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Abstract 

In this paper, I focus on describe, calculate and analyze of molecular dynamic(MD) simulations using wavelet transform (WT) 

techniques by analogy with its use in signal and image processing, so that I would like to talk about the theoretical background 

wavelet transform methods, including what properties they have, their common types, and how to operate them. Secondly, I 

would introduce the continuous wavelet transform, which is especially well-suited for time course data such as molecular 

dynamics simulations, the WT permits filtering out the high-frequency noise without completely omitting the high-frequency 

phenomena whose contribution is crucial in cases where the dynamics is localized in frequency and time. Medical applications 

could be studied in which biomedical related research requires lots of mathematical and engineering techniques to analyze data. 

The WT is observed to excel in reconstructing the original signal by a subset of the basis used in the analysis and in identifying 

the occurrence of rare phenomena by examining the wavelet energies at high-resolution levels. 
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1. Introduction 

Great progress has been made in applying linear time-

invariant techniques in signal processing. In such cases the 

deterministic part of the signal is assumed to be composed of 

complex exponentials, the solutions to linear time invariant 

differential equations. However, many biomedical signals do 

not meet these assumptions. Thus, the emerging techniques 

of time-frequency analysis can provide new insights into the 

nature of biological signals [1-5]. 

There are several different time frequency analysis methods 

such as short time Fourier transform, S transform, Wigner 

transform, Cohen’s distribution and wavelet transforms [6-9]. 

I would use and focus on wavelet transform since it is used in 

biomedical signals analysis more commonly than others what 

it mean it is so sensitive and accurate. 

Molecular dynamics (MD) has become a common method 

for studying the motion of proteins over time, and it is the 

only available technique for examining continuous fine 

granularity motion at atomic resolution [10-12]. By 

numerically integrating Newton’s equations of motion, one 

can produce a series of snapshots of a protein’s trajectory 

through time. These snapshots, when saved at sufficiently 

high resolution, serve as stop-motion photography and 

provide a great deal of information about how proteins 

behave. 

In this paper, we focus on the analysis of MD simulations 

using wavelet-based techniques. It is worth noting, however, 

that any molecular system that evolves over time can be 

analyzed with these same wavelet techniques. Nrownian 

dynamics simulations and elastic networks are two examples 

of systems whose data have a similar structure to MD 

systems and which could benefit from wavelet analysis as 

well [13-15]. 
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2. Theory 

To extract information from signals and reveal the underlying 

dynamics that corresponds to the signals, proper signal 

processing technique is needed. Typically, the process of 

signal processing transforms a time domain signal into 

another domain since the characteristic information 

embedded within the time domain is not readily observable 

in its original form. Mathematically, this can be achieved by 

representing the time domain signal as a series of coefficients, 

based on a comparison between the signal x(t) and template 

functions {n(t)} [16, 17]. 

c� � � x�t�Ψ�∗�t�dt		


�


 

The inner product between the two functions x(t) and n(t) 

is  

〈x, Ψ�〉 � �x�t�Ψ�∗�t�dt	 
The inner product describes an operation of comparing the 

similarity between the signal and the template function, i.e. 

the degree of closeness between the two functions. This is 

realized by observing the similarities between the wavelet 

transform and other commonly used techniques, in terms of 

the choice of the template functions. A non stationary signal 

is shown in Figure 1 as an example. The signal consists of 

four groups of impulsive signal trains. In these groups, the 

signals are composed of two major frequencies, 650 and 

1500 Hz. 

 
Fig. 1. An example for a non stationary signal. The signal consists of four 

groups of impulsive signal trains. 

Using the notation of inner product, the Fourier transform of 

a signal can be expressed as 

X�f� � 〈x, e�����〉 � � x�t�e������

�


dt 
Assuming that the signal has finite energy 

x�t� � � X�f�e�����

�


df 
Short time Fourier transformation (STFT) can be expressed 

as  

STFT�τ, f� � 〈x, g�,�〉
� � x�t�g�,�∗�t�dt
� � x�t�g�t � τ� e������dt 

According to the uncertainty principle, the time and 

frequency resolutions of the STFT technique cannot be 

chosen arbitrarily at the same time [18]. 

∆τ ∙ ∆f " 1
4π 

∆τ� � &τ�|g�τ�|�dτ
&|g�τ�|�dτ 					∆f� � & f�|G�f�|�df

&|G�f�|�df  

Wavelet transform can be expressed as 

wt�s. τ� � 〈x, Ψ,,-〉 � 1
√s� x�t�Ψ∗ /t � τ

s 0 dt

�


 

The definition of continuous wavelet transform 

X�a, b� � 1
√b� x�t�Ψ /t � a

b 0dt

�


 

where a shifts time, b modulates the width (not frequency), 

and (t) is mother wavelt. 

It has superposition property. If the continuous wavelet 

transform of x(t) is X (s,τ) and of y(t) is Y(s,τ), then the 

continuous wavelet transform of z(t) = k1x(t) + k2y(t) can be 

expressed as 

Z�s, τ� � k5X�s, τ� 6 k�Y�s, τ� 
Suppose that the continuous wavelet transform of x(t) is X (s, 

τ), then the transform of x(t-t0) is X�s, τ � t8�suppose that 

the continuous wavelet transform of x(t) is X (s, τ), then the 

continuous wavelet transform of x(t/a) can be expressed as 

√aX 9sa ,
τ
a: 

This indicates that, when a signal is dilated by a, its 
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corresponding wavelet coefficients are also dilated by a along 

the scale and time axes. 

3. Results and Discussion 

 

Fig. 2. Comparison of Fourier transform and the continuous wavelet 

transform. (a) A signal whose frequency increases over time. (b) The 

absolute value of the Fourier transform of the signal in a. (c) The continuous 

wavelet transform of the signal in a. (d) Plot of the significant period over 

time of the signal in (a), calculated by taking the most significant wavelet 

wavelength from (c). 

The Fourier transform, wavelets give information about the 

frequency domain of a signal, but, unlike the Fourier 

transform, which gives only average information about each 

frequency, wavelets give instantaneous information about 

how a particular frequency is localized in time. Consequently, 

one can obtain considerable information about the modes of a 

particular signal without losing information about when these 

modes occur or how variable they are (Fig. 2). The wavelet 

transform shows clearly that the signal is increasing in 

frequency over time while the Fourier transform shows only 

that low frequencies are dominant. Figure 3 shows three 

types of wavelet transforms which are used in analyzing the 

signals. 

 

Fig. 3. Plots of the three wavelets used in this study, each plotted from −4 to 

4 with scale s = 1. Solid lines represent the real parts while dashed lines 

represent the imaginary parts. (a) The Morlet wavelet. (b) The Paul wavelet. 

(c) The Haar wavelet. 

3.1. Electrocardiography (ECG) 

Electrocardiography (ECG) is a transthoracic interpretation 

of the electrical activity of the heart over a period of time, as 

detected by electrodes attached to the outer surface of the 

skin and recorded by a device external to the body. In short, 

electrocardiogram is a test that records the electrical activity 

of the heart. ECG has been used to measure the rate and 

regularity of heartbeats as well as the size and position of the 

chambers, the presence of any damage to the heart, and the 

effects of drugs or devices used to regulate the heart, as 

shown in Figure 4 and 5. 

 
Fig. 4. Using ECG to measure the rate and regularity of heartbeats as well as the size and position of the chambers. 
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Fig. 5. Spectra of ECG in measuring the rate and regularity of heartbeats. 

 
Fig. 6. Prtion of the tracing following the T wave and preceding the next P 

wave. 

Table 1. Description the portion of the tracing following the T wave and 

preceding the next P wave. 

Feature Description 

RP interval 
The interval between an R wave and the next R wave . 

Normal resting heart rate is between 60 and 100 bpm 

P wave 

During normal atrial depolarization, the main electrical 

vector is directed from the SA node towards the AV 

node. This turns into the P wave on the ECG. 

PR interval 

The PR interval is measured from the beginning of the P 

wave to the beginning of the QRS wave. The PR interval 

reflects the time the electrical impulse takes to travel 

from the sinus node through the AV node and entering 

the ventricles. The PR interval is therefore a good 

estimate of AV node function. 

QRS wave 

The QRS complex reflects the rapid depolarization of 

the right and left ventricles. They have a large muscle 

mass compared to the atria and so the QRS wave usually 

has a larger amplitude than the P wave. 

T wave 

The T wave represents the repolarization of the 

ventricles. The interval from the beginning of the QRS 

wave to the apex of the T wave is referred to as the 

absolute refractory period. The last half of the T wave is 

referred to refractory period . 

ST interval 
The ST interval is from the J point to the end of the T 

wave. 

A typical ECG tracing of the cardiac cycle consists of a P 

wave, a QRS wave, a T wave, and a U wave. The baseline 

voltage of the electrocardiogram is known as theisoelectric 

line. Typically the isoelectric line is measured as the portion 

of the tracing following the T wave and preceding the next P 

wave, as shown in Figure 6 and Table 1. 

 

Fig. 7. Plots of the wavelet analyses of the Cα atom of R29 of the engrailed 

homeodomain (EnHd, PDB: 1enh). The absolute value of each wavelet 

coordinate is shown with low values illustrated in blue. No scale is given 

because wavelet values are in arbitrary units. (a) The Morlet wavelet. (b) The 

Paul wavelet. (c) The Haar wavelet. The scales of each are not identical as 

they are not directly comparable. 

3.2. Edge Detection in Medical Images 

One of the most important things for the medical images are 

image compression and image denoising which could be 

proceed on the following two flowcharts. 
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Fig. 8. Wavelet-based encoding scheme. 

 

Fig. 9. Wavelet-based denoising system. 

This method was developed by Stephane Mallat[19,20]. Its 

principle is based on finding local maxima of wavelet 

coefficients (Wavelet Transform Modulus Maxima Method), 

which represent the edges in the image. The method uses 

only horizontal and vertical coefficients values (Low High 

and High Low coefficients 1) from each level of wavelet 

decomposition. 

Wavelet transform modulus is defined by the equation[21-23]  

;	<�=, >, 2@� � A|B5	<�=, >, 2@�|� 6 |B�	<�=, >, 2@�|�	 
for each pair of horizontal and vertical coefficients 

CB5	<�=, >, 2@C� 6 CB�	<�=, >, 2@C� 

At the same position in matrices. A matrix of the gradient 

angles for the same pairs of coefficients is evaluated 

according to the equation  

D � EB�	<�=, >, 2@�
B5	<�=, >, 2@�F 

Points in the original image for which values of M f(u, v, 2
j
 ) 

are local maxima in one-dimensional neighborhood in the 

direction of gradient are supposed to be edge pixels. These 

points are distributed according the boundary of important 

structures in the image. To recover edges, found individual 

maxima are chained. 

 

Fig. 10. Magnetic Resonance (MR) image: (a) Original image, (b) Edges 

found by wavelet maxima using Haar wavelet function, (c) Edges projection 

into the original image. 

3.3. Wavelet Reconstruction 

The signal decomposition into detail and approximation 

coefficients (here we label them as cD and cA) these 

decomposed signals contain fewer and fewer coefficients as 

we move to higher scale. The first scale detail coefficients, 

for example, are half in number as the original signal. This 

loss in resolution is a problem for localized analysis and 

that's where the topic of wavelet reconstruction comes in. 

The process of reconstruction is used to synthesize signals 

from detail and approximation coefficients. We could for 

example retrieve the original signal from a reconstruction of 

the same coefficients attained by the decomposition process 

(see Fig. 11). 

Wavelet reconstruction can be used on multi-level 

transformed signals also to reconstruct the detail each level 

of the decomposition. Figure 12 is an example that shows the 

reconstructed detail of a signal at six different scales. 
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Remember that the detail represents the fluctuation in the 

signal from the average of the signal. With each pass of the 

wavelet transform (moving downward in Fig. 12) we are 

looking at coarser fluctuations corresponding to larger scale 

regions of the signal. In this project we use functions that are 

part of the Matlab Wavelet Toolbox for both decomposition 

and reconstruction. 

 

Fig. 11. Diagram of the wavelet reconstruction of the original signal from the detail (cD) and approximation (cA) coefficients. 

 

Fig. 12. The hydrophobicity signal S of a protein (top plot) and the 

reconstructed details at the reconstructed details at the first 6 scales. 

4. Conclusion 

Wavelet analysis is a powerful tool that can be used to 

quickly and automatically isolate distinct motions of interest 

in a protein simulation. Due to their ability to locate subtle 

changes without being overwhelmed by larger more obvious 

motions, wavelets represent an ideal method for screening 

simulations to quickly pinpoint changes or structural 

rearrangements and for comparing differences in simulations, 

due to mutation, pH, or temperature changes, for example. 

Additionally, wavelets can be used to scan large databases of 

simulations for biochemically relevant events, such as the 

motion of a catalytic site or of functionally relevant loops. 

This work describes how the mathematical formulas come 

out, what properties they have, and how to select optimal 

wavelets for biomedical signal processing, we can gain help 

from the brief categories and descriptions. 

Electrocardiography, Edge detection in medical images and 

Wavelet Reconstruction as an application has been studied 

and explained. 
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