechanics, solid state 

physics, optic, chemical physics and plasma physics [5-12]. 

They also successfully represent an important class of 

nonlinear equations with many applications in updated 

physical sciences. i. e. for describing pulse propagation with 

equal mean frequencies in bi-refringent nonlinear fibres. 

Exact and analytical solutions for nonlinearly dispersive 

Schrödinger equation have attracted considerable attention 

[9-16]. Nevertheless, most of provided standard results of 

boundary value problems for the nonlinear Schrödinger 

equation studies were not sufficient to investigate finite 

geometry configurations since coefficients of the differential 

equations have been usually chosen such as bounded and 

measurable functions. Several attempts yielded in this 

context, families of exact analytical solutions which were 

obtained using elementary functions [11-14].  

 In the present work, a polynomial expansion scheme is 

performed in order to obtain Rogue-Langmuir-type traveling 

wave solution to Eq. (1). This paper is organized as follows. 

In Section 2, the resolution protocol is presented along with 

the studied system patterns.. In Section 3, plots of the are 

shown ad discussed. Last section is the conclusion. 

2. Resolution Protocol 

Schrödinger’s equation is introduced here in the case of a 

one-dimensional non-relativistic electron e
- 

of mass m, 

moving inside a cylindrical quantum well (C) of radius R 

(Fig. 1).  
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The potential in the whole space is defined as: 
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The situation is such as there is an infinitely high R-radius 

cylindrical surface at r = R zone . 

Schrödinger’s equation in cylindrical co-ordinate system for 

the non-relativistic electron in quantum well is: 
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where 
2

u  represents the probability of finding the electron 

anywhere . 

As long as the purpose consists of yielding a Rogue-

Langmuir traveling wave solution, an intermediary wave 

variable θ is introduced so that:  

1x Et i pθ −= − ℏ                              (4) 

Consequently it comes that:  
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It comes, for n = 2 and m = 3, that Eq. (1) alters to: 
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According to the problem geometry, we have the trivial 

condition 0=
>Rr

u . Consecutively, and starting from the 

formulation of the Boubaker Polynomials Expansion Scheme 

BPES [17-33], the expression of the unknown term of the 

traveling wave solution is proposed as following: 
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where kB4 are the 4k-order Boubaker polynomials, kµ are 

kB4 minimal positive roots [19-36], 0N  is a prefixed 

integer, and 
0..1

~

Nk
k =

ξ  are unknown pondering real 

coefficients. 

According to precedent studies [22-32], Boubaker 

Polynomials Expansion Scheme BPES protocol ensures 

validity of spatial boundary conditions prime to the 

resolution of the main equation.  

This particularity of the protocol has been confirmed earlier 

by Barry et al. [30], Agida et al. [31], Yildirim et al. [32], 

Kumar [33], Fridjine et al. [34] and Benhaliliba et al. [35]. In 

fact these patterns were based on the properties of the 

Boubaker polynomials [19-33]: 
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and: 
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By combining the formulation Eq.(6) and that of Eq.(6), we 

obtain,  for the given potential expression 
)(rψ

in Eq. (2): 

0

0

2 2

2 4

2
1

2

4

1

( )

                          ( ) 0

N

k k

k k

k

N

k k k

k

d Bp

d

E p
B

θµξ µ
θ

ξ θµ

=

=

  × + 
 

  + × =     

∑

∑

ɶ

ℏ

ɶ

ℏ ℏ

 (10) 

The BPES solution is obtained by determining the non-null 

set of coefficients 
0..1

.)(~

Nk

sol

k =
ξ  that minimizes the absolute 

fuctional
0NΛ  : 
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Finally the solution of Eq. (3) is: 
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3. Computed Solution Plots 
and Patterns  

Figure 2 shows plots of the obtained solution, for increasing 

values of 
0

N  (
0

11,  23N = and 43 ), while Figure 3 

corresponds to the convergent solution modulus, obtained for 

0
57N > . All the solutions have been represented with [ ]0,1  

and [ ]0, mt as space and time ranges, respectively.  

It may be appropriate to point out that Eq. (3) is derived for 

short amplitude quasi-stationary slow motion describing the 

Rogue-Langmuir pondero-motive force. Most of classical 

solutions, which describe a classical-type particle motion 

under the action of such forces, consist of linear sums of 

wave functions corresponding to different energies [39,40] . 

The present solution accounts for the trapping of such waves 

in an infinite well, and oppositely to many other results, it 

concentrates the electron energy into a small region near at 

the vicinity of the central zone (Fig.4). This paradox can be 

explained by the nonlinear properties of the medium as well 

as the abrupt potential discontinuity at the envelop r=R.  

Figure 4 presents the probability distribution within the 

cylinder (C). It monitors a typical single energy wave 

function having a static probability distribution in good 

agreement with the results of Banica et al. [1], Bégout et al. 

[2], Nadin [4], Gui et al. [3], Liu [41], Liang et al. [42-43] 

and Khang et al. [41]. 

 

Figure 1. Non-relativistic electron moving inside a cylindrical quantum well  

 

Figure 2. Solution convergence patterns (plots for 
0

11,  23N = and 43 ) 

 

Figure 3. Convergent solution plots for 
0

57N >  

 

Figure 4. Probability distribution (
2

u )within the cylinder (C) 
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4. Conclusion 

In this paper, we have proposed piecewise continuous and 

uni-modal Rogue-Langmuir-type traveling wave solution to 

the well known Schrödinger equation. The performed 

polynomial scheme has ensured the verification of boundary 

condition in advance to resolution process. The obtained 

solutions have been expressed in terms of wave function 

modulus and presented the singular advantage of imposing 

no quantification for both particle momentum and energy 

oppositely to most classical solutions. The convergence of 

the protocol has been discussed and enhanced accordingly. 
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