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Abstract 

Investigation was carried out studying magnetic field and radiative heat transfer effects on transient MHD Prandtl-Eyring 

radiative, incompressible, viscous and electrically conducting non-Newtonian fluid between two fixed parallel plates filled 

with porous medium. The formulated physical equations were solved numerically after non-dimensionalising using finite 

difference scheme of Crank Nicolson and the boundary condition for the fluid at the wall was assumed to be the one of slip. 

Numerical findings are provided with the help of graphs to discuss the effects of various flow parameters, that is, thermal 

radiation parameter (N), Prandtl number (Pr), Darcy number (Da), thermal Grashof number (Gr), Magnetic field parameter 

wall-slip parameter (λ) as they influence the flow on velocity and temperature profiles. From the findings, it was discovered 

that the presence of magnetic field (M) in an electrically conducting fluid causes an increase in Lorentz force, which causes the 

fluid's motion to be retarded, thereby decreasing the velocity profile while increasing thermal radiation parameter (N) 

decreases the velocity profile and this decrease in velocity is followed by a decrease in the velocity layer. In addition, an 

increase in thermal Grashof number (Gr) allows the speed distribution to rise and the buoyancy force is increased by this 

increase while the wall-slip parameter in the lower plate gives rise to an increase in the velocity of the fluid. 
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1. Introduction 

Non-Newtonian fluids are defined as fluids that have a non-

linear relation between shear stress and shear strain. Shear 

stress is understood to be a measure of the friction force of a 

fluid acting on a body in that fluid's course, whereas shear 

stress measures angle changes in relation to two particular 

directions. Viscosity as a fluid property is the shear stress 

ratio to shear strain. Series of research work has been 

considered in literature in which fluid viscosity was taken to 

be constant. However, we find a very few examples of fluids 

having this property. 

In certain situations, it is not always essential that the fluid 

viscosity is constant due to the behaviour of some fluids in 

nature. 

There are various kinds of non-Newtonian fluid models that 

can be used to describe non-Newtonian fluid flow 

behaviours. The Power-law model, the Williamson model, 

the Eyring-Powell model, the Prandtl-Eyring model, the 

Prandtl model, and so on are examples of models, all of 

which have their own benefits. Owing to the difficulty of 

these models, researchers are running away from the study of 

non-Newtonian fluids. 

The systematic similarity study of natural convection flows 

of all non-Newtonian visco inelastic fluids was investigated 

by Timol and Kalthia [1]. Eldabe et al. [2] researched Powell-

Eyring fluid unidirectional flow between parallel plates with 

coupled stresses. The pulsatile flow of Powell-Eyring fluid 
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was considered by Zueco and Beg [3]. Radiation impact of 

Eyring-Powell fluid on boundary layer flow over an 

exponentially shrinking sheet was investigated by Asmat et 

al. [4]. 

Malik et al. [5] considered the boundary layer flow of an 

Eyring-Powell model fluid due to a stretching cylinder with 

variable viscosity. Tasawar et al. [6] examined the radiation 

effects on the flow of Powell-Eyring fluid past a non-uniform 

heat source/sink unstable inclined stretching layer. 

Numerical tests for the flow and heat transfer of thin film of 

the Powell-Eyring fluid also was considered by Khader and 

Megahed [7]. The steady flow in a channel with slip at the 

permeable limits was studied by Makinde and Osalusi [8]. 

The effect of radiation and heat transfer on unsteady MHD 

Non-Newtonian fluid flow with slip in a porous medium was 

studied by Gbadeyan and Dada [9]. The group theoretical 

similarity analysis was considered by Darji and Timol [10] to 

analyze natural convection boundary layer flow using non-

Newtonian fluid models from Prandtl-Eyring and Williamson. 

The inspiration for this research stems from the work carried 

out by Adesanya and Gbadeyan [11] in which the Adomian 

decomposition method was used to analyze the steady flow 

of visco-elastic fluid through a planer channel with slip. 

The non-Newtonian fluid model considered in their work is 

the Eyring-Powell model. Oyelami and Dada [12] researched 

the effect of viscous dissipation on heat transfer in a porous 

channel through natural convection. Using the Eyring-Powell 

fluid model, Oyelami and Dada [13] investigated heat as well 

as mass transfer effects of viscous dissipation and chemical 

reactions. Amanullaa et al. [14] investigated MHD Prandtl 

fluid flow past an isothermal permeable sphere with slip 

effects. Numerical simulation of oscillatory oblique 

stagnation point flow of a magneto micropolar nanofluid was 

studied by Sadiq et al. [15]. Computational and physical 

aspects of MHD Prandtl-Eyring fluid flow analysis over a 

stretching sheet was analysed by Hussain et al. [16]. 

To the best of knowledge of the author, studies are not 

available in the literature studying magnetic field and 

radiative heat transfer effects on magnetohydrodynamic 

Prandtl-Eyring flow along porous plates with slip effects. 

The goal of this study is to explore the transient 

magnetohydrodynamic Prandtl-Eyring fluid flow along 

porous plates with slip effects.  

2. Problem Formulation 

The fluid under consideration is an unsteady radiative, 

incompressible, viscous and electrically conducting non-

Newtonian fluid between two fixed h-width parallel plates 

filled with porous medium. A uniform-strength magnetic 

field is applied perpendicular to the plate. The governing 

equations for the non-Newtonian fluid's unstable flow under 

the normal Boussinesq approximation for incompressible 

fluid model is given for momentum, energy and 

concentration equations respectively as follows: 
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Where �∗	 is the fluid velocity, "∗  stands for the time, # 

represent the density, g stands for acceleration due to gravity, 

	�∗  is means fluid temperature, 	$∗  represent fluid pressure, 

%&  stands for specific heat at constant pressure, ��  means 

coefficient of thermal expansion, k signifies the thermal 

conductivity, �'∗  stands for fluid temperature at 	(∗ = ℎ, ��∗ 
represent fluid temperature at 	(∗ = 0, +, means the radiative 

heat flux, �  is the electrical conductivity, -  stands for the 

kinematic viscosity while �� signifies the magnetic field and 

h is the distance between two plates. 

The conditions of initial and boundary are given as 

"∗ = 0, �∗ = 0, 	�∗ = ��∗, ( ∈ �0, ℎ� 
"∗ > 0, 	�∗ = 1 ��∗

�
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Following Cogley et al. [17] the parameter for radiation is 

given as 
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�
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Where L= 4 51' 6789:7�∗ ;' <1
=
� , 51'  is the absorption 

coefficient and >?@ is the plank function. 

By defining the non-dimensional quantities that follow, 
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Introducing equation (4) under the expression in equations 

(5) into equations (2) gives E> ��
�� =	 ��, �
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�[� − \

�, �                            (6) 
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under the corresponding dimensionless boundary conditions 

" = 0, D = 0, � = 0, ( ∈ �0, ℎ� 
" > 0, D = 1 �]

�[,	� = 0,	at C = 0 

D = 0, � = 1, at C = 1                            (7) 

The Prandtl-Eyring visco-elastic model is given by Darji and 

Timol [10] as 
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where _	
 represents the shear stress, 
��∗
�
∗ stands for velocity 

gradient, �and c signifies Prandtl-Eyring parameters. 

Taking the hyperbolic sine function approximation in the first 

and second order gives 
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The Prandtl-Eyring model stress tensor is given as 
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The momentum equation for the Prandtl-Eyring model 

becomes the momentum equation when equations (5) and 

(10) are introduced into equation (1). This is given as 

E> �]
�� = − ��

�l + no − p 6�]�[;
�q ��]�[� + Q,� − �X� + OP�D   (11) 

Where o = S
?r  and p = S]W∗s

���t?t  are the characteristics of 

Prandtl-Eyring model. 

where 
��
�l = constant, U represents dimensionless velocity, t 

stands for dimensionless time, T signifies dimensionless 

temperature function, N becomes the thermal radiation heat 

transfer parameter, Pr becomes the Prandtl number, Da 

represents Darcy number, Re signifies the Reynold number, 

Gr the thermal Grashof number, M signifies the Magnetic 

field parameter and 1 stands for wall-slip parameter. 

3. Numerical Solution 

The equations of finite difference corresponding to the 

equations (11) and (6), respectively, are 

E> ]yz{|V]yz
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With the following boundary conditions 

D���� = 0, ��� = 0, ����� = 0, ��� = 0, ∀	�, " = 0 

D�V���� = −2∆CD����1 + D������, ��V���� = 0, � = 1, " > 0 

D�V�� = −2∆CD��1 + D���� , ��V�� = 0, � = 1, " > 0 

D���� = 0, ����� = 1, D�� = 0, ��� = 1, � = b, " > 0    (14) 

where D�  and ��  are the velocity and temperature at C = 0 

respectively, D�  and ��  are the velocity and temperature at 

C = 1 respectively and the interval ∆C = �
�. 

Subscript j and superscript k specify grid points along the 

paths Y and t respectively in the calculations. At all grid 

points at t=0 from the initial conditions, the values of U and 

T are defined. At the (k+1)th time level, the calculation of U 

and T using the known values at the previous (k)th time level 

is evaluated as follows: 

By forming a tri-diagonal system of equations from the 

equations of finite difference (12) and (13), the values of T at 

each nodal point at the next step length were calculated using 

previously established values. Due to the large performance 

involved, the Thomas algorithm was used to overcome this 

tri-diagonal equation system with the aid of the MATLAB 

programming kit. 

As such, the values of T are determined on a certain j at the 

(k+1)th time level at each nodal point. Usage of the T values 

in Eq at the (k+1)th time step. (13), the values of U are 

similarly determined at the (k+1)th time step. The values of T 

and U are thus known at a basic j-level. 

4. Results and Discussion 

Numerical findings are provided with the help of graphs to 

discuss the effect of different physical parameters on the 

temperature and velocity profiles. Except when it varies on a 

specific graph, every graph corresponds to these values. 

o = 1, p = 1, Gr=1, M=1, 1 = 1, Da=1, Re=1, Pr=1, N=1. 

The velocity profile for various values of Prandtl-Eyring 

parameter o is shown in Figure 1. It is found that the velocity 

profile is reduced by increasing parameter o while on figure 

2, the effect of Prandtl-Eyring Parameter p on the velocity 

causes the velocity profile to increase. 
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Figure 3 shows that the presence of M in an electrically 

conducting fluid results in an increase in the Lorentz force, 

which causes the fluid's motion to be retarded, thus reducing 

the velocity profile. 

For different values of thermal Grashof number Gr, Figure 4 

shows the velocity distribution. An rise in Gr allows the 

distribution of speed to increase and this increase increases 

the buo buoyancy force. 

In showing the effects of thermal radiation parameters on the 

velocity and temperature profiles, figures 5 and 6 show that 

increasing thermal radiation parameters decreases the 

velocity profile and this decrease in velocity is followed by a 

decrease in the velocity layer while on the temperature 

profile, it is noted that there is a drop in fluid temperature as 

the thermal radiation parameter rises, which is physically true 

since radiation removes heat from the body. 

Figure 7 shows the velocity profile defined by the Darcy 

number Da for the different porosity parameter values. By 

reducing the permeability of the porous medium, increasing 

the amount of Darcy reduces the velocity profile. 

Figure 8 shows that an increase in the wall-slip parameter in 

the lower plate gives rise to an increase in the velocity of the 

fluid. 

The effect of the velocity and temperature profiles of Prandtl 

number Pr is stated in figures 9 and 10, respectively. A rise in 

the amount of Prandtl allows the thermal state to decrease, 

since the lower value of Pr increases the thermal conductivity 

of the fluid temperature. This decrease was experienced. 

Both velocity and temperature profiles are decreased by this 

rise in Pr. 

 

Figure 1. Velocity distribution for various values of Prandtl-Eyring 

Parameter o. 

 

Figure 2. Velocity distribution for various values of Prandtl-Eyring 

Parameter p. 

 

Figure 3. Velocity distribution for various values of Magnetic field 

Parameter M. 

 

Figure 4. Velocity distribution for various values of thermal Grashof number 

Gr. 
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Figure 5. Velocity distribution for various values of thermal radiation N. 

 

Figure 6. Temperature distribution for various values of thermal radiation N. 

 

Figure 7. Velocity distribution for various values of Darcy number Da. 

 

Figure 8. Velocity distribution for various values of wall slip 1. 

 

Figure 9. Velocity distribution for various values of Prandtl number Pr. 

 

Figure 10. Temperature distribution for various values of Prandtl number Pr. 
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5. Conclusion 

An unsteady radiative, incompressible, viscous and 

electrically conducting non-Newtonian fluid between two 

fixed h-width parallel plates filled with porous medium. 

Numerical findings are provided with the help of graphs to 

discuss the effect of different physical parameters on the 

temperature and velocity profiles. The findings are 

The velocity profile is decreased by rising thermal radiation 

parameters and this decrease in velocity is followed by a 

decrease in the velocity layer as there is a decrease in fluid 

temperature as the thermal radiation parameter increases on 

the temperature profile. 

The presence of M in an electrically conducting fluid results 

in an increase in the Lorentz force, which causes the fluid's 

motion to be retarded, thereby decreasing the velocity profile. 

Increasing thermal radiation parameters decreases the 

velocity profile and this decrease in velocity is followed by a 

decrease in the velocity layer.  

An increase in Gr allows the speed distribution to rise and the 

buoyancy force is increased by this increase. 

The wall-slip parameter in the lower plate gives rise to an 

increase in the velocity of the fluid. 

A rise in the amount of Prandtl allows the thermal state to 

decrease 
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