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Abstract 

This work examines the heat transfer analysis of a convective flow over a vertical plate under the combined influence of 

viscous dissipation and thermal radiation in the presence of heat source/sink with the plate being subjected to a variable surface 

temperature. The governing boundary layer equations are formulated, simplified and non-dimensionalised. The dimensionless 

equations were solved by employing Crank Nicolson’s implicit finite difference scheme. The effects of dimensionless numbers 

affecting the flow are shown graphically on the dimensionless temperature profile. Increasing thermal radiation reduces 

temperature profile while there was an increase on temperature profile with an increase in dissipation parameter. 
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1. Introduction 

Free convective flow of a viscous, incompressible fluid past 

semi-infinite or infinite flat plates with thermal radiation 

effects is of great importance due to their numerous 

applications in engineering and other processes involving 

high temperatures such as nuclear power plants, gas turbines 

and thermal energy storage. It is often assumed that in such 

flows, the viscous dissipative heat is negligible. It was shown 

by Gebhart [1] that the viscous dissipative heat is important 

when the natural convection flow field is of extreme size or 

the flow is at extremely low temperature or in high gravity 

field. Gebhart and Mollendorf [2] also investigated the 

effects of viscous dissipative heat on free convective flow 

past semi-infinite plates. Analysis on the radiation effects of 

free convection flow of a gas past a semi-infinite flat plate 

was considered by Soundalgekar et al. [3]. Sakiadis [4] 

studied the steady flow on a moving continuous flat surface 

and developed a numerical solution using a similarity 

transformation. Sparrow and Cess [5] investigated the effects 

of magnetic field on the natural convection heat transfer. 

Romig [6] considered the effect of electric and magnetic 

fields on the heat transfer to electrically conducting fluids. 

The heat transfer characteristics in the laminar boundary 

layer of a viscous fluid over a stretching sheet with viscous 

dissipation or frictional heating and internal heat generation 

was analysed by Vajravelu and Hadjinicolaou [7]. 

Muthucumaraswamy and Ganesan [8] worked on the effect 

of the chemical reaction and injection on flow characteristics 

in an unsteady upward motion of an isothermal plate. The 

radiation and mass transfer effects on an unsteady MHD free 

convection flow past a heated vertical porous plate with 

viscous dissipation was examined by Gnaneshwara and 

Bhaskar [9]. Alam, Rahman and Sattar [10], tried transient 

magnetohydrodynamic free convective heat and mass 

transfer flow with thermophoresis past a radiative inclined 

permeable plate in the presence of variable chemical reaction 

and temperature dependent viscosity. Anjali Devi and Ganga 
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[11] considered the problem of dissipation effects on MHD 

nonlinear flow and heat transfer past a Porous surface with 

prescribed heat flux. Kumar [12] investigated the radiative 

heat transfer with hydromagnetic flow and viscous 

dissipation over a stretching surface in the presence of 

variable heat flux. Gribben [13] investigated the boundary 

layer flow over a semi-infinite plate with an aligned magnetic 

field in the presence of pressure gradient where he obtained 

solutions for large and small magnetic Prandtl number using 

the method of matched asymptotic expansion. Unsteady two-

dimensional laminar free convection flow of an 

incompressible, electrically conducting fluid through a 

porous medium bounded by infinite vertical plane surface of 

constant temperature was carried out by Helmy [14]. The 

radiation effects on mixed convection along a vertical plate 

with uniform surface temperature using Keller Box finite 

difference method was investigated by Takhar [15]. Chamkha 

et al. [16] examined the radiation effects on free convection 

flow past a semi-infinite vertical plate with mass transfer. 

The radiative and free convections effects on the oscillatory 

flow past a vertical plate was carried out by Mansour [17]. 

Raptis and Perdikis [18] studied the effects of thermal 

radiation and free convective flow past moving plate. 

Gregantopoulos et al. [19] considered two-dimensional 

unsteady free convection and mass transfer flow of an 

incompressible viscous dissipative and electrically 

conducting fluid past an infinite vertical porous plate. 

However, convective flow over a vertical plate under the 

combined influence of viscous dissipation and thermal 

radiation in the presence of heat source/sink with the plate 

being subjected to a variable surface temperature has not 

been considered so far in literature. 

2. Mathematical Analysis 

Consider an unsteady flow of an electrically conducting, 

viscous, incompressible and radiating fluid flowing past a 

semi-infinite vertical plate. The �  axis is taken along the 

plate in the vertical direction while the � axis is taken normal 

to it. A uniform magnetic field with strength ��  is applied 

perpendicular to the plate along the � axis and the effect of 

viscous dissipation is taken into account. All the fluid 

properties are taken to be constant except the influence of the 

density variation in the body force term that are caused by 

changes in temperature which are approximated by 

Boussinesq. The governing boundary layer equations are as 

follows 

��
�� +

�	
�
 = 0                                    (1) 

��
�∗ + � ��

�� + � ��
�
 = � ���

�
� + ����∗ − ��∗ � − ����
� �                                                         (2) 

��∗
�∗ + � ��∗

�� + � ��∗
�
 = � ���∗

�
� −
 

�!"
�#$
�
 + %&��∗'�(∗ �

�!" + )
�!" *

��
�
+

,
                                              (3) 

The initial and boundary conditions are given as 

� = 0, � = 0, �∗ = ��∗		/01	233	�, �, 4 ≤ 0 

� = �6, � = 0, �∗ = �7∗	24	� = 0	/01	4 > 0 

� → 0, �∗ → ��∗		2:	� → ∞                              (4) 

where � is the velocity in � direction, � is the velocity in the 

� direction, 4∗ is the time, g is the acceleration due to gravity, 

�∗ is the fluid temperature, ��∗	 is the free stream temperature, 

� is the coefficient of thermal expansion, �6 is the velocity of 

the plate, < is the kinematic viscosity, �6 is the magnetic field, 

=> is the radiative heat flux, ? is the electrical conductivity, 

@A  is the specific heat at constant pressure, B  is the fluid 

density, =>  is the radiative heat flux and CD  is the heat 

source/sink parameter. 

For an optically thin limit, the radiating gas is said to be non-

gray near equilibrium and it is defined according to Oyelami 

and Dada [20] as follow 

�#$
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where L= G HI7 *JKLMJ�∗ +7 NI
�
6 , HI7  is the absorption 

coefficient and OPQ is the plank function. 

By introducing these non-dimensional quantities,  
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the dimensional equations (1), (2) and (3) becomes 
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together with the dimensionless initial and boundary 

conditions  

U = 0, V = 0, � = 0	/01	233	R, T, 4 ≤ 0 

U = 1, V = 0, � = 1	24	T = 0	/01	4 > 0 

U → 0, � → 0	2:	T → ∞                      (10) 

Where U and V are the dimensionless velocities in X and Y 

directions, t is the time, T is the temperature of the 

surrounding fluid, Re is the Reynold number, ]>  is the 

thermal Grashof number, M is the Magnetic field parameter, 

C is the heat absorption/generation, Ec is the Eckert number, 

N is the thermal radiation parameter and Pr is the Prandtl 

number. 

3. Numerical Approach 

The set of unsteady non-linear partial differential equations 

under the boundary conditions are solved by employing an 

implicit finite difference scheme of Crank-Nicolson type. 

This method converges faster and it is unconditionally stable. 

The corresponding finite difference equations are given in the 

form below: 
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In the finite difference equations, the co-ordinates of the 

mesh points of the solution are defined by R = {∆R, T =
|∆T, 4 = H∆4 where i, j and k are positive integers and the 

value of U and V at the mesh point is given as Uo,pq  and Vo,pq . 

The region of integration is considered to be a rectangle with 

sides R}~� =1 and T}~� =1 whereby regarding T}~� =1 as 

Y=∞  which lie very well outside the momentum, thermal 

and concentration boundary layers. The subscript i, j and k 

relates to grid points along X, Y and t respectively. We 

therefore divide X and Y into M and N grid spacing 

respectively. The mesh sizes are ∆R =0.05, ∆T =0.05 and 

∆4=0.01. 

The coefficients Uo,pq 	 and Vo,pq  appearing in the difference 

equation are treated as constants in any one time step. The 

values of T, U and V are known at all grid point from the 

initial conditions at t=0. The computations of T, U and V at 

time level (k+1) using the known values at previous time 

level k are carried out as follows. 

At every internal nodal point, equation (13) on a particular i-

level forms a tri-diagonal system of equations which is solved 

by Thomas algorithm as discussed in Carnahan et al [21]. 

In this way, the values of T are found at every nodal point for 

a particular i at (k + 1) time level. Using T values at (k + 1) 

time level in equation (12), the values of U at (k + 1) time 

level are found in the same way we calculated T values. Thus, 

the values of T and U are known on a particular i-level at 

every nodal point. The values of V are calculated explicitly 

using equation (11) at every nodal point on a particular i-

level at (k + 1) time level. This process is repeated for 

various i-levels. Thus, the values of T, U, and V are known at 

all grid points at (k + 1) time level. Computations are carried 

out until the steady state is reached. The steady-state solution 

is assumed to have been reached, when the absolute 

difference between the values of U as well as temperature T 

at two consecutive time steps are infinitely small. 

4. Discussion of Results 

To report on this work, calculations are carried out for 

different values of fluid parameters to show their influence 
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on the flow field. Default values are Gr=5.0, Re=1.0, M=1.0, 

Pr=0.7, N=0.04, Q=1.0, Ec=0.002. 

As observed from figure 1, the temperature distribution 

decreases as heat absorption parameter C increases because 

when heat is absorbed, the buoyancy force decreases the 

temperature profiles. 

A similar observation is seen by considering various values 

of Eckert number YZ as shown in Figure 2. To observe the 

effect of Eckert number, other parameters are kept fixed, i.e 

Gr=5.0, Re=1.0, M=1.0, Pr=0.7, N=0.04, Q=1.0, n=0.5 and 

the effect of Eckert number is observed for Ec=0.0, 0.1, 0.4, 

1. It’s graphical representation for the temperature 

distribution revealed that by increasing Eckert number Ec, 

the temperature profile increases. 

Figure 3 illustrates the numerical results for various values of 

Prandlt number Pr=0.04, 0.7, 3. It is observed that by 

increasing Prandtl number Pr, the temperature distribution 

decreases. This is as a result of the presence of Lorentz force 

that has power to slow down the motion of the fluid. 

 

Figure 1. Effect of variable temperature (Q) on temperature profile. 

 

Figure 2. Effect of Eckert number (Ec) on temperature profile. 

 

Figure 3. Effect of Prandtl number (Pr) on temperature profile. 

Figure 4 represents the influence of radiation on the 

temperature profile. Increasing radiation value reduces 

temperature profile. 

 

Figure 4. Effect of thermal radiation (N) on temperature profile. 

5. Conclusion 

The heat transfer analysis of a convective flow over a vertical 

plate under the combined influence of viscous dissipation and 

thermal radiation in the presence of heat source/sink with the 

plate being subjected to a variable surface temperature is 

considered in this analysis. The governing boundary layer 

equations are formulated, simplified and non-

dimensionalised. The dimensionless equations were solved 

with the help of Crank Nicolson’s implicit finite difference 

scheme. The effects of dimensionless numbers affecting the 

flow are shown graphically on the dimensionless temperature 

profile. Increasing thermal radiation reduces temperature 

profile while there was an increase on temperature profile 

with an increase in dissipation parameter. 
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