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Abstract 

In the present paper, the dynamics of turbulent two-phase flow is numerically predicted. The numerical modeling presented 

here is based on a new developed numerical method called Interfacial Marker-Level Set method, which coupled with the 

Reynolds averaged Navier-Stokes equations to predict the dynamical behavior of turbulent two-phase flow. The governing 

equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved 

separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to 

another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two 

phases. The topological changes of the interface are predicted by applying the level set approach. The performance of linear 

and non-linear two-equation turbulence models is also investigated. Generally, the developed numerical method demonstrates a 

remarkable capability to predict the dynamical characteristics of complex turbulent two-phase flow in many industrial 

applications. 
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1. Introduction 

The complex turbulent two-phase flow can be seen in various 

industrial and engineering applications such as liquid 

atomization [[1]], internal engine fuel spraying [[2]] and 

droplet dispersion in turbulent gas-liquid flow [[3]], inkjet 

printing [[4]] and flow coating [[5]]. One of the important 

issues in studying the complex turbulent two-phase flow is 

the stability and the topological evolution of the moving 

interface between the two fluids. A great attention should also 

be directed to the nonlinear behavior in the vicinity of the 

singular point where the interface separates. According to the 

high complexity of the physics encountered in turbulent two-

phase flow and the intrinsic features of the interface, no 

accurate and satisfying analytical models can exit to this date. 

Moreover, the experimental measurements are often difficult 

to visualize and quantify accurately the interface motion in 

transitional and turbulent flows. 

Recently, the huge evolution of the numerical methods and 

computer speed has allowed the accurate prediction of many 

complex turbulent two-phase flows of engineering and 

industrial relevance. However, the numerical study of such 

complex flows has been somewhat limited because it poses 

several great challenges [[6], [7]]. The numerical simulations 

of the complex turbulent two-phase flow with moving 

interfaces need both refined turbulence models and accurate 

numerical methods with higher order numerical discretization 

schemes. Moreover, in such numerical method, the 

Reynolds-averaged-Navier-Stokes (RANS) equations are 

usually coupled to a high accurate and robust tracking 

method in order to follow the complex topological changes 

of the interface with accurate prediction of the interface 

normal and curvature. 

Over the last years a large number of computational methods 
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have been developed for solving turbulent two-phase flows 

with moving interfaces. However, they all suffer from 

various limitations.  All these numerical methods require the 

solution of some form of the conservation equations for mass, 

momentum and energy. The major difficulty is that, the 

turbulent flow has a much wide range of length and time 

scales. Therefore, the equations for turbulent flows are 

usually much more difficult and expensive to solve. 

Nevertheless, no pretence has been made that any of the 

previous numerical methods can be applied to all complex 

turbulent two-phase flows: such as ´universal´ method may 

not exist. 

The main objective of the most previous numerical methods 

concerning the complex turbulent two-phase flows was to 

perform reliable and accurate simulations in order to 

investigate ligament formation, stretching and fragmentation 

into small scale droplets and to further study the influence of 

the Reynolds and the Weber numbers on the spray-formation 

dynamic process [[7], [8]]. However, such computations in 

the presence of large density and viscosity rations and the 

singular nature of the interfacial forces provide unique 

challenges.  Moreover, the separation of small droplets is 

corresponded to a singularity of the equation of motion, 

which makes the numerical simulations extremely costly, 

since the region around the singularity requires high 

resolution. So that it is not surprising that RANS simulation 

in the nonlinear regimes are few [[6], [9]]. In order to 

continue through the singularity, some ad hoc prescriptions 

for a continuation have to be invented for each particular case, 

see [[10]] for more details. 

There are many approaches to turbulence modeling of two-

phase flows. Previous studies in turbulent complex two-phase 

flows are carried out in the context of direct numerical 

simulations (DNS). Some examples of numerical studies of 

the evolution and structure of turbulent shear layers at free 

surface can be found in [[11], [12], [13], [14]]. In DNS, the 

full time-dependent Navier-Stokes and continuity equations 

are solved numerically. Clearly, the advantages of DNS lie in 

its independence from any modeling or assumptions. 

However,  for high Reynolds number flow, which is the 

prevailing circumstances in industrial and engineering 

applications, DNS could not resolve all physical processes 

encountered and then DNS is beyond possibility. Moreover, 

the DNS of the atomization process is challenged by 

involvement of high complexity of physics, surface 

instabilities, stretching and breakup of ligaments and droplets 

producing a multi-scale problem that requires high resolution 

to undertake. To overcome these computational limitations of 

DNS, the governing equations of motion are subjected to 

either Reynolds averaging or spatial filtering, resulting in 

unclosed terms that require closure relations. The governing 

equation are then closed, however, the choices of such 

closure models is not straightforward and has some 

limitations. 

Recently, the increase in computational speed has made large 

eddy simulation (LES) an attractive approach for modeling of 

turbulent flows.  In such context, the large scale eddies are 

simulated, while the small scales called the sub-grid scales 

(SGS) are modeled [[15]]. In industrial level, LES is applied 

in various cases like, internal flows with complex geometries, 

flows with large separated area, atmospheric boundary layers, 

simulation in a combustion chamber, and complex flows with 

moderate Reynolds number. However, LES is extremely 

computationally demanding for high Reynolds number flows. 

Moreover, LES is probably realistic away from a solid 

boundary, however, it has all the limitations of a simple eddy 

viscosity models near to a boundary. In general, both DNS 

and LES are still restricted to simple applications, not to deal 

with a high-Reynolds number flow. 

Nevertheless of the previous comments, LES can be directly 

applied in free-surface flows, provided that the free surface 

does not exhibit any significant deformation. However, the 

presence of the complex topological changes in turbulent 

two-phase flows has relatively a dynamic interaction with 

both the resolved and modeled turbulence scales in the flow. 

This can be referred to the interfacial processes that are not 

described explicitly in the governing equations. Consequently, 

the modeling of turbulent flow by LES has consequences in 

the numerical simulation of turbulent two-phase flows. 

Over the past decade, efforts have focused mainly on the 

construction of two-equation eddy-viscosity models and 

Reynolds-stress-transport closure. The two-equation k-  

eddy viscosity model is still representing a good compromise 

between accuracy and computational efficiency. Therefore, 

the two-equation eddy viscosity models have been the subject 

of much research in the last years as they still the most 

widely used in industrial and engineering applications, even 

though they fail to predict correctly a number of complex 

flows. It was calibrated and validated for many kinds of high-

Reynolds number turbulent flows [[16], [17]]. 

The conventional eddy-viscosity models are based on a set of 

linear Boussinesq stress-strain relations. This approach is 

attractive from a computational point of view, especially in 

terms of numerical robustness, and it has a large popularity 

with CFD practitioners. However, this approach is known to 

be affected by major weaknesses which can be considered as 

the source of substantial errors where the gradient of the 

normal stresses contribute significantly to the momentum 

balance, or what is called complex strain. Although some of 

ad-hoc corrections have been made, usually to the length-

scale equation, and/or the formulation of alternative 
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equations for different length-scale parameters, none of these 

corrections can address the fundamental limitations arising 

from unrealistic constitutive relations, see for more details 

[[18]]. 

The alternative route thus pursued extensively over the past 

decade has been second-momentum closure which is 

mathematically complex and numerically challenging and 

often computationally expensive. Accordingly, it has some 

limitations in the context of industrial CFD. This has thus 

motivated efforts to construct models which combine the 

simplicity of the eddy-viscosity formulations and the superior 

fundamental strength of second-moment closure. These 

efforts have given rise to the group of nonlinear eddy-

viscosity models. 

Nonlinear eddy-viscosity models can be traced back to the 

work of [[19]]. Such approach is generally found to 

marginally improve the predicted turbulence intensities. 

However, relative to the linear models, convergence is mostly 

difficult to achieve. The most nonlinear eddy-viscosity 

models utilize constitutive equations which are functions of 

two turbulence scales (usually k and ε) as well as strain and 

vorticity invariants, e.g. Craft-Launder-Suga (CLS) model 

[[20]]. The nonlinear models have been previously applied to 

a wide range of flows in order to assess the ability of these 

models to predict anisotropy and streamline curvature effects, 

e.g. plane and fully-developed curved channel flow [[20]] 

and turbulent flow around a circular cylinder [[21]]. However, 

the nonlinear models were not widely applied for turbulent 

two-phase flows. In such situations, the flow exhibits the 

combined effects of three-dimensionality and streamlines 

curvature, interfacial normal stresses and surface instabilities. 

In relation to the flow of interest here, particular weakness of 

the linear eddy viscosity models related to turbulence 

production and insensitivity to streamline curvature can be 

avoided. 

In the present study, the performance of linear and nonlinear 

k- turbulence models variants is investigated when these 

models are applied to the complex turbulent two-phase flow 

simulation. The numerical results obtained are evaluated by 

detailed comparison with the available analytical and 

experimental data. 

The preservation of the interface shape and the mass 

conservation properties of individual fluids are of great 

importance in computations of the turbulent two-phase flows.  

Recently, a large number of numerical methods have been 

developed for computing the interface movement and 

predicting its time-dependent topological changes. The 

literature review of such methods is quite extensive and 

comprehensive, therefore only a brief account of some 

important tracking methods is given. 

In general, the available numerical method for computing 

two-phase flows with moving interface can be categorized as 

interface tracking and interface capturing methods according 

to the scheme used for identifying the interface. The interface 

tracking methods involve essentially explicit computational 

element or Lagrangian particles moving through an Eulerian 

grid. Such Lagrangian-based methods can predict the 

interface location precisely. Also, these methods have the 

ability to resolve features of the interface that are smaller 

than the grid spacing of the regular Eulerian mesh [[22]]. 

However, these methods could not deal with the complex 

topological changes of the interface such as merging and 

break-up which require a specified algorithm in order to add 

or remove marker particles as they get too far apart or too 

close together [[23]]. Moreover, the geometrical quantities of 

the interface such normal and curvature are difficult to 

calculate. These problems are amplified when solving a 

three-dimensional problem. 

The interface capturing methods, in contrast to the interface 

tracking method, implicitly locate the interface through a 

definition of a separate phase function that discretized on the 

fixed Eulerian grid. Among several kinds of interface 

capturing methods, the volume-of-fluid (VOF) [[24]] and the 

level set (LS) method [[25]] are the most popular interface 

capturing methods. Although the VOF method has been 

widely applied for predicting different complex flows, it 

suffers from several numerical problems such as interface 

reconstruction algorithms and the difficult calculation of the 

interface curvature [[6]]. These numerical problems can, in 

particular, limit the accuracy and the stability of the 

numerical method adopted for calculation of two-phase flows, 

especially when the surface tension is included [[9]]. A 

comprehensive review for the different VOF methods and 

their numerical constraints can be found in [[14]]. 

In contrast to the VOF methods, the level set methods offer 

highly robust and accurate numerical technique for capturing 

the complex topological changes of moving interfaces under 

complex motions. The basic idea of LS method is the use of a 

continuous, scalar and implicit function defined over the 

whole computational domain with its zero value is located on 

the interface. Unlike the VOF method, which divided the 

spatial domain into cells that contain material function, the 

LS method divided the domain into grid points that contain 

the value of the scalar function; therefore, there is an entire 

family of contours. The interface is then describes as a signed 

distance function at any time, and consequently, the 

geometric properties of the highly complicated interfaces are 

calculated directly from LS function. Moreover, the complex 

topological changes of interfaces such as merging and 

breaking-up are handled automatically in a quite natural way 

without any additional procedure. In addition, the extension 
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of the LS method to three-dimensional problems is easy and 

straightforward. 

Referring to the previous discussion, the LS methods have 

seen tremendously in different CFD-applications of diverse 

areas, e.g. two-phase flows, turbulent atomization, grid 

generation and premixed turbulent combustion [[26]]. 

However, the LS methods suffer from numerical diffusion 

which may cause a smoothing out of sharp edges of interface. 

The LS function is usually evolved by a simple Eulerian 

scheme, and consequently, the final implementation of LS 

methods does not provide full volume conservation, so 

highly accurate transport schemes are required. 

 From the numerical point of view, both of the VOF and LS 

methods has its own advantages and disadvantages. However, 

the great attention that turned recently on the development of 

new capturing-LS-based methods has given the superiority to 

the LS methods in the computations of two-phase flows with 

moving interfaces. In more recent comparison between LS 

and VOF methods [[27]], it is concluded that when 

turbulence is taken into consideration, the VOF technique 

could capture mean effects; however, difficulties are 

encountered when computing problems with instabilities or 

when capturing interfaces with strong deformation, see for 

more details [[28]]. Therefore, in order to alleviate some of 

the geometrical problems of VOF method and to improve the 

mass conservation in the LS method, a large number of 

coupled LS and VOF methods have been developed, see for 

more details [[29]]. The resulting approach is completely 

Eulerian and does not include any characteristics of the front 

tracking methods. 

Recently, another class of hybrid methods has been 

developed and applied for different two-phase flows 

applications, e.g. the particle level set method [[30]], the 

Eulerian level set-vortex sheet method [[31]], the hybrid 

Lagrangian-Eulerian particle-level set method [[6]], the 

coupled level set-ghost method [[7]] and the coupled level 

set-boundary integral method [[32]]. All these methods have 

been quite successful, however, each method has its own 

advantages and disadvantages. Consequently, it is difficult to 

affirm which one is generally superior. The success of each 

method is dependent on the available computational 

resources and the description of the problem considered. 

According to the special features of such hybrid methods, the 

computational cost is much greater and complex than the 

classical level set method. Moreover, as a result of the 

different types of the coupled techniques in hybrid methods, 

there is usually a time step restrictions to obtain stable 

schemes. Although the ghost method introduces an attractive 

way for handling the density and pressure jump of two-phase 

interface, the discretization of the viscous term is challenging 

and complex [[7]]. In general, the ghost method results in 

additional computational cost that becomes very demanding 

in large three-dimensional simulations. 

In the present work, we are concerned with further 

development of the level set method, which belongs to the 

group of Eulerian interface-capturing methods. The standard 

level set formulation is based essentially on the previous 

work of [[33]] and has become very popular, so that a large 

amount of bibliography using this method has been published 

and several types of problems have been undertaken, see for 

more details [[34]]. In such formulation, the two phases are 

solved as a single phase with variable properties. The fluid 

properties are assigned and modified according to the 

distance to the interface function and by using the smooth 

Heaviside function [[33]] in order to handle the discontinuity 

across the interface. The interface is smoothed across a finite 

thickness region, usually a few grid points thick. 

Since the surface tension effects play a significant role in the 

most important two-phase flow problems such as droplet 

deformation, bubble motion and liquid ligament breakup, a 

great attention has been given for the numerical modeling of 

the surface tension force in two-phase flow simulations. In 

the context of the standard level set method, the continuum 

surface force (CSF) model [[35]] has been widely used to 

model surface tension. In the CSF model, surface tension 

effect is treated as a body force or as a source term in the 

momentum equation. 

Although the standard level set formulation provides a good 

solution to the problem of interface advection in two-phase 

flow, however, it suffers from various numerical problems. 

The inherent problem resulted from introducing the transition 

region and the smoothing of the interface discontinuity in a 

continuum formulation remains challenged [[29]]. This 

results in smearing of flow properties and variables, forcing 

them to be continuous across the interface in spite of the 

appropriate jump conditions. Even if smooth initial data are 

considered, the interface can lose smoothness and develop 

singularities in finite time. As a consequence, the numerical 

simulation using this model cannot be continued past the 

point of singularity without some sort of artificial 

regularization being applied [[36]]. 

The second problem associated with the standard level set 

formulation is the modeling of the surface tension force by 

using the CSF method. A striking feature of this method, as 

reported by [[22]], is the so called spurious currents resulted 

from the inconsistent modeling of the surface tension force. 

In some cases, these numerical artifacts may lead to 

catastrophic instabilities in interface calculations and 

inaccurate description of steep gradients occurring at the 

interface. In such cases, the effect of the unbalanced forces 

acting on the interface can reduce the accuracy of the 
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calculation. Therefore, it is not surprisingly that till now new 

surface tension models are continuously developed [[29]]. 

In the present paper, and in order to alleviate the above 

numerical problems, new approaches are considered. Firstly, 

instead of using the continuum formulation of the single 

phase model [[33]], the momentum equations are solved in 

the dispersed and the continuous phase separately. The 

normal and the tangential stresses as well as the kinematic 

conditions are satisfied on the interface separating the two 

phases. The splitting of the two phases presents, from our 

numerical point of view, several advantages over the standard 

level set approach. The Navier-Stokes equations are solved in 

both fluids with constant properties. Consequently, the 

computation of the pressure can be done in a standard way 

without pressure and velocity oscillations at the interface that 

are common in two-phase level set methods with large 

density ratios. Another important advantages, is that the 

continuity equation is enforced always in both fluids, thus 

allowing the use of standard collocated methods [[34]]. 

The second approach presented here is the modeling of the 

interfacial stresses by introducing a number of interfacial 

markers at the interface intersections with the computational 

grid lines. The interfacial stresses are calculated accurately 

on the markers positions. In contrast to the single phase 

model in which the interfacial jump conditions are embedded 

naturally on the governing equation, the jump conditions 

presented here are treated as a boundary conditions enforced 

explicitly on the normal and tangential direction of the 

interface. Therefore, the surface tension model, presented 

here, ensures that, both the pressure calculated inside the 

droplet and the surface tension pressures are consistent and 

dynamically similar, as their effect is determined in the same 

way. Accordingly, the pressure jump across the interface 

cancels exactly the surface tension potential at the interface 

and eliminates the numerical error that might be associated 

with the inconsistent modeling of the surface tension effects 

in two-phase flow simulation. The problem of the spurious 

current is almost diminished, as the pressure gradient that 

drives the flow field is calculated inside the liquid phase 

accurately. 

The previous approaches have demonstrated a remarkable 

capability in predicting the dynamics of the interface 

separating two phases in simple two-phase flow applications 

in robust and accurate manner [[37]]. Moreover, the accuracy 

of our models was assessed by comparing the obtained 

results of oscillating a square droplet under the surface 

tension effects with those predicted by the CSF model; see 

for more details [[38]]. However, these models have not been 

applied in predicting the complex turbulent moving 

interfaces in a wide range of industrial and engineering 

applications. Therefore, a challenge test for our models is its 

implementation in predicting the complex dynamics of the 

turbulent two-phase flows. 

The present work aims at developing a new numerical 

method, which is capable of capturing the interface dynamics 

in complex turbulent two-phase flows on the basis of the 

level set method. An extension of our previous numerical 

method presented in [[39]] is introduced and a new coupling 

with linear and nonlinear turbulence models is achieved.  The 

interfacial stresses are modeled by calculating their effects on 

a number of interfacial markers located on the interface 

intersections points with the computational grids. Therefore, 

the presented numerical method is referred to interfacial 

marker level set method (IMLS). The method is tested on 

several selected problems for which there are available 

experimental data, or analytical solution. This work aims also 

at providing a synthetic and critical work on turbulent two-

phase flow simulations in order to develop in the near future 

an original three-dimensional numerical modeling of 

incompressible turbulent two-phase flows. 

The rest of the paper is organized as follows. In section 2, the 

RANS equations for unsteady, incompressible turbulent two-

phase flows are presented, along with the implemented linear 

and nonlinear turbulence models. Following, the associated 

interfacial stresses modeling and the interface capturing LS 

method are explored. Then, in section 3, the numerical IMLS 

method applied to solve the complete set of equations is 

described in brief. In section 4, the developed IMLS is tested 

numerically and its accuracy is assessed by performing the 

capillary instability of a cylindrical liquid jet as a validation 

case. Furthermore, the IMLS is applied for simulating one of 

the most complex industrial turbulent two-phase flow 

problem; namely, the impinging of gaseous jet on a liquid 

interface. Finally, in section 6, conclusions of the present 

work are drawn. 

2. Mathematical Formulations 

In the IMLS method, the two immiscible fluids (such as 

liquid/gas) are treated separately; therefore, two sets of 

governing equations are introduced. Both fluids are assumed 

to be governed by the incompressible Reynolds form of the 

continuity and Navier-Stokes equations with constant 

properties. In order to extend the governing equations to the 

existing model of two immiscible fluids, two fluid domains 

( )1Ω t and ( )2 tΩ  are considered. Both domains are evolving 

with time t and satisfying: 

( ) ( ) ( ) ( )1 2 1 2,t t t tΩ = Ω ∪ Ω Ω ∩ Ω = ∅               (1) 

Each fluid has its own material properties ρα and µα (α=1,2), 

where the subscript α = l or g indicates the liquid and the gas 
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phase presented at a given point in space. The discontinuity 

of the mass density and viscosity arise along the interface 

Γ denoted by: 

( ) ( ) ( )1 2:t t tΓ ∂Ω ∩ ∂Ω                                 (2) 

Taking the interaction of the two fluids at the interface into 

account, the instantaneous local equations of motion (called 

here RANS equations), in conventionally averaged variables, 

within each fluid after neglecting body forces can be written 

in tensor notation for two dimensional, unsteady, 

incompressible and axisymmetric/plane flows (n=1/n=0), as 

follows: 

( )

( ) ( )

( )

0

in 1,2

n

in

i

n

i j in

j

n i

ijn

i jj

r U
r x

U U r U
t r x

UP
r

x xr x
α

ρ

ρ ρ

µ ρ α

∂ =
∂

∂ ∂+
∂ ∂

 ∂∂ ∂= − + + ℜ Ω =  ∂ ∂∂  

  (3) 

In the above set of equations, we consider that the upper case 

denotes ensemble-mean quantities and lower case indicates 

fluctuating or turbulence quantities; U is velocity vector, ρ is 

density, µ is viscosity, P is pressure and ijℜ  is the apparent 

turbulent stresses or Reynolds stresses ( jiij uu−=ℜ ). An 

overbar is used to denote Reynolds averaging. Different 

turbulence models have been previously developed in order 

to model the Reynolds stresses and to close the set of the 

momentum equations. In the following, the definition of 

linear and nonlinear k-ε turbulence models is introduced.   

2.1. Linear and Nonlinear Turbulence 

Models 

The turbulent characteristics of complex two-phase flows can 

be obtained by solving the transport equation for kinetic 

energy k and its dissipation rate ε. In such context, the linear 

standard two-equation k-ε turbulence model (STD k-ε) 

applied in Ω can be written as follows: 

( ) ( )

( ) ( )

n

j n

j

n

t k kn

jj

k U r k
t r x

k
r P

xr x

ρ ρ

µ µ ρ ε

∂ ∂+
∂ ∂

 ∂ ∂= + Σ + − 
∂∂   

              (4) 

( ) ( )

( ) ( )1 2

n

j n

j

n

t kn

jj

U r
t r x

r C P C
x kr x

ε ε ε

ρε ρε

ε εµ µ ρ ε

∂ ∂+
∂ ∂

 ∂ ∂= + Σ + − 
∂∂   

     (5) 

where the turbulent viscosity
2

t C kµµ ε=  and 

1 2, , , ,k C C Cε ε ε µΣ Σ  are the model constants given as 1, 1.3, 

1.44,1.92, 0.09 respectively. The turbulent kinetic energy 

production rate Pk is given as follows: 

i

k ij

j

U
P

x

∂
= ℜ

∂
                                  (6) 

The modelling of the production term in the turbulent flow 

simulation is one of the important tasks as it affected by the 

approximation of the Reynolds stresses. Models following 

the Boussinesq assumption (1877) in approximating the 

Reynolds stresses will be referred to linear turbulence models. 

In such models, a linear stress-strain relation can be defined 

as follows: 

2

3
ij t ij ijS kν δℜ = −                              (7) 

Where 
t

ν  is the eddy viscosity, ijδ  is the Kronker delta and 

ijS  is the mean stress tensor defined as: 

ji

ij

j i

UU
S

x x

 ∂∂
= +  ∂ ∂ 

                             (8) 

It is more conveniently to re-express the turbulent stress in 

terms of the dimensionless anisotropy tensor as follows: 

2

3

i j t

ij ij ij

u u
a S

k k

νδ= − = −                            (9) 

It is known that the linear eddy-viscosity models could not 

represent adequately the turbulence physics, particularly in 

respect of the different rates of production of the different 

Reynolds stresses and the resulting anisotropy, see for 

example [[18]]. The nonlinear models mimic the response of 

turbulence to complex strain by using a nonlinear constitutive 

relation between turbulent stress and mean rate of strain: i.e. 

roughly of form: 

( ) ( )1 2, ,t

ij ij ij ij ij ija S Q S Q S
k

ν
= − + Ω + Ω             (10) 

where the quadratic term Q1 and the cubic term Q2 are 

functions of mean strain ijS and vorticity tensor ijΩ  that 

defined as: 

ji

ij

j i

UU

x x

 ∂∂
Ω = −  ∂ ∂ 

                                 (11) 

The quadratic eddy viscosity model has showed little width 

of applicability [[39]]. However, the cubic eddy viscosity 
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model exhibits advantages over the quadratic model in 

allowing successful inclusion of normal-stress anisotropy and 

streamlines curvature effects on turbulence. This model has 

been proposed in [[40]] and further implemented in [[41]]. In 

such model, a nonlinear relation for the anisotropy tensor is 

used: 

( )

( ) ( ) ( )

1 2 3

2

4 6 72

1 1

3 3

t t

ij ij ik kj kl kl ij ik kj jk ki ik jk lk lk ij

t

ki lj kj li kl kl kl ij kl kl ij

k
a S C S S S S C S S C

k

k
C S S S C S S S C S

ν ν δ ζ ζ ζ ζ ζ ζ δ
ε

ν ζ ζ ζ ζ
ε

    = − + − + + + −    
    

 + + + + 

                         (12) 

The model coefficients C1, C2, C3, C4, C6, C7 are given as -

0.1, 0.1, 0.26, -10
2

µC , -5
2

µC , 5
2

µC , respectively. The 

coefficient µC  is now given by the expression: 

1.2
min 0.09,

1 3.5 RS

C
f

µ η
 

=  + + 
                 (13) 

with 

( )( )2 20.235 max 0, 3.333
RS I

f Sη= −             (14) 

( ) { }max 0.5 , 0.5ij ij ij ijk S Sη ε ζ ζ=             (15) 

( )1.5
0.5

I ij jk ki nl nl
S S S S S S=                             (16) 

In the present paper, the nonlinear eddy viscosity model is 

applied to the complex turbulent two-phase flow in case of 

the impingement of gaseous jet on a liquid interface for the 

first time to our knowledge. 

2.2. Near-Wall Modeling 

The above nonlinear model, as reported by [[42]], should 

contain additional low-Reynolds-number and near-wall terms 

in order to account for the wall damping effects. In such 

context, a very large number of nodes are required in order to 

resolve the flow right down to the wall. In addition, special 

viscosity-dependent modifications to the turbulence model 

are required. Instead of that, the wall effects on turbulence 

can be evaluated via the wall-function and near-wall-

modeling approaches [[43]]. Consequently, the low-

Reynolds-number terms in the applied nonlinear model are 

neglected here. 

The wall-function approaches are computationally 

economical, robust and have been widely used in turbulence 

simulations. In such approaches, often the buffer layer is 

neglected and considered in the viscous sub-layer. The 

incorporated zone lies in the range of 0 11.63y+< ≤ . The 

linear dependence of speed flow from wall distance reads 

U y+ +=                                            (17) 

where, 
*

,
U

U
U

+ =  
*U y

y
ν

+ =  and * /
w

U τ ρ=  that called 

shear or friction velocity. 

In the logarithmic layer, (for 11.63y+ >  ), the Reynolds 

stresses exceed much viscous effects and the structure of 

velocity can be expresses in the form of the logarithmic law: 

1
( )

V

U Ln Ey
κ

+ +=                                   (18) 

where 9.8,E =  for smooth walls as assumed in the present 

work and 0.41
V

κ =  is the Van-Karman’s constant. At the 

wall, the boundary value for the dissipation rate at the first 

near-wall- point, (identified by the subscript p), can be 

expressed as: 

0.75 1.5

p

p

p

C k

y

µε
κ

=                                           (19) 

The near-wall value of the turbulence kinetic energy 
P

k  is 

computed by solving the complete transport equation for k  

in the near wall control volume, with the wall shear stress 

included in the production term and zero normal gradients 

assumed for k  at the wall. The above equations can be used 

to set the computational boundary conditions within a wall-

function approach. 

2.3. Level Set Method 

In order to describe the complex topological changes of the 

interface separating the two phases with an elegant, robust 

and efficient method, the level set approach is applied. Since 

the original work of the level set method introduced in [[44]], 

a large amount of bibliography on this subject has been 

published and several types of problems have been tackled 

with this method; for instance one can see the cited review 

[[45]]. 
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Figure 1. Definition of level set function and velocity components of a 

moving interface. 

The basic idea of the LS method is to embed a moving 

interface Γ as the zero level set of a smooth phase function 

defined over the whole computational domain. Consequently,

the two phases are distinguished by the level set function 

t), which can be defined as negative in the dispersed phase 

and positive in the bulk fluid. Figure 1 shows a moving 

interface between two immiscible fluids with the definition 

of the level set function and the projection of 2D velocity 

components into a normal velocity Vn and tangential velocity 

Vt according to the normal vectors nx and 

normal and tangential to the interface, respectively. 

Mathematically, one can split the velocity components 

the direction of the normal and the tangential of interface in 

order to get the normal and the tangential velocity; i.e.






⋅














−

+
=









ij

ji

t

n

U

U

nn

nn

V

V

In the Numerical formulation of the level set, a smooth 

function φ is typically initialized as a signed distance 

function from the interface i.e. its value at any point is the 

distance from the nearest point on the interface and its sign is 

positive on one side and negative on the other. Let us set 

positive in liquid and negative in gas. The location of the 

interface is then given by the zero level set of the function

In absence of the interfacial mass transfer such as 

evaporation or condensation, the equation of the level set 

method can be written in a form that is 

Hamilton-Jacobi equation: 

0nV
t

ϕ ϕ∂ + ∇ =
∂

           

where Vn is the normal velocity at the interface, defined as 

= U· n. The unit normal on the interface n

liquid into gas, and the curvature of the interface 

defined in terms of φ as: 
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formulation of the level set, a smooth 

is typically initialized as a signed distance 

function from the interface i.e. its value at any point is the 

distance from the nearest point on the interface and its sign is 

positive on one side and negative on the other. Let us set φ as 

id and negative in gas. The location of the 

interface is then given by the zero level set of the function φ. 

In absence of the interfacial mass transfer such as 

evaporation or condensation, the equation of the level set 

 equivalent to the 

                                (21) 

is the normal velocity at the interface, defined as Vn 

n, drawn from the 

liquid into gas, and the curvature of the interface κ can be 

n
ϕ
ϕ

∇= −
∇

, 

In general, the level set function 

normal velocity component defined for all the level sets

the computational domain. However, 

normal velocity has a physical meaning

location and it is independent of the others 

interface. Therefore, the thinking 

velocity field in the context of level set methods has received 

a great attention. One of the

numerical techniques for constructing of 

filed is proposed in [[46]], where the Fast Marching Method 

(FMM) proposed by [[47]] is applied. 

normal velocity Vn is replaced by some velocity field 

known as the extension velocity, which at the zero level set, 

equals the given speed Vn. In other w

extF
t

ϕ ϕ∂ + ∇ =
∂

The extension velocity Fext

computational domain Ω by solving the following equation:

0, ,ext ext nF where F Vϕ∇ ⋅∇ = =

An important step in the solution algorithm of the level set 

function is to maintain the level set function as a distance 

function within the two fluids at all times, especially near the 

interface region, i.e. the Eikonal equation,

satisfied in the computational domain.

advection of the level set function, it ceases to be the signed 

distance function, although this property is

by applying the FMM [[46]]. However, that is not accurately 

achieved in case of complex topological changes of the 

interface. Consequently, in the present work, the re

initialization algorithm described in [

specified small number of iterations in the all o 

computational domain. 

The iterative technique developed in [

the level set function is based on solving an additional 

equation to steady state; 

( )(sign 1 0o

ϕ ϕ ϕ
τ

∂ + ∇ − =
∂

where τ  is a time-like variable (di

t), φο is the initial distribution of the level set function before 

re-initialization. The sign function 

smoothed according to [[33]]: 

Phase Flows Using the Level Set Method  

, nκ = ∇ ⋅                           (22) 

level set function is advected by using the 

component defined for all the level sets in 

the computational domain. However, in strictly speaking, the 

normal velocity has a physical meaning only at the interface 

it is independent of the others away from the 

Therefore, the thinking about building of extension 

velocity field in the context of level set methods has received 

One of the most recently developed 

for constructing of extension velocity 

, where the Fast Marching Method 

] is applied. In this method, the 

is replaced by some velocity field Fext 

known as the extension velocity, which at the zero level set, 

. In other words; 

0ϕ+ ∇ =                                    (23) 

The extension velocity Fext is calculated over the all 

solving the following equation: 

0, ,ext ext nF where F V
Γ

∇ ⋅∇ = =                    (24) 

An important step in the solution algorithm of the level set 

function is to maintain the level set function as a distance 

function within the two fluids at all times, especially near the 

. the Eikonal equation, 1ϕ∇ = , should be 

satisfied in the computational domain. By the transient 

advection of the level set function, it ceases to be the signed 

distance function, although this property is tacitly employed 

However, that is not accurately 

complex topological changes of the 

Consequently, in the present work, the re-

scribed in [[33]] is applied for a 

specified small number of iterations in the all o 

iterative technique developed in [[33]] for re-initializing 

is based on solving an additional 

)sign 1 0ϕ ϕ+ ∇ − =                          (25) 

like variable (different from physical time, 

is the initial distribution of the level set function before 

initialization. The sign function ( )sign oϕ  must be 
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sign o
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ϕϕ
ϕ β

=
+

                               (26) 

Considering regular grid with grid distance h, then, hβ = and

10hτ = . The above re-initialization technique has proved its 

effectiveness in preventing inaccurate computations near flat 

or steep region and preserving as a signed distance function. 

However, it is somewhat wasteful of computation time due to 

its iterative nature. Moreover, in some cases, the steady state 

solution could not be achieved even after a large number of 

iterations. Therefore, in the present work, a few numbers of 

iterations is only considered. 

2.4. Interfacial Boundary Conditions 

Generally, the numerical simulations of two-phase flow could 

become quite challenging problem and face significant 

difficulties. In particular, an accurate tracking of complex 

interfaces, where large deformations and inter-penetration of 

phases occur, is required. In addition, the basis of improving 

such numerical simulations lies in satisfying the interface- 

normal and tangential stress boundary conditions more 

accurately. 

The accurate boundary conditions at the interface separating 

two immiscible fluids are the balance of the dynamic stresses 

and the kinematic conditions. Assuming the stress tensor for 

turbulent flow of an incompressible fluid is given by: 

ij ij ij ijp Sδ µ ρℑ = − + + ℜ                                (27) 

This equation is applied at each point in the flow field; 

however, this equation loses its generality at the interface 

between the two phases as a result of the discontinuous fluid 

properties. The surface tension effect is known to balance the 

jump of the normal stress along the fluid interface [[35]]. In 

case of two immiscible fluids, the interfacial boundary 

conditions or jump conditions can be written as: 

[ ].n -( n )ij tσκ σℑ = + ∇                             (28) 

where σ  is the surface tension coefficient and the bracket 

denotes the jump of the stresses along the fluid interface Γ. 

The unit normal vector n is taken from liquid phase to gas 

phase and t is an arbitrary vector perpendicular to the normal 

to the interface. The second term on the right hand side of the 

above equation is the stress due to gradients on surface 

tension or Marangoni effect [[48]], usually important when a 

temperature gradient is applied parallel to the interface, e. g. 

thermo-capillary convection. 

Taking the projections of the jump conditions in the 

directions normal and tangential to the interface, considering 

a constant surface tension, one obtains the following two 

equations in the normal and tangential directions, 

respectively: 

( )( ),[ 2 U n n ni j ijp µ ρ σκ− + ℜ ⋅ ⋅ =              (29) 

( )( ) ( )( ), ,[ U n t U t n] 0i j ij i j ijµ ρ µ ρ+ ℜ ⋅ ⋅ + + ℜ ⋅ ⋅ =    (30) 

It is clear that, according to the approximation of the 

Reynolds stresses (i.e. linear or nonlinear turbulence model is 

used), the normal and the tangential boundary conditions 

could be estimated. 

Starting from the Continuum Force Model (CFM) [[35]], the 

standard level set formulation for incompressible and viscous 

two-phase flows is based on expressing the surface tension 

effect in term of a singular source function defined in the 

momentum equations [[49]]. Consequently, the interfacial 

jump condition at the interface is integrated into the Navier-

Stokes equations, resulting in a body force concentrated on 

the interface. By using this formulation, a large amount of 

bibliography has been published and several types of 

problems have been tackled; see for instance the cited review 

[[34]]. 

Although the standard level set formulation provides a good 

solution to the problem of interface advection, however, the 

accurate representation of the surface tension force remains a 

problem when using fixed grids. A striking feature of this 

method, as reported by [[50]], is the so called "spurious" 

currents. These numerical artifacts result from inconsistent 

modeling of the surface tension force and the associated 

pressure jump. In some cases they may lead to catastrophic 

instabilities in interface calculations. More generally, these 

numerical artifacts introduce the problem of obtaining an 

accurate representation of the steep gradients occurring at the 

interface. In such cases, the effect of the unbalanced forces 

acting on the interface can reduce the accuracy of the 

calculation. Therefore, it is not surprisingly that till now new 

surface tension models are continuously developed [[51]]. 

Moreover, the CFM considers that the effect of surface 

tension is to balance the jump of the normal stress along the 

fluid interface between two inviscid fluids having a constant 

surface tension coefficient. Consequently, the interfacial 

jump condition is reduced to Laplace's formula for the 

surface pressure [[52]] due to the dropping of the viscous 

stresses. The effect of neglecting the interfacial shear stress 

can be seen through increasing of the normal stress 

magnitude at the phase boundary [[53], [54]]. Moreover, the 

formation of the capillary ripples on a thin liquid film is 

dependent on receiving their energy essentially from the 

pressure and shear stress exerted at the interface by the 

flowing concurrently high velocity gas stream [[55]]. 
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In contrast to the previous two-phase numerical methods, in 

which the interfacial jump conditions are embedded naturally 

on the formulation, the jump conditions at the interface 

between the two immiscible fluids are treated here as 

boundary conditions for pressure enforced explicitly at the 

interface. This numerical technique has bee implemented in 

our previous work [[38], [39]], and good results have been 

obtained for a number of challenging problems. 

The idea of our modeling is straightforward. By introducing a 

number of so called "Interfacial Markers" on the intersection 

points of computational grids with the interface, the surface 

tension force (mainly the surface pressure) is evaluated and 

then it is used to drive the liquid phase through the pressure 

gradient seen in the momentum equations. Moreover, at the 

position of the interfacial markers, the local curvature is 

easily estimated by means of a simple interpolation technique. 

Once the curvature is known, the surface tension force is 

evaluated. In addition to that, the calculation of the 

differential terms in the momentum equation can be 

calculated by means of the appropriate values of the 

properties at the interfacial marker and by using the actual 

distance to the interface. 

The present surface tension model ensures that both the 

pressure calculated within the liquid phase and the surface 

tension pressure is consistent and dynamically similar, as 

their effect is determined in the same way. Accordingly, the 

pressure drop across the interface cancels exactly the surface 

tension potential at the interface. 

For more generality of the present model, see figure 2, it is 

considered that the interfacial pressure inside the liquid phase 

l
p  is determined by evaluating the interfacial pressure in the 

gas phase gp  and other different "pseudo pressure" terms. i.e. 

grgl ppppp +++= µσ              (31) 

 

Figure 2. Computational grid point definition. 

where ,p pσ µ  and grp  give the interfacial "pseudo pressure" 

associated to the surface tension effect, the viscous normal 

stresses and the buoyancy effect, respectively. In such 

context, the present model enables us to simply include any 

external interfacial driving force in the pressure boundary 

condition instead of incorporating it as a body force in the 

momentum equations. The pressure values calculated from 

the above equation is then used as Dirichlet boundary 

conditions for solving the Poisson equation for the pressure. 

Consequently, this model can in principle be applied to any 

immiscible fluids problem as long as the stress on the second 

phase can be specified or neglected. 

In the tangential direction, an equality of the shear stress on 

both sides of the interface should be satisfied; i.e. 

n n

t t

ij ij

l g

V Vµ ρ µ ρ∂ ∂ + ℜ = + ℜ ∂ ∂ 
                (32) 

In addition to the equality of the dynamically interfacial 

stresses described above, the kinematic conditions should 

also be considered. When there is no mass transfer through 

the interface, the kinematic conditions is satisfied at the 

interface by assuming the continuity of the normal velocity 

component, i.e. 

n nl g
V V=                                  (33) 

The satisfying of the previous interfacial boundary conditions 

is an important task in the numerical simulation of two-phase 

flows as the pressure and velocity field inside the liquid 

phase are caused by the external gas field normal and 

tangential stresses. Therefore, the exact pressure level inside 

the liquid phase, which considers as the driving force, must 

be specified. The above interfacial conditions are reduced to 

Laplace’s formula [[35]] for the surface pressure in case of 

inviscid incompressible fluids with constant surface tension 

coefficient. 

In order to obtain the dynamic balance between two 

immiscible fluids, the complete set of the governing 

equations are solved for the gaseous field to obtain the 

velocity, pressure, viscous stresses and any existing force 

around the interface. These are used as boundary conditions 

for the solution of the Poisson equation for pressure inside 

the liquid phase. Further, the governing equations in the 

liquid phase are solved. Consequently, after getting the 

complete flow field dynamics, the advection of the liquid 

interface is carried out using the level set approach. 

3. IMLS Numerical Scheme 

Recently, different computational fluid dynamics numerical 

methods for two-phase flows have been developed. These 

numerical methods can be distinguished by their ways of 

determining the pressure filed or their techniques to capture 
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the interface separating the two immiscible fluids. In general, 

the calculation of the accurate pressure field has the most 

important effect on the topological changes of the interface 

rather than other fluid variables. 

The standard level set method for incompressible two-phase 

flows, originated nearly twenty years ago [[33]], has become 

very popular. In this method, the instantaneous local 

momentum equations within each fluid are solved with 

appropriate numerical scheme. However, the direct solution 

of the momentum equations in such case is naturally difficult, 

since the fluid properties change discontinuously across the 

interface, and the concentrated surface tension also becomes 

infinite in an infinitesimal volume. To overcome these 

difficulties, the interface is smoothed a cross a finite 

thickness region, usually a few grid points thick. Moreover, 

the fluid properties are smoothed according to the Heaviside 

function that depends on a parameter describing the thickness 

of the interface or in other words a "transition region", see for 

more details [[56]]. 

The most important drawback encountered in the standard 

level set method is the introduction of the transition region 

which results in smearing of flow properties and variables, 

forcing them to be continuous across the interface in spite of 

the appropriate jump conditions. Even if smooth initial data 

are considered, the interface can lose smoothness and 

develop singularities in finite time. As a consequence, the 

numerical simulation using this method cannot be continued 

past the point of singularity without some sort of artificial 

regularization being applied [[57]]. The other drawbacks 

such as the surface tension modeling and the spurious current 

problem have been discussed previously. Although the 

problem of the transition region is solved on the Ghost Fluid 

Method [[58]], the resulting approach introduces an 

additional computational cost that can be very demanding in 

3D numerical simulation. 

In contrast to the standard level set method, in the present 

paper, the two phases are solved separately using the control 

volume approach on structured cell-centered collocated grids. 

The splitting of the two phases presents, from our point of 

view, several advantages over the standard level set approach. 

The Navier-Stokes equations are solved in both fluids with 

constant properties. Consequently, the computation of the 

pressure can be done in a standard way without pressure and 

velocity oscillations at the interface that are common in two-

phase level set methods with large density ratios. Another 

important advantages, is that the continuity equation is 

enforced always in both fluids, thus allowing the use of 

standard collocated methods without usual pressure and 

velocity oscillations that occurs at the interface separating the 

two phases, see for more details [[34]]. The interface is 

captured with appropriate enforcement of the jump 

conditions and still retaining the advantages of the level set 

method. The problem of the spurious current can be 

decreased, as the pressure gradient that drives the flow field 

is calculated inside the liquid phase accurately. 

More recently, the author has developed a numerical method 

to track the interface separating two immiscible fluids and to 

follow its complex topological changes [[38], [39]]. In the 

present work, we extend our numerical method to turbulent 

two-phase flows simulation with moving interface. The 

turbulent characteristics are predicted either by linear or 

nonlinear turbulence model. In brief, this numerical method 

is described in the following. 

The governing equations are discretized and solved using the 

implicit fractional step-non iterative method on the basis of 

the control volume approach proposed by [[59]]. As a result 

of the complexities introduced by the staggered grid system 

in two-phase flow calculations and the need to track the 

liquid surface, a non-staggered grid system is applied here, 

which requires the use of a single cell network for all 

variables and a collocated specification of variables at the 

centre of each cell. High-order approximation for calculating 

the fluxes at cell faces is applied to prevent pressure 

oscillations [[39]]. As there is no pressure transport equation 

necessitates the consideration of the continuity equation, the 

Poisson equation for pressure is solved by means of the 

Successive Over-Relaxation method. 

In our algorithm, the implicit fractional step-non iterative 

method is applied to obtain the velocity and pressure filed by 

presuming that the velocity field reaches its final value in two 

stages; that means 

1 *+ = +n

cU U U                                (34) 

where by, *U  is an imperfect velocity field based on a 

guessed pressure field, and 
c

U is the corresponding velocity 

correction. Firstly, the 'starred' velocity will result from the 

solution of the momentum equations. The second stage is the 

solution of Poisson equation for the pressure: 

*

cp
t

ρ∇ = ∇⋅
∆

2
U                            (35) 

where t∆  is the prescribed time step and cp  is called the 

pressure correction. Once this equation is solved, one gets the 

appropriate pressure correction, and consequently, the 

velocity correction is obtained according to: 

c c

t
p

ρ
∆= − ∇U                                 (36) 

This fractional step method described above ensures the 

proper velocity-pressure coupling for incompressible flow 
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field. However, the accurate solution of the surface pressure 

occurring at transient fluid interfaces of arbitrary and time 

dependent topology enables an accurate modeling of two- 

and three dimensional fluid flows driven by surface forces. 

Assuming that a square regular mesh is used for the 

calculation, the curved shape of the interface causes unequal 

spacing between the interface and some internal grid points, 

as illustrated in figure 3. In the present work, a linear 

interpolation is used to assign values of any variable ϕ at the 

interface from the known internal grid points values. In 

addition to that, a finite difference approximation to the 

derivatives at interface neighboring points is developed. 

Referring to figure 3, the interphase boundary value for any 

arbitrary variable ϕ can be calculated according to the 

following relation: 

( ) , a b

B A P A

a

h h
f f

h
φ φ φ φ +

= + − =                   (37) 

Consequently, an approximation of the Laplace equation for 

pressure at point p is made as follows: 

2 2

2

B p p A

b a b a

D p p C

d c d c

p p p p
p

h h h h

p p p p

h h h h

− − 
∇ ≈ − +  

− − 
+ − +  

                 (38) 

 

Figure 3. Irregular mesh caused by the interface. 

The above equation can be developed utilizing Taylor-series 

expansion about the grid point p. It can easily be shown that 

the above formula is equivalent to the regular grid formula if 

the distances ha = hb = x, and hc = hd = y. More details about 

the numerical procedure used to solve the above system of 

equations can be found in [[37]]. 

The above algorithm is applied in a separate way in both 

phases to obtain the fluid variables in each phase. By using 

the velocity and pressure values on the gas phase as a 

boundary conditions defined on the interface, the solution of 

the liquid phase is carried out. After the whole computational 

domain is calculated, the turbulent equations are solved on 

both phases simultaneously. The normal velocity at the 

interface is then used to move the interface using the level set 

approach and to obtain its topological changes. Consequently, 

the whole algorithm is repeated until it would reach the 

statistically steady state condition. 

4 Results and Discussion 

In this section, the validation of our developed IMLS 

numerical method is carried out through performing of two 

challenge problems of two-phase with moving interface in 

laminar and turbulent flows. The first case is dealt with the 

capillary-driven instability of a cylindrical liquid jet in 

inviscid and viscous regimes. The interfacial boundary 

conditions in such case are dependent on the surface tension 

force and the viscous stresses. The effect of the viscous force 

on the break-up process of the liquid jet in the final stages of 

evolution is clarified. The second performed problem is the 

deformation of liquid interface upon the impinging of 

turbulent gaseous jet. In such case, the interfacial boundary 

conditions are affected by the surface tension force, the 

viscous stresses, the gravity force and the turbulence 

quantities. A new dimensionless number, called Impinging 

number (IM), which describe the impinging process and the 

related operating parameters is introduced. For both cases, 

only a sample of the obtained results is presented, where 

detailed analysis of both cases will be done in separate and 

future work. The presented numerical results for the two 

cases are compared with the linear analysis and the available 

experimental measurements. 

4.1. Capillary-Driven Free Surface Flows 

The capillary-driven free surface flows can be found in 

various industrial applications, e.g. inkjet printing, fuel 

spraying and atomization of liquid jet. The challenge 

problems associated with the numerical simulation of such 

cases are the appropriate modeling of the interfacial stresses 

(e.g. surface tension and viscous forces) and the choice of the 

tracking method. An extensive review of such problems can 

be found in [[29]]. Therefore, in the present work, the 

numerical simulation of the capillary-driven free surface 

flows is performed in order to evaluate the capability of the 

proposed numerical method to capture the interfacial 

stresses-driven instabilities. 

By considering an axisymmetric disturbance is imposed on a 

cylindrical liquid jet surface, the initial wave profile is 

assumed to be: 
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0 0

2
cos( )r r x

πη
λ

= +                                 (39) 

where 
0

r  is the undisturbed radius of the jet, 
0

η is the initial 

disturbance amplitude and λ is the wavelength of the 

disturbance. Following the general linear theory provided by 

Sterling and Sleicher [[60]] for the prediction of the growth 

rate of the initial disturbance of an inviscid as well as viscous 

liquid jet and assuming that the liquid jet is driven only by 

capillary instability and neglecting the effect of the ambient 

gas, one can obtain the following equation for the growth 

rate : 
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where ξ  is defined as the wave ratio ( 0

2
r

πξ
λ

= ) and ,
n n

I K  

are the nth order modified Bessel function of the first and 

second kind. In case of an inviscid liquid jet with no effect of 

the ambient gas, the above equation reduces to linear theory 

of Rayleigh [[61]]: 
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The numerical simulation of the capillary instability of an 

inviscid cylindrical liquid jet with neglecting gas effect in 

form of the growth rate is compared with the results of the 

linear theory [[61]] and the experimental measurements 

[[62]]. 

It is assumed that, a cylindrical liquid jet with undisturbed 

diameter
0

D =1.1mm is initially perturbed with a sinusoidal 

axisymmetric disturbance whose wavelength λ = 4.55D and 

its initial amplitude
0 0

0.00001Dη = . This small initial 

disturbance amplitude indicates that the dynamic instability 

of a liquid jet can be affected by relatively small 

perturbations induced by some mechanical device with a 

minimal energy input. The characteristic time scale of the 

performed case is ( )0.5
3 1

0
648.7

l
r Sτ σ ρ −= = , and the 

dimensionless growth rate is described as /ϖ ω τ= . 

According to the linear theory, the variation of the 

logarithmic value of the amplitude is linear. 

 

Figure 4. Logarithmic value of the dimensionless. 

Figure 4 shows the calculated logarithmic value of the 

dimensionless amplitudes of the surface disturbance, 

(
0 0

* / rη η= ), for a wave ratio 0.7ξ = that corresponding to 

the maximum growth rate obtained from the linear theory. 

The values are taken on the swell and neck of the wave. The 

average value of the both is plotted as well. The results show 

that in general the exponential growth rate of the surface 

disturbance is constant, as the linear behaviour of the 

logarithmic of the disturbance amplitude is reproduced. 

 

Figure 5. Comparison of the numericalamplitudes of the surface disturbance 

for results with the linear theory and the a wave ratio 0.7ξ = experimental 

measurements. 

Figure 5 presents the numerical results of the growth rate as a 

function of the wave ratio ξ . The results are compared with 

both the analytical solution obtained from the linear theory of 

Rayleigh [[61]],along with that the experimental 

measurements [[62]]. It can be seen that, in general, the 
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numerical results are in a good agreement with the linear 

theory for the wave ratios considered. A good agreement with 

the experimental results also has been obtained. The small 

discrepancies of the calculated results from the linear theory 

in the range of 0 0.7ξ≤ ≤ are due to the fact that the nonlinear 

effects are more effective for larger wavelengths, i.e. for 

small wave ratios. 

 

Figure 6. The topological change of a cylindrical liquid jet with initial 

disturbance ( 0.7ξ = ) at different time intervals. 

Figure 6 shows the topological changes and break-up of a 

cylindrical liquid jet with initial disturbance whose wave 

ratio 0.7ξ = corresponding to the maximum growth rate 

obtained from the linear theory [[61]]. 

The first surface shape is at initial time, where the small 

disturbance is imposed on the jet surface. The second shape 

at t = 0.048s corresponds to a point just after the jet enters 

into the nonlinear regime of its growth. At this time, the 

maximum and the minimum radii of the surface are the 

points that correspond to the initial peak and trough of the 

wave. They grow at the same rate, and their magnitude 

during the initial stages of the process can be computed by 

means of the linear theory. Therefore, the disturbance 

basically grows resembling the linear theory, and stays 

sinusoidal until this time. The next surface shape shown is at 

t = 0.054s, well into the nonlinear regime and just before the 

pinching process occurs. At this time, the surface tension 

driven motion is highly nonlinear, which leads to the 

formation of a thin ligament around the trough part of the 

wave. The ends of this fluid ligament are connected to the 

large mother drops originating from the crest parts of the 

wave. The further contraction of these ends leads to the 

pinching process that makes up the satellite drops. The 

formation of the satellite drops is considered to be a 

nonlinear phenomenon in the latter stages of jet breakup 

process. Finally, at time t = 0.056s the wave is divided into 

two mother drops and a thin ligament with a swelling in the 

centre. This swelling in the middle of the ligament reveals the 

reverse axial motion of the fluid after the breakup. Thereafter, 

the fluid ligament could be further deformed and may 

breakup. 

 

 

Figure 7. Comparison of the dimensionless growth rate with the linear 

theory for viscous liquid jet at different wave ratios. 

Assuming that the viscous force is very great compared with 

the inertia force and neglecting the effect of the latter. 

Consequently, the evolution of the fluid filament is described 

by Stokes equation. For this case, the numerical simulation 

can be compared with Sterling and Sleicher theory [[60]].  

The calculated growth rate is made dimensionless as in the 

simulation of Rayleigh instability. The simulations are 

performed for different wave ratios and by using two 

different values for the liquid kinematic viscosity, 
6 21 10l m sν −= ×  and 

6 25 10l m sν −= × . Figure (7a, b) 

illustrates the comparison of the calculated dimensionless 

growth rate with that obtained from the linear theory [[60]]. 

The comparison indicates that, the numerical model predicts 

well the growth rate that calculated using the linear theory for 

both values of kinematic viscosity considered. 
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It is well known that, the viscosity can considerably alter the 

results of Rayleigh breakup for inviscid liquid jet. Therefore, 

a numerical simulation of a typical deformation and breakup 

of long viscous liquid threads is performed. An important 

feature for relatively low viscosity systems is that the 

breakup mechanism is self repeating in the sense that every 

pinch-off is always associated with the formation of a neck, 

the neck undergoes pinch-off, and the process repeats. In the 

later stages of the breakup, a slender tube around the trough 

part of the wave is formed. The pinching process of this 

ligament leads finally to the breakup forming satellite drops 

between the two mother drops. At the pinch point, the radius 

of the filament gets smaller, and the curvature goes to infinity, 

as a sequence, the time scale becomes shorter. Thus the 

velocity becomes very large, and the fluid left in the pinch 

region is driven by increasingly strong forces. This breakup 

process leads to the formation of satellite and sub-satellite 

droplets. Most of the numerical methods applied for two-

phase flow simulation failed to predict this highly nonlinear 

phenomena and failed as well to continue through and after 

the pinching process. Therefore, in general, a detailed 

numerical analysis of the problem of satellite formation is 

difficult as a result of the associated numerical problems. 

 

Figure 8. Collapse of satellite and subsatellite formation, for wave ratio of

0.54ξ =  and 
0

0.017
l l

Oh rµ ρ σ= = , 149 × 80 grid points, at t=0.1887, 

0.1944, 0.1952, 0.196, 0.1968, 0.1976, 0.198, 0.1982, 0.1984, 0.199 s. 

In order to focus on the satellite droplet formation and its 

multiple breakup process, a numerical simulation for wave 

ratio of 0.54ξ =  and with Ohnesorge number 

0
0.017

l l
Oh rµ ρ σ= = is performed. The development 

and the collapse of the satellite droplets at later stages of the 

breakup process is illustrated in figure 8. The topological 

changes, shown in figure 8, consist of a relatively rapid 

bulbing of the end of the satellite drop followed by break-off 

of the bulbous ends from the central portion. This breakup 

process is known as”end pinching”. The development of 

these bulbous ends is due to the internal driven motion of the 

filament. The observed self-repeating breakup mechanism is 

considered as important features of breakup of liquid jets 

with relatively low viscosity. Finally, there is a number of 

satellite and sub-satellite droplets exist between the two 

mother drops. At least three visible droplets are created in the 

central region. The predicted satellite droplets and the 

formation of sub-satellite droplets show the remarkable 

capability of the numerical procedure used. In general, the 

present numerical model predicts the capillary instability as 

well as the formation of satellite dropletss in the viscous 

regime, where the viscosity controls its subsequent breakup 

in a self repeating manner. This is considered as a great 

validation of the present developed numerical model as the 

calculations are capable to continue throughout the pinching 

process and droplet formation stage without any further 

numerical considerations. 

4.2. Liquid Surface Deformation Due to 

Impinging Process 

The impingement of an axisymmetric gaseous jet through 

lances upon a liquid surface or a molten bath is relevant in 

industrial and metallurgical processes, e.g. dust removal from 

the producer gas obtained from biomass gasification and 

electrical arc furnace steel production. As a result of the 

kinetic energy of the jet stream, the surface of the liquid will 

be depressed and a cavity is created on the surface of the 

liquid, as shown in figure 9. The experimental visualization 

of such cavity formation is a difficult task, so that the 

structure of the jet impingement on a liquid surface is not 

completely understood [[63]]. Consequently, a clear 

understanding of the impingement process is required 

through the numerical treatment. 

The important characteristics in such process are the interface 

shape, cavity depth and width, lip formation and the 

recirculation pattern in the liquid.  An extended review of the 

most important articles concerned such impinging process 

can be found in [[63]]. The problem configuration is shown 

in figure 9-a, while figure 9-b shows the analysis of forces 

acting upon the liquid surface during the impinging process. 

The parameters described in the previous figure for the 

jetting system are given as follows; the nozzle diameter Dn, 
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vessel diameter Dc, the height of the undisturbed liquid H, 

distance between nozzle tip and liquid surface h, cavity depth 

hc, cavity diameter dc, lip height hL, and the momentum of 

the jet is given by
2 20.25 n g jM D Vπ ρ= , where ρg and Vj is the 

gas jet density and velocity, respectively. The Reynolds 

number, consequently, is given by Re /g j n gV Dρ µ= . On the 

other hand, the schematic of the force analysis can be seen in 

figure 9-b, where Fm, Fτ, Fp, Fσ, and Fg are the associated 

forces due to jet momentum, tangential shear stress, pressure 

force due to recirculatory flow, surface tension force and 

gravity force.  

 

(a) 

 

(b) 

Figure 9. (a) the features of the jetting system and (b) the force analysis 

exerted upon the liquid surface. 

In contrast to the continuous surface stress technique (CSS) 

[[28]] and the continuous surface force (CSF) technique 

[[35]], in the present algorithm, all these forces are modeled 

as interfacial forces which represent the pressure boundary 

conditions at the interfacial marker points on the interface. 

The loss of accuracy of CSF and CSS techniques can be seen 

in the numerical simulation of the deformation of a spherical 

drop under surface tension effects. In such cases, the kinetic 

energy does not decay to zero, (despite the physical and 

numerical dissipation), as a result of the so-called “spurious 

currents”, which pose a challenge for the numerical 

simulation of bubble and droplet motion. In the present case, 

the statistically steady state cavity shape formed due to jet 

impingement should be obtained after a specified period of 

time corresponding to the operating parameters. This can 

only be achieved if the interfacial forces are dynamically 

balanced; i.e. 

Fm+Fτ+Fp+Fg+Fσ =0               (42) 

The problem of how to numerically formulate these 

interfacial boundary conditions is, however, not completely 

solved. When the associated modeling of such interfacial 

forces is not accurate, consequently, it is expected that no 

statically steady state cavity will be obtained. Therefore, the 

obtained steady state cavity shape over large time intervals is 

considered as a challenge problem of such simulations and a 

challenge validation for our developed numerical method. 

The characteristics of the cavity formed in the impinging 

process are dependent on the properties of the impinging jet 

as well as the liquid properties. When the jet momentum is 

small, a steady state cavity is just formed. On the other hand, 

a lip can appear at larger jet momentum. Further large jet 

momentum causes splash and ripples on the liquid surface. 

The present computation does not consider splash and ripples. 

In order to combine the effect of the operating parameters as 

well as the fluids properties in such jetting system, the 

dimensional analysis theory is applied to obtain a new 

dimensionless number; we call here the Impinging number 

(IM), which can describe the impinging process in terms of 

the gaseous jet and the liquid bulk properties. The IM number 

is expressed as: 

g j n l

g l

V D H
IM

ρ ρ σ
µ µ

= ⋅                        (43) 

The above equation can be written in form of the known 

dimensionless number, Reynolds number (Re) and 

Ohnesorge number (Oh), as follows: 

Re
IM

Oh
=                                   (44) 

The Reynolds number is considered as a measure of the jet 

momentum while the dimensionless Ohnesorge number 

measures the ratio of the viscous force on an element of fluid 

to the surface tension and the inertia force. The combination 

of both numbers could describe the strength of the impinging 

process adequately. 
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Figure 10. Effect of IM number on the formed cavity profiles and dimples 

formation at statistically steady state. 

The preliminary results of the case under consideration, by 

using the STD k-ε model, have shown a little effect of the 

surface tension on the impinging process and a slightly 

reasonable effect of the liquid viscosity. Consequently, in the 

present numerical experiment, the Ohnesorge number is 

taken constant and equals 0.94, while the jet velocity is 

changed to obtain a wide range of Re number and 

consequently a wide range of IM number. 

Figure 10 shows the effect of the IM number on the obtained 

statistically steady cavity profiles. Different IM numbers, 

ranging from small to medium and large numbers for jet 

spacing of (h= 5cm), are applied. The formation of dimples is 

clearly evident only at relatively high IM number. At low IM 

number, the dimples formed die out due to dissipation of 

their energy by viscous friction. 

The circulation of the liquid and the velocity vectors in both 

phases are shown in figure 11-a, while the level set contours 

are illustrated in figure 11-b at IM=9771 and a jet distance of 

h=5cm. The tangential flow and the development of the 

recirculation regions are clearly visible with a center of the 

circulating flow in the liquid phase close to the centerline. It 

can also be seen that, in the opposite direction to the 

impinging jet, upward flows is built up due to the circulation 

initiated in the liquid phase. The existence of such upward 

flows, to some extent, can be considered as a stabilizing force 

that could prevent further increase of the cavity depth. 

 

(a) 

 

(b) 

Figure 11. Velocity vectors (a) and level set contours (b) in both phases at 

IM=9771 and jet spacing h=5cm. 

 

(a) 

 

(b) 

Figure 12. The time evolution of the cavity depth and shape during the 

jetting process; (a)for a wide range of IM numbers (b) at different time 

intervals. 
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The level set contours obtained in figure 11-b reveals the 

capability of the present developed level set technique in 

capturing the complex topological changes of the interface, 

especially the lip formation at the ends of the formed cavity. 

An important feature of the present case, which also 

considered as a challenge problem, is the obtaining of the 

stead cavity profile over a large period of time. The 

statistically steady cavity profile obtained reveals the high 

accurate modeling implemented for the interfacial forces 

presented at the interface in the case considered. 

Figure (12-a) shows the evolution of the cavity depth for a 

wide range of IM numbers during the jetting process until it 

reaches to an equilibrium position with observable small 

periodic oscillation of the cavity depth about this equilibrium 

position. In figure 12-b, the time evolutions of the 

topological changes of the liquid interface are illustrated. It 

can be seen that the liquid interface is stable within the first 

few seconds until the liquid jet start to impinge the liquid 

surface and then the cavity is formed. The pressure force of 

the impinging jet which is provided by the momentum flux of 

the gaseous jet causes the liquid surface to deform whereby a 

cavity is formed with a specified depth. Consequently, a 

lateral flow is developed and moved over the liquid surface 

generating a shearing force along the surface that drives the 

liquid towards the walls of the cylinder and producing 

symmetrically recirculation cells on both sides of the cavity, 

as shown previously (cf. figure 11-a). The equilibrium 

position is obtained when all the driving forces are 

dynamically balanced. In almost all cases, the cavity depth 

reaches a maximum value after a specified time as the liquid 

moves downward and then it rises again in a direction 

opposite to the gravity in order to satisfy the continuity by 

refilling the cavity created by the air jet impingement, then 

the cavity depth remains almost constant with an oscillation 

around an average value. 

The most important parameters of the formed cavity are the 

interface shape, the width and the depth of the cavity and the 

height of the peripheral lip. Therefore, the numerical 

prediction of such parameters should be evaluated by 

comparing the obtained results with those predicted either 

analytically [[64]] or measured experimentally [[65]]. 

Consequently, a series of numerical experiments has bee 

performed with a wide range of the IM number by using both 

the STD turbulence model and the nonlinear turbulence 

model. 

The comparison of the cavity depth and the cavity radius 

with the available analytical and experimental data is 

illustrated in figure 13 (a - b). The jet spacing is considered to 

be constant (h=5cm) for all numerical experiments. The 

comparison of the numerically predicted cavity depth shown 

in figure 13-a reveals that the numerical results obtained by 

using both turbulence models are in good agreement with the 

experimental measurements rather than the analytical 

prediction. This can be attributed to the fact that the theory 

did not take into account the effects of shear and surface 

tension forces as well as the existence of recirculation in the 

liquid phase. The return flow at higher IM number was 

therefore not expected to encounter any retardation. 

 

(a) 

 

(b) 

Figure 13. Comparison of the numerical results with the experimental and 

theoretical data for cavity depth (a) and cavity radius (b). 

By comparing both turbulence models adopted, it can be seen 

that the numerical results obtained from the nonlinear 

turbulence model are in closer agreement with the 

experimental date than the results obtained from the STD 

model. The overestimated cavity depth, obtained from the 

STD model, can be referred to the excessive generation of 

the turbulent production at the impinging point with the 
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liquid surface. This is a general problem of linear turbulence 

models which produce incorrect prediction of anisotropic 

turbulence in many industrial important flows; e.g. impinging 

jets. Consequently, the accurate flow field prediction was not 

well predicted at the stagnation point where gas jet impinging 

the liquid surface, see for more details [[20]]. 

The comparison of the cavity radius, shown in figure 13-b, 

illustrates that the present numerical results from both linear 

and nonlinear turbulence models overpredict both of the 

experimental measurements and the analytical prediction.   

However, the experimental trend is well numerically 

predicted. It should be pointed out that a part of the 

disagreement may be attributed to both of the associated 

error in the measurement of the cavity width due to liquid 

splashing and, from the other point, the crude assumption of 

the analytical predictions. At large IM number, the shear 

forces overcomes the surface tension force and, consequently, 

a separation is experimentally observed to occur at the cavity 

lips thereby producing “splashing” that can contribute to the 

error in measurements of the cavity radius [[65]]. On the 

other side, the lip formation phenomena could not be 

predicted analytically, and therefore, there is uncertainty in 

the theoretical definition of the cavity width. The present 

numerical prediction of the cavity radius indicates that no 

significant difference has been obtained by using either STD 

or nonlinear turbulence models. This implies that the 

tangential stresses predicted from both turbulence models are 

nearly equal. In general, the increase in the cavity depth and 

radius with the IM number is clearly evident. 

The nonlinear turbulence model is now used for predicting 

the centerline velocity, VCL, starting from the nozzle exit. The 

numerical results are compared with the analytical equation 

developed in [[66]] and based on the theoretical analysis 

provided by [[67]]: 

CL

J n

V B

V z D B
=

+
                             (45) 

where B is a function of the gas jet Reynolds number and is 

given a value of 7.6 for the specified case listed below [[66]]: 

Table 1. Parameters for the case study as specified in [66]. 

Dn(mm) DC(mm) h(mm) H(mm) VJ(m/s) 

6 290 154 111 56.2 

It should be pointed out that, the above equation, Eq. 45, has 

been used for validating the numerical results obtained from 

the commercial CFD code, Fluent, [[68]], however, for other 

cases and with different B-values. 

Figure 14 shows the comparison between the centerline jet 

velocity, predicted by using the linear and the nonlinear 

turbulence models adopted, and the numerical results of Eq. 

45. It can be seen that the predicted numerical results from 

both turbulence models agree well with the analytical 

solution provided by Eq.45 nearly up to the point at which 

the jet enters the cavity region (at 60
n

z D ≈ ). The not 

observed differences between the linear and the nonlinear 

turbulence models adopted in predicting the man centerline 

velocity reveals that the nonlinear constitutive relation has no 

effect over the prediction of the mean variables. However, 

the nonlinear formulation has a significant effect on the 

cavity depth which influenced by the correct prediction of the 

anisotropic stresses at the impinging region (cf. figure 13-a). 

Consequently, detailed analysis of the Reynolds stresses 

should be investigated further in our future work. 

 

Figure 14. Comparison of the predicted centerline jet velocity with the 

analytical solution [[66]]. 

5. Conclusion 

A new interfacial marker-level set method (IMLS, which 

could provide an accurate and robust prediction of the two-

phase flow dynamics with moving interface, has been 

developed. The governing unsteady RANS-equations are 

coupled with the level set method and solved in each phase 

separately on structured cell-centered collocated grids using 

the control volume approach on the physical domain of the 

problem considered. A consistent balance of kinematic and 

dynamic interfacial conditions on the interface has been 

described by a general equation that collects all the expected 

interfacial stresses. By fitting a number of interfacial markers 

on the intersection points of computational grids with the 

interface, the interfacial stresses and consequently the 

interfacial driving forces are easily estimated. Moreover, the 

normal interface velocity, calculated at the interfacial 

markers position, can be extended to the higher dimensional 

level set function and applied for the advection algorithm of 

the level set method. The present method has been applied 
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for a wide range of numerical experiments either in laminar 

or turbulent complex two-phase flows. The capillary 

instability of a cylindrical liquid jet in linear and nonlinear 

regimes has been numerically simulated and the results are 

evaluated through the comparison with the linear theory and 

the available experimental measurements. The effect of 

viscosity on the breakup mechanism of the cylindrical liquid 

jet and the satellite/subsatellite formation has been 

investigated. 

The developed numerical method has been further extended 

to simulate one of the most challenge problem in two-phase 

flows; namely, the impinging of turbulent gaseous jet onto a 

liquid surface. Both linear and nonlinear turbulence models 

have been applied to predict the turbulent flow characteristics 

and surface deformation. According to our background, this 

is the first time to implement the nonlinear turbulence model 

in the numerical simulation of turbulent two-phase flows 

with moving interfaces. The numerical results obtained show 

high performance of the nonlinear turbulence model over the 

STD k-ε model in predicting the parameters associated with 

the anisotropic stresses. However, a similar prediction from 

both turbulence models has been obtained fro the mean 

variables or the tangential stresses. 

In general, the developed IMLS method demonstrates a 

remarkable capability to predict the dynamical characteristics 

of either laminar or turbulent complex two-phase flow in 

many industrial and engineering applications.  
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