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Abstract 

A model of a two-dimensional defectless medium is formulated as a special case of the general theory of a three-dimensional 

medium with fields of conserved dislocations, having adhesive properties of a surface that limits the medium. The potential 

energy in the general theory is the sum of the volume and the superficial integral from the corresponding energy densities. In a 

limiting case, when the thickness of a shell is equal to zero, the volume portion of potential energy becomes zero. As a result, 

the potential energy of such an object is defined only by the surface potential energy. A single wall nanotube (SWNT) is 

examined as an example of such a two-dimensional medium. The problems concerning an SWNT axial deforming as well as 

the torsional case are examined. The general statement of an axisymmetric problem within the theory of ideal adhesion is 

formulated. Special cases involving a SWNT deforming axially and in torsion are studied: a case with ideal adhesion, the 

quasiclassical case, and a case with a large SWNT radius. It is shown that the case with ideal adhesion corresponds to the 

membrane theory of a cylindrical shell. It is shown that the particular case of the quasiclassical theory of a cylindrical shell is 

not a logical next step from the general theory when the moduli of ideal adhesion are partially considered and, to a lesser 

extent, the moduli of purely gradient adhesion. The characteristic feature of all statements is the fact that the mechanical 

properties of a SWNT are not defined by the “volumetric” moduli but by the adhesive moduli, which have different physical 

dimensions that coincide with the dimensions of the corresponding stiffness in the classical and nonclassical shells. 
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1. Introduction 

The generalisation of Mindlin’s model described in [1] is 

investigated. Unlike the “classic” models of Mindlin [2] and 

Toupin [3], the current model’s generalisation takes into 

consideration not only the curvatures connected with the 

gradient of the free distortion in the potential energy volumetric 

density but also the curvatures associated with the gradient of 

the restricted distortion as well as the interaction of these two 

gradients. Another difference arises when considering the 

generalised model of the surface potential energies (the energy 

of adhesion interactions) in the Lagrangian, the surface edge 

energy, , and the energy of specific points on the surface edge, 

. Specifically, the Lagrangian of the generalised model can 

be presented as follows: 
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The kinematic variables of the Lagrangian are the following: 

- the continuous portion of the displacement vector iR , 

- two types of distortions 
1
ijD , 

2
ijD  (restricted and free 

distortions) and 

- two types of curvatures 
1
ijkD , 2

ijkD  (the gradients of the 

corresponding distortions). 

Between these kinematic variables, there are restrictions 

defining the kinematic model of such a medium: 

1 1 2 2
, , ,ij i j ijk i jk ijk ij kD R D R D D= = =               (2) 

The moduli tensors 
pq
ijmnC  and 

pq
ijkmnlC  define the mechanical 

properties of the medium volume, and the tensors 
pq
ijmnA  and

pq
ijkmnlA

 
define the mechanical properties on the medium 

surface. 

This model demonstrates some new qualitative results that 

are impossible to be obtained in the frames of simpler 

models. One of such results is studied in this work and is, 

namely, the opportunity to explain the mechanical properties 

of a two-dimensional medium, such as SWNT. The 

Lagrangians in both the classical mechanics of a continuous 

medium and the well-known gradient models of Mindlin and 

Toupin contain the potential energy defined only through the 

volumetric density of the potential energy. Formally, the 

Lagrangians of these models cannot be applied to the two-

dimensional medium. This statement follows from the fact that 

in these models the potential energy of a zero volume medium is 

null. In these models, all plate and shell theories are formulated 

as three-dimensional body models with a small, when compared 

to others, size in the third direction. Nevertheless, the same 

substantial mistake exists in the plate/shell theory of these 

models, i.e., an object with zero volume (due to having zero 

thickness) will have zero potential energy. One cannot consider 

the example of a graphene sheet or a SWNT as a volumetric 

structure having a thickness of approximately on carbon atom 

diameter as correct [4]. To formulate theories of two-

dimensional structures, the Lagrangian is required, which 

directly contains the surface density of the potential energy. In 

the same manner as in [6], this work will construct the SWNT 

theory, and special cases will be investigated. 

2. Geometry for SWNT 

Coordinates on a cylindrical surface are the following: 

i i i i

i i i i i i

i i i i i i

X X X Xx x

y rCos s Sin Y Cos Z Y Sin s Cos n

z rSin n Cos Y Sin Z Z Cos s Sin n

φ φ φ φ φ
φ φ φ φ φ

= ==  
  = = − = +  
  = = + = − +  

 (3) 

The coordinates are defined as the following: , ,x y z  - the 

Cartesian coordinates, , ,x rϕ
 
- cylindrical coordinates, iX  - 

ort of an axial coordinate, is  - ort of distinct coordinate, in  - 

ort of a normal to a cylindrical surface. 

Kronecker's "flat" tensor is the following: 

*
( )ij ij i j i j i jn n X X s sδ δ= − = +                   (4) 

The gradient on a cylindrical surface is the following: 
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The derivatives of the orts of a cylindrical surface is the 

following: 

, ,

1 1
i j i j i j i js n s n s s

r r
= = −                          (6) 

The displacement vector is the following: 

( , ) ( , ) ( , )i i i i i iR r Wn U x X V x s W x nφ φ φ= + = + +       (7) 

The restricted distortion (displacement derivatives) tensor is 

the following: 
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            (8) 

3. Variational Statement of the 

SWNT Theory 

In the case of the Lagrangian (1), if the medium volume is 

null, the Lagrangian becomes a specific, nontrivial form: 
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∫∫
 (9) 

If we consider a SWNT as an ideal two-dimensional 

structure, we should put aside all terms containing the free 

distortion tensor  from expression (9) because this tensor 

determines the defectness of the medium that is being 

studied. The Lagrangian becomes the following: 

2

ijD
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11 1 1 11 1 11
[ ]

2� ijmn ij mn ijkmnl ijk mnlL A A D D A D D dF= − +∫∫      (10) 

Additionally, as a SWNT is a two-dimensional structure, the 

surface density of the potential energy should not depend on 

the normal derivatives of the displacements. Associated with 

this fact, we should require that the tensors of the adhesive 

moduli have the following properties: 

11 11

11 11 11 11

0

0

ijmn j ijmn n

ijkmnl j ijkmnl k ijkmnl n ijkmnl l

A n A n

A n A n A n A n

= =

= = = =
      (11) 

For the formulation of a mathematical theory concerning 

momentless cylindrical shells, we use a classic method of 

allocation by slowly changing (membrane) state. For this 

purpose, we will neglect the potential energy curvatures 

(second item in the superficial integral in (10)) in comparison 

with the potential energy of the deformation (first item in the 

superficial integral in (10)). 

To simplify the task, let us accept the idea that the 

mechanical properties are isotropic on the SWNT surface. 

The result of (11) and (10) gives the following adhesive 

tensors, which are less complex compared with (1): 

11 11 * * 11 * * * * 11 *
1 2 6( )ijmn ij mn im jn in jm i m jnA a a a n nδ δ δ δ δ δ δ= + + +    (12) 

By expanding the structure of the potential energy for an 

axisymmetric problem, the potential energy becomes the 

following: 

11 11 2
1 6

11 2 2
2
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2

(2 / 2 / )]
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 (13) 

We can define the force factors using Green’s formulae: 

,
,

F
ij ijmn m n

i j

U
A R

R
σ ∂

= =
∂

                       (14) 

The corresponding variation equation follows from 

Lagrange's principle. 

The variation equation in the force factors is the following: 

,
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The variation equation in the displacement is the following: 
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The system of equilibrium equations becomes the following: 
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Special attention should be paid such that the torsion in the 

new theory is separated from the tension/compression. It is 

interesting to consider these cases separately. Such case will 

allow us to carry out comparison using the classical theory of 

cylindrical shells. 

4. The Mechanical Properties 
of a SWNT While Deforming 
Axial 

Let us assume that torsion is absent. Then, displacement V  is 

equal to zero, and the system of equilibrium equations 

becomes the following: 
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The first equilibrium equation has a quadrature: 
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Here ( )F
xN x  is the stretching force. Using the second 

equilibrium equation, it is possible to determine the second 

quadrature: 
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The boundary problem will also be transformed in terms of 

deflections: 
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11 11
2 6 0

2 {[ ( )]

[ ( ) ] } 0

C F
x x

x lC
r x

r P N x U

P a a W W

π δ

δ =
=

− +

′+ − + =
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Therefore, the mathematical theory of momentless 

cylindrical shells in the framework of ideal adhesion theory 

is formulated. This theory is applicable to both nanotubes and 

to macroshells provided that their thickness is equal to zero 

(the potential energy is defined exclusively by the surface 

density of the potential energy as the shell’s material 

thickness/volume are equal to zero by definition). We will 

pay attention that the boundary problem in terms of the 

deflection contains only one coupled boundary condition: 

deflections W  or Saint-Venant’s cutting force 11 11
2 6( )a a W ′+  

are defined at end edges of the nanotube. 

Therefore, the adhesive modulus 11 11
2 6( )a a+  has physical 

sense of rigidity on the shift and has the same physical 

dimension (Pa*m or J/sq.m). As in the mathematical theory 

of nanoplates/graphene sheets [6], this rigidity is a multiplier 

of a slowly changing second order item in graphene theory 

[9]. 

With sufficient confidence, it is possible to assure that in the 

theory of nanotubes the classic balance operator has the 

additional item. If we reject for a moment a membrane 

hypothesis, we can subtract the fourth derivative of the 

deflection from the deflection equation, and we will obtain 

the following: 

11 11 11
11 11 2 1 2
2 6 11 11 2

1 2

11
1

11 11
1 2

4 ( )
( )

( 2 )

[ ( ) / ]
( 2 )

F F
r x

a a a
DW a a W W

a a r

a
P N x r

a a

+′′′′ ′′− + + − =
+

= − +
+

      (22) 

where D  is the cylindrical stiffness of a nanotube, which, for 

shells of zero thickness, has to be defined by the components 

of the sixth rank adhesive moduli tensor according to (10-11). 

Neglecting the item in equation (22), which contains the 

second derivative of the deflection, we will obtain the 

"classic" equation for a cylindrical shell (with reservations 

concerning other physical senses of stiffness). 

As the radius of a tube goes to infinity, i.e., in case of a tube’s 

degeneration in a graphene sheet, we will obtain equation for 

2D-structures and the theory of a graphene sheet as in [6]. 

We will give special attention that, unlike the theory of 

tension/compression of thin-walled shells, in the theory of 

tension/compression in nanotubes there is no fundamental 

decision with regards to constant axial deformation. The edge 

effect (with characteristic length ) is defined by the relation 

of the adhesive moduli with an identical dimension: 

11 11 11 11
2 6 1 2

* 11 11 11
2 1 2

( )( 2 )

4 ( )

a a a a
l r

a a a

+ +
=

+
              (23) 

This is truly an edge effect not a multiscale effect because it 

is defined by the relative size of a body not the relative 

moduli of different dimensions. 

At the rather large nanotube radii and when the third term in 

(22) can be neglected in comparison with the second term, 

the tension/compression theory of nanotubes degenerates to 

the classical theory of thin-walled shells (while maintaining a 

physical sense of the moduli that appears in the equation). 

Therefore, we have two ratios, 11 11
2 6( )Gh a a= +  and *l  (23), 

for three connecting adhesive moduli 11 11 11
1 2 6, ,a a a  that must 

experimental defined. If the third combination of the 

adhesive moduli can be formulated in the equilibrium 

equations, there is an opportunity to formulate experimental 

tests to directly define all three moduli. 

5. The Mechanical Properties 
of SWNT While in Torsion 

Given the definition of the potential energy defining the 

SWNT statement (13) and the torsional constraints 

0, 0U W= = , the variational equation becomes the 

following: 

11 11 11 2
2 2 6

0

11
2 0

2 [ ( ) / ]

2 [ ] 0

l

F

x lC

x

L r a V a a V r P Vdx

r P a V V

ϕ

ϕ

δ π δ

π δ =
=

′′= − + + +

′+ − =

∫
  (24) 

The boundary problem is reduced to two boundary 

conditions: either the angle of rotation /V r  is defined or the 

torque 11
2a V ′  is defined. The analogue of Bredt’s stiffness 

11
2a  can be defined from the experimental torsional scales 

where instead of a thread a nanotube is used. 

We will make certain that, unlike in the theory of the torsion 

of thin-walled cores, in the theory of torsion of nanotubes 

there is no fundamental decision to define a constant twisting 

angle. The edge effect (which is determined by the 

characteristic length) is defined by the relationship between 

adhesive analogues of torsional 11
2a  and the shift 11 11

2 6( )a a+  

stiffnesses: 

11
2

0 11 11
2 6( )

a
l r

a a
=

+
                            (25) 

This is truly an edge effect not a multiscale effect because it 

is defined by the relative sizes of a body not the relative 

*l
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moduli of different dimensions. 

At the rather large nanotube radii and when the second item 

in (24) can be neglected in comparison with the first term, the 

theory of nanotube torsion degenerates to the classical theory 

of thin-walled cores (while maintaining a physical sense of 

the moduli that appears in the equation). 

6. Conclusions 

The applied theories for an SWNT axial deforming and a 

SWNT torsion formulated in this work offer possibilities to 

study the mechanical properties of 2D media and to set and 

solve test problems. The solutions developed from this work 

can be tested experimentally. Specifically, during the axial 

deforming of a SWNT, it possible to reduce the SWNT’s 

mechanical properties to the two non-classical adhesive 

moduli 11
1a  and 11

6a  and correspondingly, the torsional 

deformation problem can be reduced to one modulus: 11
2a . 

The formulated membrane theory of nanotubes does not 

describe the multiscale effects [7, 10, 11]. Nevertheless, 

within this theory, there are nonclassical edge effects that are 

absent in the classical theory of thin-walled cores. 

Characteristic lengths of these edge effects are proportional 

to the radius of a tube and the dimensionless relationship of 

the adhesive moduli that are defined in the ratios in (23) and 

(25). 

We should focus our attention to the fact that the model 

formulated in this work can be generalised to a general 

SWNT theory if we reject the membrane hypothesis and 

transform from a Lagrangian with potential energy as defined 

in (13) to a Lagrangian as defined in (11). This generalization 

was carried out in works [6, 8]. 
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