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Abstract 

In this paper, we present a device model of the charge distribution and the contact resistance in organic thin film transistor 

(OTFTs) in which the active layers are made of octithiophene. In this model we suppose that the current in organic 

semiconductors is only carried by injected carriers from the electrodes and an analytical formulation for the charge distribution 

inside the organic layer was derived. 
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1. Introduction 

Organic thin-film transistor (OTFT) was first fabricated in 

1986 by Tsumura et al. [1] with electropolymerized 

polythiophene as the semiconducting active layer. Since then 

the performance of OTFTs has been enormously improving 

[2–7]. Compared with their inorganic counterparts, organic 

materials possess great advantages, such as inherent 

compatibility with plastic substrates, flexibility and 

amenability to low-cost and low temperature processed 

methods such as melt processing, printing and solution 

deposition, so that OTFTs have potential applications in radio 

frequency identification (RFID) tags [8,9], flexible displays 

[10,11], electronic papers [1, 12] and sensors [13]. 

The conductive polymers are very attractive materials for 

building electronic devices such as flat panel displays [14,15]. 

They were the subject of a particular attention of the 

industrial and scientific community because of the vast fields 

of investigation that they offer in the fundamental domain as 

well as in the applied one. In the past few years, the 

performance of organic thin film transistors (OTFTs) has 

been considerably improving [16–18]. Among the conjugated 

oligomers used as active materials in the fabrication of 

OTFTs, octithiophene is one of the most promising materials 

due to its high field-effect mobility [18, 19]. The 

performance of octithiophene-based OTFTs is observed to be 

compared to that obtained from hydrogenated amorphous 

silicon TFTs [19, 20]. 

Since the contact between the electrode and the organic is 

one of the most important factors in determining the device 

performance, it is imperative to investigate and to understand 

the symmetry of interface formation in the cases of metal 

deposited onto organic and organic deposited onto metal. 

In this paper, we present a physical device model for organic 

thin film transistors based on polythiophene. We develop 

analytical equations for the two-dimensional charge 

distribution by solving Poisson’s and transport equations and 

by applying boundary conditions for a finite thickness 

semiconductor. The carrier-density in the transition zone at 

the source-organic semiconductor interface is modeled to 

build up a formulation of Rc as an integration of the local 

resistivity. Numerically calculated Rc clearly shows the 

influence of Vg and injection barrier height (Eb) on the 

determination of Rc. 
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2. Operation Mode: Layer 
Structure of Polymers in the 
Conduction Channel 

Organic thin-film transistors based on polythiophene were 

built on thermally oxidized highly doped wafers [17]. The 

highly doped substrate acts as the gate electrode. The silicon 

oxide layer had a capacitance of 8 nF cm
−2

. An organic 

semiconductor layer was deposited on the silicon oxide by 

vacuum evaporation at a base pressure of 5 × 10
−4

 Pa. The 

deposition rate was around 5 nm per min, and the substrate 

was kept at a temperature of 150 ◦C during deposition. This 

procedure is used to give highly oriented polycrystalline 

films with all molecules pointing close to the normal of the 

substrate. 

The devices were completed by evaporation gold source and 

drain contacts through a shadow mask. The channel length Z 

= 5000 µm and the width L = 50 µm. 

 

Fig. 1. Schematic view of organic thin film transistor. 

A typical organic thin-film transistor (OTFT) is composed of 

three electrodes: drain, source and gate, a dielectric layer, and 

an organic semiconductor layer (Fig. 1). 

 

Fig. 2. Output characteristic of octithiophene thin film transistor drain 

current via drain voltage for different gate voltage. 

 

Fig. 3. Transfer characteristic drain current via gate voltage at 300K. 

Fig. 2 and fig.3 shows the output (variation of drain current 

via drain voltage at different gate voltage) and transfer 

characteristic (variation of drain current via gate voltage at 

constant drain voltage) for OTFTs based on polythiophene at 

room temperature. 

This architecture looks similar to the conventional silicon 

metal-oxide-semiconductor field effect transistors 

(MOSFETs) what basically differ from the classical inorganic 

semiconductor OTFTS are the electronic properties [21-23]. 

Two different voltage sources are used: Vg is the gate voltage 

and Vd is the drain voltage. In order to derive an analytical 

expression of the OTFTS’s steady-state current, it is assumed 

that the current transport is parallel to the semiconductor-

insulator surface. 

3. Theoretical Model of Charge 
Distribution in Organic 

Semiconductor 

In order to know how the injected holes from the source (ρs) 

and the gate-induced holes at the channel (ρc) are distributed 

along the thickness of the organic layer, we develop a two 

dimensional model based on three suppositions: 

� Hole-only conduction is considered. 

� Gradual channel approximation holds. 

� All charge carriers are “injected” into the organic 

semiconductor. 

3.1. Preliminary Theory 

In this part we consider an unintentionally doped organic 

semiconductor is fully depleted so that the above assumption 

for all charge carriers are injected into the organic 

semiconductor can be made [24]. So, an organic 

semiconductor is rather an insulator that can only ‘transport’ 
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the carriers given by external circumstances and the classical 

theory on the metal/insulator junction that has been 

intensively dealt with in the early days of solid-state 

electronics through the 1940s and 1950s can be modified. 

The electrostatic distribution of injected carriers ρ(x) can be 

estimated by simultaneously analyzing Poisson’s (given by 

equation (1)) and the transport (drift-diffusion) (given by 

equation (2) because we suppose a one-dimensional insulator 

in contact with a metal electrode (which is charge reservoir) 

at x = 0 that extends toward the positive x-direction up to x = 

ts where ts is the thickness of the semiconductor. 

��
�� =

��(�)
	                                              (1) 

J = −qD ��
�� + qρμF                             (2) 

Where ρ(x) is the hole concentration, F the electric field, ε 

the permittivity of the organic semiconductor, q the 

elementary charge, µ the hole mobility, J the hole current 

density. The hole diffusion coefficient D is given by the 

Einstein relation �
µ
������  where KB is the Boltzmann constant 

and Ta is the absolute temperature.  

The expression of current density is obtained by substituting 

equation (1) in equation (2) and using the Einstein relation 

may be expressed as: 

J = εμ �− ����
�

���
��� + F ��

���                    (3) 

This is the fundamental equation of the given physical 

system to be solved. At thermal equilibrium, the net current is 

zero (the drift current and the diffusion current compensate 

each other) so that 

− ����
�

���
���+F

��
�� = 0                                 (4) 

So equation (4) can be integrated once to 

− �
!����

��
�� + " �

!����
#
!
F! = −ψ!                 (5) 

Where ψ is an integration constant. 

The first solution of equation (5) is derived by Mott and 

Gurney for a semi-infinite semiconductor (ts→∞) [14]. So, 

when x →∞ both F(x) and dF=dx equal to zero. 

Consequently the solution for the electric field is reached by 

separating variables is given by equation (6) where F% =
− !����

��  is the electric field at the junction x=0 and x0 is an 

integration constant. 

F = �&
'( )

)&
                                     (6) 

The first derivative of equation (6) gives us the whole 

distribution  

ρ(x) = �&
�'( )

)&�
�                                  (7) 

Where ρ% = !	����
���&�

 is the hole distribution at the junction 

x=0 and 	x% = �!	�������&
�. The value of x0 can be calculated 

from the boundary value of either F0 or ρ0. 

In equation (7), we see good if the initial carrier density ρ0 is 

high x0 became smaller. So if x0 is small, the carriers are 

densely concentrated at the junction and do not spread far 

away from the injecting surface. Despite the Mott-Gurney 

model provides meaningful insight into the charge 

distribution, its usage should be limited to very think organic 

crystals and this model cannot be safely applied to thin 

organic films. 

The more general solution of equation (5) is developed for 

the first time by Skinner [25]. It means that one can challenge 

the ‘finite’ junction without forcing ψ to zero. In the 

following we separated the cases by the sign of the 

integration constant and obtained separate sets of solutions 

depending on this sign. An essential boundary condition for 

the finite semiconductor is F(ts) = 0 because there cannot be 

any current flowing into or out of the semiconductor at the 

surface y = ts. The injected holes (positive charges) make the 

only contribution to the space charge in Poisson’s equation. 

Consequently, the sign of dF=dx is always positive through 

the whole semiconductor thickness. In other words, F (0) is 

negative and F(x) approaches zero from x = 0 to x = d. At x = 

ts, F becomes zero by the boundary condition and dF = dx 

remains positive. Therefore, the right-hand term in (5) is 

negative and the corresponding solution is the trigonometric 

function in [25], which can be given by : 

F = − ��&ψ�&�
	 	cot/ψx + arcsinψx%5              (8) 

ρ(x) = �&ψ��&�
678�/ψ�(9:;678ψ�&5

                      (9) 

To calculate the value of the constant ψ, we introduce the 

boundary condition if x=ψ, F (ψ) = 0. So equation (8) gives: 

cot/ψ	t6 + 	arcsinψx%5 = 0                 (10) 

By using the trigonometric identities we obtain: 

ψx% = cosψ	t6                                    (11) 

by replacing the expression (11) in equation (9), the 

expression of the hole concentration may be expressed as for 

ts<x<0: 

ρ(x) = �&;<6�(=>?)
;<6�=(>?@�)

                                (12) 
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3.2. Solutions for the Model 

3.2.1. Charge Distribution 

In spite of the model studied previously gives exact solutions 

for thin-film cases, the equation (11) does not lead to an 

analytical expression for ψ and the final solution requires 

numerical computation. 

 

Fig.    4. Injected holes from the source (ρs) and the gate-induced holes at the 

channel (ρc) via the thickness of organic layer. 

Now let us return to the two-dimensional semiconductor and 

discuss how the initial carrier densities at the 

insulator/semiconductor interface (x = 0) are determined in 

the OTFT architecture in fig. 4. The carrier density at a 

metal/semiconductor interface is dictated by Boltzmann’s 

statistics [26] so that the source carrier density at y = 0 ρs0 is 

strongly injection-limited following 

ρ6% � σƲe@DE ����F
                                (13) 

The hole barrier height Eb corresponds the energy between 

the electrode Fermi level and the semiconductor HOMO 

level and σƲ is the effective density of states at the HOMO 

edge. On the other hand, the channel carriers are induced by 

the gate capacitance and given by: 

Q><> � C<�IVK � V>LI � qM ρ;�x�>?%        (14) 

Where Cox is the insulator capacitance per unit area, Vth the 

threshold voltage and Qtot the total channel charge per unit 

area. 

 The channel hole concentration at x = 0 is approximate to: 

ρ;<~ OPQP�
!	���� � RQ)� IST@SPUI�!	����             (15) 

From equation (7) we deduce the two expressions of the 

characteristic distribution lengths for the source and the 

channel charges 

x6% � �!	�������?& �
'/!

                             (16) 

x;% � �!	�������W& �
'/!

                             (17) 

In fig.5 and fig. 6 we present respectively source distribution 

factors (ρs0 and xs0) as a function of Eb and channel 

distribution factors (ρc0 and xc0) as a function of gate voltage 

using equation (13) and (15) with σƲ = 1.8110
12

 cm
-3

, T = 

300 K, ε= 3ε0 and Cox = 8nFcm
-2

.. The solid lines indicate the 

initial hole concentrations and the dashed lines correspond to 

the distribution lengths. Fig. 5 and fig. 6 shows the reliability 

of the approximate solutions. 

 

Fig. 5. Variation of Source distribution parameters ρs0 (a) Xs0 (b) via hole 

barrier height Eb 

The variation of ρs0 is much lower than ρc0 due to the high 

injection barrier. Another key feature of fig. 5 and fig. 6 is 

that xs0 normally exceeds the thickness of an organic thin-

film, whereas xc0 is far smaller than the film thickness. This 

finding enables an independent modelling of the source and 

channel distribution of charges by means of an 

approximation method. 
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Fig. 6. Variation of channel distribution parameters ρc0 (a) and Xc0 (b) via 

gate voltage. 

The purpose of this section is to develop an analytical form 

of (14) by approximating the cosine function in equation (11). 

A linear (or a first-order) approximation of any given 

function g(y) is defined at the vicinity of y = a by: 

g(y)~g(a� � gZ�a��y � a�                     (18) 

if we set g(y)=cos y, we get: 

cos y~ cos a � �� sin a��y � a�             (19) 

Using equation (19), equation (13) will be ψ6x6% �cosψ6t ~1 and ψ6~1 x6%F  because xs0>>ts 

Then by using these approximations, equation (14) became: 

ρ6 � ρ6% ;<6�" P?)?&#;<6�"P?\))?& #
                               (20) 

The same approximations are used for the channel carriers 

ρc(x) for xc0<<ts so: 

ψ;x;% � cosψ;t6 ~ ]
! � ψ;t6                     (21) 

And 

ψ;~ ]
!/>?(�W&5                                          (22) 

Finally the channel carrier distribution ρc is given by: 

ρ; � ρ;% 678"^	)W&�P #
678�"^	�)W&_)��P? #                       (23) 

So we can analyze the integration in (16) and see that (17) is 

correct under the condition that xc0 << ts. 

It is necessary to note here that our approximate model (20) 

and (23) with (13) and (15) provides analytical expressions 

that explicitly contain the thickness parameter ts. It means 

that this strategically development overcomes the limitation 

of the two classical models previously treated and assures its 

general applicability to the thin film-based OFETs. 

3.2.2. Contact Resistance Model 

For the transition zone at y=0 there is an abrupt transition of 

the hole concentration due to the large difference between 

ρs(x) and ρc(x) because the hole concentration is much lower 

than that in the conducting channel, due to the effect of ρs 

penetrating into the channel region. 

 

Fig. 7. Diagram of hole injection at around transition zone. 

Fig. 7 shows the overlap of two independent distribution 

functions at the electrode (source)-channel interface. There 

exist concentration tails along the x-direction characterized 

by the Debye length of the channel carriers (yc) and that of 

the source carriers (ys) 

So the channel carriers and the source carriers are 

respectively defined by: 

y; � �	�������W �
'/!

                                   (24) 

y6 � �	�������? �
'/!

                                   (25) 

In this case we can neglect the contribution of yc because ρc >> 

ρs, yc >>ys so that the transition from ρs to ρc can be 

simplified to a single exponential function: 

ρ�y� � ρ6	e `̀?                                   (26) 
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so the thickness of the trasition (ϵ) zone is given by : 

ρ�∈� � ρ6e ∈̀
? � ρ;                             (27) 

�∈� y6 ln "�W�?#                                    (28) 

from the equation (27)we see better that the thickness on the 

transition zone varies along the semiconductor thickness if 

the ρc and ρs change together along the x direction. 

ρL � '
∈M ρ�y�dy � ρ?∈ M e `̀

?∈%∈% dy          (29) 

By putting equation (27) and equation (28), and using ρc>>ρs 

we obtain: 

ρL � �W@�?
d8"eWe?#~

�W
d8"eWe?#              (30) 

Finally the elemental conductance dGc of the volume element 

delimited by the channel width (Z), the thickness of the 

transition zone ϵ and dy: 

dG; � qμZ �U∈ dy                (31) 

Consequently the contact resistance Rc is obtained by 

substituing equation (28) and (30) in (31): 

R; � '
iW � �	�����j/���klm�n oM �Wp�?

"d8�eWe?�#
� dx>% q

@'
      (32) 

3.2.3. Field Effect Mobility 

The field effect mobility is calculated from the experimental 

curves Id = f (Vg). In the linear region the transconductance is 

given by: 

gr � �st�ST � n
u μ�D�C<�V�             (33) 

so the experimental field mobility is given by : 

μ�D� � u
nRQ)St gr               (34) 

In Fig. 8 we present the variation of field effect mobility as a 

function of the gate voltage. In Fig. 8 we distinct two 

different regimes the first at low gate voltage and the second 

at high voltage. At low gate voltage the field effect mobility 

varies linearly according the gate voltage. This variation can 

be adequately described by the gradual filling of trap states as 

the Fermi level at the semiconductor/insulator interface 

approaches the transport orbital (HOMO in the case of p-type 

materials). 

This is reasonable because an octithiophene film contains a 

large number of trapping sites, most of which located at the 

grain boundaries [27-28].This regime is fitted by the equation 

(35). 

μ�D� � γIVK � V>LI��� \j
            (35) 

 

Fig. 8. Measurement field effect mobility as a function of gate voltage. The 

circle and full line correspond, respectively, to measured data and theoretical 

model at low Vg. 

This equation is given by the multiple trapping and release 

(MTR) process with an exponential density of states (DOS) 

near the band edge where Ta is the characteristic temperature 

and γ is fit constant. The values given a good agreement with 

the experimental data for the first regime are listed in Table I 

Table I. The parameters given by mobility fit. 

Ta (K) Vth (V) γ 

411 -2.65 12.3 E-6 

For the second regime at high gate voltage the field effect 

mobility slight decrease by the field induced mobility 

degradation [29]. It is likely that the mobility near the 

insulator surface is lower than that at the bulk region due to 

various surface scattering agents.  

When Vg increases, field-induced holes are more 

concentrated at this low-mobility near-insulator region so that 

the effective mobility of the conduction path could be 

reduced [20]. 

3.2.4. Transfer Line Method (TLM) 

The transfer-line method (TLM) also called transmission-line 

method, or sometimes, transfer-length method, is widely used 

for organic field-effect transistors OFETs contact resistance 

evaluation [30-34]. This method was first developed to 

estimate the contact resistance value of amorphous silicon 

thin-film transistors [35]. It necessitates several transistors of 

various channel lengths and provides the average contact 

resistance value of the whole set of studied transistors. In 

linear regime, the channel could be approximately regarded 

as a uniform resistance controlled by the gate voltage. Hence 

the channel resistance reads	R; � u
nµlm�RQ)IST@SPUI, where Z is 
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the channel width, L is the channel length, µ is the mobility, 

and Cox is the unit area capacitance of the dielectric. Vg and 

Vth are the gate voltage and threshold voltage, respectively. 

Due to the access or contact resistance located between the 

contacts and the channel, the total resistance Rtot should be 

complemented by an additional the source drain resistance 

Rsd, such that the total contact resistances became Rtot 

=Rc+Rsd. The total resistance is usually normalized by the 

channel width Z in order to become universal for devices 

with different channel with Z. Thus we have following:[35] 

R><> w Z = ZR; + u
klm�RQ)IST@SPUI

                (36) 

So, in Fig. 9 we plot the variation of the Rtot×Z via a channel 

length L, at a constant gate voltage Vg. The intercept to the 

y-axis (i.e. L=0) gives Rsd×Z. At different value of gate 

voltage Vg, that intercept varies with Vg, thus providing the 

gate-voltage dependent contact resistance Rsd×Vg[35]. Also 

the slopes of the linear regression allow us to analyze the 

gate-voltage dependent mobility Vg [35]. It should be noted 

that the uncertainty on the slopes of linear regression directly 

alters the accuracy of subsequently extracted contact 

resistances. 

 

Fig. 9. The overall device resistance via channel length. 

3.2.5. Summary 

In Fig. 10 we present the variation of the contact resistance as 

a function of the gate voltage. The stars present the 

experimental data, the solid lines show the model studied 

using a constant mobility (in this case the mobility is equal to 

0.1 cm
2
 V

-1
S

-1 
[36, 37] and the circles show the model where 

the mobility depend to the gate voltage. Fig .10 shows good 

accord between an experimental data and the theoretical 

model when the mobility depend to gate voltage. Moreover, 

this model has allowed us to determine the injection barrier 

Eb. A good agreement is given for Eb=0.27eV, so gate voltage 

Vg and injection barrier Eb are the important parameters to 

command the contact resistance Rc. On the other hand, the 

second model used is given by substituted the equation of 

mobility (equation (35)) in the equation of contact resistance 

(equation (36)). The variation of contact resistance using this 

model (fig 10 circles) decreases rapidly with increasing gate 

voltage. Note that the entire curve of mobility given by Fig. 8 

cannot be modeled by a simple analytical expression, so we 

only took the trap-dominated regime (linear regime) for the 

analysis in Fig. 9. 

 

Fig. 10. The overall device resistance via gate voltage. The stars according 

to the experimental data, solid line according to theoretical model for Vg 

mobility depend and circle according to model where field effect mobility is 

constant. 

4. Conclusion 

At present, a theoretical model for a polythiophene thin film 

transistor is detailed by solving the Poisson equation and 

using an analytical approximation for the charge distribution 

model inside an organic semiconductor. From this model an 

equation of a contact resistance was proposed .The 

dependence of the contact resistance and the gate voltage was 

explained. Using this model two cases are treated. First, the 

contact resistance is calculated with a constant mobility of 

0.1 cm
2 

V
-1

 S
-1

. This model cannot reproduce the 

experimental data. Second, the contact resistance is 

calculated mobility depend to gate voltage. A good 

agreement between experimental data is given. The injection 

barrier Eb at the interface Au/ Polythiophene is estimated. 

From the classical theory of metal/insulator contact the 

equation of the charge distribution was determined. 
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