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Abstract 

The model of two-dimensional defectless medium is formulated as a special case of the general theory of three-dimensional 

medium with fields of conserved dislocations with adhesive properties of a surface limiting it. Potential energy in the general 

theory is the sum of volume and superficial integral from the corresponding densities of energy. In a limit case, when thickness 

of shell is equal to zero, volume part of potential energy become equal to zero. As a result the potential energy of such an 

object is defined only by the surface potential energy. A Single Wall Nano Tube (SWNT) is examined as an example of such 

two-dimensional medium. The problem statement of a SWNT axial deforming, and the torsion one, are examined. The general 

statement of an axisymmetric problem within the gradient theory of adhesion is formulated. Special cases are studied: a case of 

ideal and purely gradient adhesion, quasiclassical case, cases at big and small sizes of radius of SWNT. It is shown that the 

case of ideal adhesion corresponds to correct statement of the membrane theory of cylindrical shell. The case of purely gradient 

adhesion corresponds to correct statement of the theory of edge effect of cylindrical shell. It is shown, that particular case of 

the quasiclassical theory of cylindrical shell is not consecutive approach of the general theory when moduli of ideal adhesion 

are partially considered, and partially - moduli of purely gradient adhesion. The characteristic feature of all statements is the 

fact that the mechanical properties of SWNT are not defined by “volumetric” moduli but by adhesive ones which have 

different physical dimension which coincides with the dimension of the corresponding stiffness of classical and nonclassical 

shells. 
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1. Introduction

The generalization of Mindlin’s model built in [1] is under 

study. Unlike the “classical” models of Mindlin [2] and 

Toupin [3] its generalization takes into consideration not only 

the curvatures connected with the gradient of the free 

distortion in the volumetric density of potential energy but 

also the curvatures connected with the gradient of the 

restricted distortion, as well as their interaction. Another 

difference is considering the generalized model of the surface 

potential energies (the energy of adhesion interactions) in the 

Lagrangian, the surface edges energy s
U  and the energy of 

specific points of the surface edges pU . Particularly, the 

Lagrangian of the generalized model can be presented as 

follows: 
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        (1) 

The kinematic variables of the Lagrangian are: 

- the continuous part of the displacement vector
i

R  

- the distortions of two types
1

ijD , 
2

ijD  (restricted and free 

distortions) 

- the curvatures of two types 
1

ijkD , 
2

ijkD
 
(the gradients of the 

corresponding distortions). 

Between these kinematic variables there are restrictions 

defining the kinematic model of such medium: 

1 1 2 2

, , ,ij i j ijk i jk ijk ij kD R D R D D= = =                   (2) 

The tensors of moduli 
pq

ijmnC  and 
pq

ijkmnlC  define the mechanical 

properties of medium in volume and the tensors 
pq

ijmnA  and 

pq

ijkmnlA  define them on the medium surface. 

This model demonstrates some new qualitative results which 

are impossible to be obtained in the frames of simpler 

models. One of such results is studied in this work, and 

namely the opportunity to explain the mechanical properties 

of two-dimensional medium and to make applied theories of 

SWNT axial deforming, and the torsion one, as a two-

dimensional medium. 

Actually, the Lagrangians of both the classical mechanics of 

continuous medium and well known gradient models of 

Mindlin and Toupin contain the potential energy defined only 

through the volumetric density of the potential energy. 

Formally the Lagrangians of these models cannot be applied 

to the two-dimensional medium. This statement follows from 

the fact that in these models the potential energy of the zero 

volume medium equals null. In these models all plate and 

shell theories are formulated as the three-dimensional body 

models with a small, when compared to others, size in the 

third direction. Nevertheless, the same substantial mistake 

exists in the plate/shell theory of these models, i.e. the object 

of zero volume (due to its zero thickness) will have zero 

potential energy. One cannot consider the example of a 

graphene sheet or SWNT as a volumetric structure having the 

thickness of about a carbon atom diameter as correct [4]. For 

the formulation of theories of two-dimensional structures the 

Lagrangian required, directly containing the surface density 

of potential energy. In work [5] the variant of the theory of 

thin films with face adhesive properties was examined. 

However, the bending equation degenerated into a second-

degree equation in the extreme case which is considered here 

at a zero volume film. It was defined by the fact that then 

only ideal, not gradient face adhesive properties were taken 

into consideration. The definition of a more general theory 

[1] allows to turn back to this problem and to formulate a 

non-degenerated case [6]. In the same way, as well as in 

article [6], in this work will construct the theory of SWNT 

and its special cases are investigated. 

2. Geometry for SWNT 

Coordinates on a cylindrical surface: 

i i

i i i

i i i

i i

i i i

i i i

X Xx x

y rCos s Sin Y Cos Z

z rSin n Cos Y Sin Z

X X

Y Sin s Cos n

Z Cos s Sin n

φ φ φ
φ φ φ

φ φ
φ φ

== 
 = = − 
 = = + 

=
 = +
 = − +

             (3) 

Here are: , y,zx  - the Cartesian coordinates, x, ,rφ - 

cylindrical coordinates, 
i

X - ort of axial coordinate, 
i

s  - ort 

of district coordinate, 
i

n  - ort of a normal to a cylindrical 

surface. 

Kronecker's "flat" tensor: 

* ( )
ij ij i j i j i j

n n X X s sδ δ= − = +                     (4) 

Gradient on a cylindrical surface: 

(...) (...)

(...) (...) (...)

(...) (...) 1
[ ]

(...) (...) 1

k

j k j

j j j

j j j

j j

y

x y x

x r

x x r x x

X Sin Y Cos Z
x r

X s
x r

φ
φ

φ φ
φ

φ

∂∂ ∂= =
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂= + + =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂= + − =
∂ ∂

∂ ∂= +
∂ ∂

               (5) 

Derivatives of orts on a cylindrical surface: 

, ,

1 1
i j i j i j i js n s n s s

r r
= = −                          (6) 

Displacements vector is: 
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( , ) ( , ) ( , )
i i i i

R U x X V x s W x nφ φ φ= + +               (7) 

Restricted distortion (displacements derivatives) tensor is: 

        (8) 

Curvatures (distortion derivatives) are: 
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3. Variational Statement of 

SWNT Theory 

In case of Lagrangian (1) if the medium volume equals null, 

the Lagrangian becomes a nontrivial specifically simple type: 

11 1 1 12 1 2

22 2 2 11 1 1 12 1 2

22 2 2

1
[ 2

2

2

]

ijmn ij mn ijmn ij mn
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A D D A D D A D D
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= − + +

+ + + +

+

∫∫�
        (10) 

If we consider SWNT as an ideal two-dimensional structure, 

then we should put aside all terms containing the free 

distortion tensor
2

ijD  from expression (10) due to the fact that 

this tensor determines the defectiveness of the medium under 

study. The Lagrangian becomes as follows: 

11 1 1 11 1 11
[ ]

2
ijmn ij mn ijkmnl ijk mnlL A A D D A D D dF= − +∫∫�         (11) 

Besides as SWNT is a two-dimensional structure, the surface 

density of potential energy should not depend on normal 

derivatives of displacements. In connection with this fact, we 

should demand that the tensors of adhesive moduli have the 

following properties: 

11 11

11 11 11 11

0

0

ijmn j ijmn n

ijkmnl j ijkmnl k ijkmnl n ijkmnl l

A n A n

A n A n A n A n

= =

= = = =
        (12) 

To simplify the task let us accept the idea that the mechanical 

properties are isotropic on the surface of SWNT. The result 

of (12) and (11) is the next structure of adhesive tensors, a 

simpler in comparison with (1): 

11 11 * * 11 * * * * 11 *

1 2 6( )ijmn ij mn im jn in jm i m jnA a a a n nδ δ δ δ δ δ δ= + + +  

     (13) 

The structure of tensor 
11

ijmnA  for the first time is received in 

[5] and defines much more adhesive properties of an ideal 

surface, than in [7]. The structure of tensor 
11

ijkmnlA  for the 

first time is received in [8] and defines much more adhesive 

properties of surface with gradient adhesion, than in [9]. The 

expanded structure of the potential energy for an 

axisymmetric problem becomes as follows: 
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We can define the force factors using the Green’s formulae: 
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The corresponding variation equation follows from 

Lagrange's principle.  

The variation equation in the force factors is: 
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The variation equation in displacements is: 
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The equilibrium equations’ system: 
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We will pay attention to the fact that in the received theory 

torsion doesn't separate from tension/compression. 

Nevertheless, it is interesting to consider these cases 

separately, demanding the absence of torsion or absence of 

deviations. Such consideration will allow us to carry out 

comparison with the classical theory of cylindrical shells. 

4. The Mechanical Properties 
of SWNT While Axial 

Deforming 

Let us assume, that the torsion is absent. Then displacement 

V  is equal to zero. Then the equilibrium equations’ system 

becomes: 
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(19) 

Particular case, when moments are absent, take place when 

tensor 
11 0ijkmnlA = . This case (really membrane theory) was 

under study in [10]: 

11 11 11

1 2 1

11 11 11 11 11
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Particular case, when ideal adhesion is absent, take place 

when tensor 
11 0ijmnA = : 

11 11
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Particular case, when r → ∞ . This case was under study in 

[6]: 
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1 1 2
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            (22) 

We will exclude axial displacement U  from system (19) and 

receive the allowing equation on a deflection. Let’s pay 

attention that the first equation of system (19) is easily 

integrated. Therefore it is possible to write down and solve 

system (19) as algebraic relatively U ′′′  and U ′  and if the 

determinant of this system is other than zero. We will 
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consider a case when it is equal to zero: 

11 11 11 11 11

1 1 1 1 2

11 11 11

1 1 2

1 1
15 6 ( 2 )

1
3 (3 4 ) 0

Det A a A a a
r r

A a a
r

= − + +

= − − =
          (23) 

Apparently (23) determinant is equal to zero in three cases: 
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The third case corresponds to a special case of system (19) at
11 11

2 13 / 4a a= : 
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The first case (22) leads to the theory of a graphene and look-

like-graphene flat 2D-structures. Two other cases (24) and 

(25) are the simplified theories of nanotubes and correspond 

to the generalized theory of cylindrical shells. Generalization 

consists in emergence composed with the second derivative 

of a deflection. Moreover, unlike the classical theory of 

cylindrical shells, the simplified theories of nanotubes (24) 

and (25) contain five physical parameters 11 11

1 3, ,A A 11 11

1 2, ,a a

11

6a , restricted according to (23). 

We will show now that the system (19) at the determinant 

(23) other than zero, leads to the equation of the sixth order 

concerning deflections. For this purpose it is necessary to 

solve system (19) as algebraic relatively U ′′′  and U ′ , twice 

to differentiate the first derivative: ( )U ′ ′′  and to equate the 

right parts of U ′′′ and ( )U ′ ′′ .  
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As a result we will receive that the theory of 

tension/compression of SWNT is defined by the ordinary 

differential equation of the sixth order concerning 

deflections. The nanotube is defined by five physical 

parameters playing a role of the generalized stiffnesses in 

theory of cylindrical shells: 
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 (26) 

It isn't difficult to be convinced that the structure of the 

equation (26) contains structure of the classical theory of 

cylindrical shells. For this purpose it is necessary to neglect 

the items in the first, third and fourth line (26). However, 

even at classical structure of the equation (existence only of 

the fourth derivative and the function of a deflection) it 

essentially differs from the classical equation of deflections 

as multipliers at derivatives has the other physical sense - 

there are some combinations of moduli of ideal and gradient 

adhesion which dimension coincides with dimension of a 

stiffness of cylindrical shell.  

Generally the equation of balance (26) can be presented as 

product of three operators of the second order over a 

deflection. For physical reasons it is possible to claim that the 
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deflection fading from edges either three exponents, or one 

exponential and two aperiodic, complex interfaced decisions 

will be own functions of these operators. Attenuation 

indicators of exponents will be functions of physical 

parameters and radius. Therefore in the theory of SWNT it is 

impossible to share edge effects (when the indicator of 

attenuation depends only on sizes, in this case – from SWNT 

radius) and multiscale-effects (when the indicator of 

attenuation depends only on the relations of adhesive 

modules of different dimension, in this case – on the relations 

/A a  type). 

5. The Mechanical Properties 
of SWNT While Torsion 

The case of torsion assumes that for an axisymmetric 

problem warping have to be absent. From here: 

                                       (27) 

As well as in the theory of thin-walled cores, the hypothesis 

of an invariance of cross section is accepted. That for an 

axisymmetric problem is equivalent to absent of deflections. 

From here: 

0W =                                        (28) 

Thus, the problem of torsion is reduced to one differential 

equation of the fourth order concerning one unknown 

function V : 
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            (29) 

In torsion problem the limit cases, similar to the cases 

considered in the previous section, also take place. Particular 

case, when moments are absent, take place when tensor 
11 0ijkmnlA = : 

11 11 11

2 2 6 2

1
( ) 0Fa V a a V P

r
φ′′ − + + =                   (30) 

At rather big radiuses of nanotubes r → ∞  the classical case 

takes place: 

11

2
0Fa V Pφ′′ + =                                  (31) 

At small values of radius of SWNT torsion has nature of 

edge effect and fades at order distances 

11 11 11

2 2 6/ ( )r a a a+ . Particular case, when ideal adhesion is 

absent, take place when tensor 
11 0
ijmn

A = : 

11 11 11 11

1 1 3 12 4

1 1
3 (6 4 ) 15 0FA V A A V A V P

r r
φ′′′′ ′′− + + − =    (32) 

In models of torsion of SWNT (29) or (32) two fundamental 

decisions, represented two nonclassical edge effects with the 

corresponding characteristic lengths of attenuation. This 

equation (29), as well as in case of tension/compression (26), 

don't allow to separate nonclassical edge effects and 

multiscale-effect. 

6. Conclusions 

The applied theories of SWNT tension and torsion 

formulated in this work offer possibilities to study the 

mechanical properties of 2D-objects, to set and solve test 

problems, the solutions of which can be tested 

experimentally. In particular the tension problem defined the 

SWNT mechanical properties by five non-classical moduli, 

correspondingly the torsion problem defined by four ones. 

Special cases are studied: a case of ideal and purely gradient 

adhesion, quasiclassical case, cases at big and small sizes of 

radius of SWNT. It is shown that the case of ideal adhesion 

corresponds to correct statement of the membrane theory of 

cylindrical shell. The case of purely gradient adhesion 

corresponds to correct statement of the theory of edge effect 

of cylindrical shell. It is shown, that particular case of the 

quasiclassical theory of cylindrical shell is not consecutive 

approach of the general theory when moduli of ideal 

adhesion are partially considered, and partially - moduli of 

purely gradient adhesion. The characteristic feature of all 

statements is the fact that the mechanical properties of 

SWNT are not defined by “volumetric” moduli but by 

adhesive ones which have different physical dimension 

which coincides with the dimension of the corresponding 

stiffness of classical and nonclassical shells. 

References 

[1] Belov Petr A. The theory of continuum with conserved 
dislocations: generalization of Mindlin theory // Composites 
and nanostructures, 2011, Volume 3, №1, pp.24-38. 

[2] Mindlin R.D. Micro-structure in linear elasticity // Archive of 
Rational Mechanics and Analysis, 1964, №1, p. 51-78. 

[3] Toupin R.A. Elastic materials with couple-stresses // Archive 
of Rational Mechanics and Analysis, 1964, №2, p. 85-112. 

[4] Geim A.K., Novoselov K.S., Jiang D., Schedin F., Booth T.J., 
Khotkevich V.V., Morozov S.V. Two-dimensional atomic 
crystals // PNAS102, 10451 (2005) 
DOI:10.1073/pnas.0502848102. 

[5] Belov Petr A., Lurie S.A. The theory of ideal adhesion 
interactions // The mechanics of composite materials and 
designs, 2007, Volume 13, №3, pp. 519-536. 

0=U



224 Belov Petr A.:  Mechanical Properties of SWNT Within the Framework of Gradient Theory of Adhesion  

 

 

[6] Belov Petr A. Mechanical properties of graphene within the 
framework of gradient theory of adhesion // Journal of Civil 
Engineering and Architecture, 2014, V. 8, №6, page 693-698. 

[7] Gurtin M.E., Murdoch A.I. A continuum theory of material 
surface // Archive for Rational Mechanics and Analysis, 1975, 
V.57, pp. 291–323. 

[8] Belov Petr A., Lurie S.A. The theory of adhesive interactions 
of the damaged continuum // The mechanics of composite 
materials and designs, 2009, V15, N4, p.610-629. 

[9] Steigmann D.J., Ogden R.W., Elastic surface-substrate 
interactions // Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci, 
1982, 455, 437–474.  

[10] Petr Belov, Sergey Lurie, Viktor Eremeev Continuum Model 
of SWNT Based on the Generalized Theory of Adhesion 
Interactions // XII International Conference on 
Nanostructured Materials (NANO 2014), July 13-18, 2014, 
Moscow, Russia. 

 


