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Abstract 

Multi-time scale problems are ubiquitous in natural science. While slow-varying parameter is one of the typical symbols of 

multiple-time scale. However, there is few research on the phenomenon of periodic catastrophe. In this paper, we study the 

multistable dynamic response behavior of the discrete fast-slow coupled Duffing system. In addition, we observe a pair of 

critical parameter values, which result in the disappearance of period-1 attractor under some certain parameters and the bistable 

dynamic behavior appears in which the periodic attractor and the chaotic attractor coexisted near the critical value. When the 

bifurcation parameter passes through critical points, the system will jump, which may lead to the transition from period-1 

attractor to previous coexisting attractor, thus bistability is destroyed and system gets into mono-stasis. We obtain the 

bifurcation charts and time history curve of the bistable dynamic system for the coexistence of period-1 attractor and periods-1, 

2, 4 attractors and chaos in the critical range. When the critical value range is exceeded, the period-1 attractor disappears, 

which leads to the bistable imbalance. Our results enrich the bistable dynamical mechanisms in discrete systems.  
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1. Introduction 

Nonlinear dynamics plays an important role in mathematics, 

physics, mechanics, biology, economics and other fields. The 

emergence of many complicated phenomena is related to 

nonlinear factors in nature and the research of nonlinear 

dynamics has been concentrated in changes in the orientation 

properties of systems such as periodic solutions, bifurcation 

and chaotic motion. In addition, chaos is a unique vibration 

form for the nonlinear systems. 

Multistable dynamic systems have been widely applied to 

physics [1, 2], biology [3], mechanical engineering and other 

fields. The generalized multistability was first put forward by 

Arecchi et al. [1982] in nonlinear dynamics experiments. Luo 

et al. [2003] presented a new hybrid control strategy, which 

used state feedback and parameter perturbation to control 

periodic bifurcation and stabled the unstable periodic orbit of 

the chaotic attractor embedded in discrete nonlinear 

dynamical systems. The simulation results indicate that it can 

lower the stable 2m-periodic orbit by means of controlling 

highly stable 2n-periodic orbit ( )n m> . Jing and Wang 

[2005] discussed the complex dynamics in Duffing system 

with two external forcing. On the basis of the Second Order 

Averaging Method and Melnikov Method, they obtained the 

critical value of the chaotic motion under periodic and quasi-

periodic perturbations, the numerical simulation results not 

only show the consistency of theoretical analysis, but also 

exhibit interesting bifurcation phenomena and more new 

complex dynamics behaviors. Yang and Chen [2005] 

investigated the bifurcation and chaos of an axially 

accelerating viscoelastic beam. Jing and Wang [2006] 

obtained the discrete-time predator-prey system by using 
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Euler Method and applied central popular theory and 

bifurcation theory to derive the existence conditions of 

reversal bifurcation and Hopf bifurcation. Shrimali et al. 

[2008] studied the systems with multiple coexisting 

attractors, where attractors evolve in a specific way and 

established each new attractor. A new 4-D smooth quadratic 

autonomous system was proposed by Cang et al. [2010] 

which presents periodic orbits, chaos and hyperchaos with 

different parameters. The system is of tremendous 

importance in generating four-wing hyper-chaotic attractors 

with two symmetrical initial conditions and two-wing hyper-

chaotic attractors coexisting. Hens et al. [2012] introduced an 

approach for designing a coupling scheme suitable for two 

dynamic systems to achieve the extreme multistability. By 

using the concept of partial synchronization based on 

Lyapunov function stability, the coexistence of infinite 

attractors in a given set of parameters is realized. A general 

scheme was proposed by Pal et al. [2016] for designing 

multistable state continuous dynamic systems. The scheme 

applies the concepts of the state-based partial 

synchronization and motion constants to derive the time 

evolution diagram, phase diagram, maximum Lyapunov 

index variation and bifurcation diagram of the system to 

display the multistable properties of coupled systems. Euler 

method was employed by Chen et al. [2017] to convert the 

Duffing-Holmes equation into the discrete nonlinear 

dynamical system and obtained Standard Holmes Mapping. It 

also considered the existence and stability conditions of fixed 

points of the mapping. In addition, it was proved that there 

exists chaos in the sense of Marotto for mappings. Han et al. 

[2017] studied the bursting dynamic of Duffing system with 

multi-frequency excitation. The oscillations was proven in 

the quasi-static process. Han et al. [2017] reported a new 

route of complex blasting models based on strong cubic 

mapping. Boundary-Crisis-Induced complex blasting patterns 

indicate that chaotic attractors on stable branches may 

suddenly disappear owing to the boundary crisis, causing a 

rapid transition from chaos to other attractors and switching 

between stable branches of cubic graphs. A scheme 

concerning designing extreme multistable discrete systems 

with two identical dynamical systems was introduced by 

Chakraborty [2017]. For a given set of parameters, the 

existence of a boundless number of attractors is gained by 

partial synchronization between two systems. Zhang et al. 

[2017] analyzed dynamic characteristics and generation 

mechanisms of various mixed mode oscillations in fast-slow 

coupled systems with different frequency ratios under multi-

frequency excitation. The research shows that by translating 

two external excitations into a slow variable, the system is 

divided into a fast slow subsystem. It also analyzed the 

equilibrium point and bifurcation condition of a fast 

subsystem, explored the impact of different frequency ratios 

on the mixed mode oscillation structure. Wiggers and Rech 

[2017] discussed the dynamic response behavior of van der 

Pol-Duffing forced oscillator and the existence, periodicity, 

quasi-periodicity and chaos of different attractors. 

Furthermore, they considered the occurrence of 

multistableness for some fixed parameter sets in the system. 

Taking the Duffing system with slow-variable periodic 

excitation as an example, Chen et al. [2017] considered a 

class of relaxation oscillations with complex bifurcation 

structures. A simple and effective method proposed namely 

MFSPM by Han et al. [2018]. The validity of the method is 

proved by several examples and this method does not rely on 

a particular system or branch, therefore it is a universal 

method. 

This paper aims at employing the Euler method to study the 

multistable response behavior of a discrete Duffing system, 

and find the bistable dynamic system with periodic attractors 

coexisting with periodic attractors and chaotic attractors 

under certain parameters. The structure of this paper is as 

follows. In section 2, the fast-slow coupling dynamic 

response behavior of discrete Duffing system will be 

investigated. In section 3, further conclusions are presented. 

2. Study on Fast Slow Coupling 
Dynamic Response Behavior 

Due to the Duffing system has abundant dynamic properties, 

it has always been an example of the study of nonlinear 

systems. In this paper, we consider the Duffing equation as 

follows 

3
1 2 3

,

cos ,

x y

y a x a x a y f t

′ =

′ = − − + Ω
                  (1) 

where ( )x t , ( )y t  are the real functions, f  is the excitation 

amplitude, Ω  is the external excitation frequency, 

( )1,2,3ia i =  are the physical parameter. That is, when the 

excitation frequency is much less than the inherent frequency 

of the system, there is a multi-time scale in the frequency 

domain to exhibit some typical fast-slow behaviors. 

Let cosf tβ = Ω , by using the Euler method, the discrete 

system is converted as follows 

1

3
1 1 2 3

,

(1 ) .

n n n
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y a tx a tx a t y tβ
+

+

= + ∆

= ∆ − ∆ + − ∆ + ∆
     

(2) 

Let n n nz x ty= + ∆ , the discrete system is written as 



 International Journal of Modern Physics and Applications Vol. 5, No. 2, 2019, pp. 11-16 13 

 

1

2 2 3 2
1 1 3 2 3

,

( 1) (2 ) .

n n

n n n n

x z

z a t a t x a t x a t z t β
+

+

=

= ∆ + ∆ − − ∆ + − ∆ + ∆
 (3) 

We define a new scale transformation equation as follows 
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Using the scale transformation equation, we have 
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where 
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                         (6) 

For the sake of simplicity, we remove the asterisk in equation 

(5) and the system is given by 

1

3
1

,

.

n n

n n n n

x y

y ax bx ky β
+

+

=

= − + +
                       (7) 

In order to explain the nonlinear dynamic response of the 

system with different parameters, the fast subsystem 

corresponding to equation (6) is analyzed in this paper due to 

the existence of slow periodic perturbations, and slow 

subsystem is characterized by  

cosf tβ = Ω .                                (8) 

This paper mainly reveals the nonlinear dynamic response 

behavior of (6). Taking β
 
as the bifurcation parameter, when 

other parameters are in certain intervals, there is a critical 

value for β . For systems in the vicinity of β , a bistable 

state in which a periodic an attractor coexists with a periodic 

attractor or a chaotic attractor can be exhibited. In addition, a 

sudden change in the attractor occurs at the critical value, 

which leads to the disappearance of the bistable state, so the 

system will migrate to another attractor. Therefore, we 

obtained several typical transition modes when a , b , k  set 

for different values. 

Setting 1.92a = , 0.2b = , 0.03k = , Figure 1 shows the time 

history curve and bifurcation diagram of the system. As 

shown in the Figure 1, when 0.58β < − , the system 

generates chaos; when 0.5 0.4β− < < − , the system does 8-

fold periodic motion; when 0.4 0.18β− < < − , the system 

becomes 4-fold periodic motion. But when 0.14β = − , the 

system turns into chaos again. And when 0β > , the system 

moves in a single period. 

 
(a) 

 
(b) 

Figure 1. (a) Bifurcation diagram and (b) time history curve for 1.92a = , 

0.2b = , 0.03k = . 

Figure 2 shows the time history curve and bifurcation 

diagram of the system by setting 0.85a = , 1.26b = , 

0.003k = . It can be seen that when 0.5 0.5β− < < , the 

system is in single periodic motion; when 0.5β < −
 
or 

0.5β > , the system makes period-doubling motion. And we 

could also obviously see that the nonlinear dynamic response 

behavior of the system without the jumping phenomenon. 

 
(a) 
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(b) 

Figure 2. (a) Bifurcation diagram and (b) time history curve for 0.85a = , 

1.26b = , 0.003k = . 

Setting 1.01a = , 1.26b = , 0.003k = , Figure 3 obviously 

shows that when 0.6 0.5β< < or 0.5 0.6β< < , the system 

does period-doubling motion. When 0.5 0β< <  or 

0 0.5β< < , the system runs in a single period. However 

when 0β = , the system is unstable and there will be a jump 

phenomenon, which is a common phenomenon in nonlinear 

systems. 

 
(a) 

 
(b) 

Figure 3. (a) Bifurcation diagram and (b) time history curve for 1.01a = , 

1.26b = , 0.003k = . 

Taking 1.4a = , 0.003k = , we find that the system appears 

bistable dynamic behavior. Figure 4 shows the bistability of 

the system when period 1 attractor coexists with period 1 

attractor when 0.1 0.1β− < < . Once β  crosses the critical 

value, bistability will be destroyed, therefore the system 

produces a transition to the periodic-1 attractor.  

 
(a) 

 
(b) 

Figure 4. (a) Bifurcation diagram and (b) time history curve for 1.4a = , 

1.26b = , 0.003k = . 

We obtained a new bistable behavior with the increase of a . 

Setting 1.76a = , 1.26b = , 0.003k = , we discovered that 

when 0.2 0.1β< <  or 0.1 0.2β< < , the attractor of period-

1 coexists with the attractor of period 2, but when β  exceeds 

the critical value, the attractor of periodic 1 disappears, 

leading to the imbalance of bistability, and the attractor of 

periodic-1 jumps to the attractor of periodic-2. 

 
(a) 
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(b) 

Figure 5. (a) Bifurcation diagram and (b) time history curve for 1.76a = , 

1.26b = , 0.003k = . 

The new time history curve and bifurcation diagram are 

gained by increasing the value of parameter a  continuously 

while keeping b and k  unchanged. Setting 1.89a = , Figure 

6 shows when 0.3 0.25β< <�  or 0.25 0.3β< < , the system 

is bistable, namely, the attractor of period-1 coexists with the 

attractor of period-4. When 0.3β = , the system jumps from 

the haploid periodic motion to the quadruple periodic motion. 

Once β  outstrips the critical value, the periodic-1 attractor 

disappears, wrecking the bistability, and the system transits 

from the periodic-1 attractor to the periodic-4 attractors. 

 
(a) 

 
(b) 

Figure 6. (a) Bifurcation diagram and (b) time history curve for 1.89a = , 

1.26b = , 0.003k = . 

Setting 1.86a = , 1.26b = , 0.003k = , we can see that when 

-0.32 -0.1β< <  or 0.1 0.32β< < , the system is bistable and 

when 0.32β = , it jumps from the haploid periodic motion to 

chaos. In addition, the jumping phenomenon disappears with 

the increase of β  and the system transits from the periodic-1 

attractor to chaos motion. 

In summary, when the bifurcation parameter is close to the 

critical value, the system will have bistable dynamic 

response. And when the bifurcation parameter exceeds the 

critical value, the system will jump, leading to the 

disappearance of periodic-1 attractor, the bistable imbalance 

and the transits to periodic attractor or the chaotic attractor. 

 
(a) 

 
(b) 

Figure 7. (a) Bifurcation diagram and (b) time history curve for 1.86a = , 

1.26b = , 0.003k = . 

3. Conclusions 

In this paper, we studied the multistable dynamic response 

behavior of the discrete fast-slow coupled Duffing system 

and explored the bistable dynamic behavior in which the 

periodic attractor coexists with the periodic attractor and the 

chaotic attractor under certain parameters. Firstly, we 

transformed the system into a discrete nonlinear dynamic 

system by employing the Euler method. Secondly, when 

0f ≠ , the system contains parametric excitation. Figure 1 

and 2 are the bifurcation charts and time history curve where 

we can see there is no jump in the system, namely there is no 



16 Luman Wang et al.:  Multistable Dynamic Response Behavior of Two-dimensional Discrete Duffing System 

 

bistable coexistence in the system. Setting 1.01a = , 

1.26b = , 0.003k = , it can be seen from Figure 3 that when 

0β = , jumping phenomena occurs in the system. Keeping b , 

k  unchanged, the system exhibits bistable response behavior 

with the increase of a . And within the critical range of 

bifurcation parameter, period-1 attractor coexists with 

periods-1, 2, 4 attractors and chaos. But when it exceeds the 

critical value, the attractor of period 1 disappears, which 

leads to the imbalance of bistability and makes the system 

mono-stable. 
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