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Abstract 

This paper analyzes the combined effects of magnetic field, Brownian motion, thermophoresis and thermal radiation on 

stagnation–point flow and heat transfer due to nanofluid towards a nonlinearly stretching/shrinking sheet. A variable magnetic 

field is applied normal to the sheet. Using a similarity transformation, the governing mathematical equations are transformed into 

coupled nonlinear ordinary differential equations which are then solved numerically using fourth order Runga–Kutta method 

with shooting technique. Different from a nonlinearly stretching sheet, it is found that the solutions for a nonlinearly shrinking 

sheet are non-unique. The numerical results pertaining to the present study indicate that the magnetic field parameter enhances 

the existence range of solution domain. The influences of various relevant parameters on flow, temperature and concentration as 

well as skin friction coefficient, local Nusselt number and local Sherwood number are investigated. A comparison with the 

previous study available in the literature is done and we found an excellent agreement with them. 
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1. Introduction 

One of the methods for enhancing heat transfer is the 

application of additives to the working fluid. The basic idea is 

to enhance heat transfer by changing the fluid transport 

properties such as in nanofluid, where solid particles are added 

to the base fluid to increase its thermal conductivity. 

Nanofluid consists of a base fluid such as water and nanocell 

metallic or non metallic particles. The term nanofluid was first 

used by Choi [1] to indicate engineered colloids composed of 

nanoparticles dispersed in a base fluid. Then using a nanofluid 

as a heat transfer working fluid has gained much attention in 

recent years due to its potential advantages which include 

higher thermal conductivity than the pure fluids, excellent 

stability and little increase in pressure drop. Due to better 

performance of heat exchange, the nanofluids can be utilized 

in several engineering and industrial applications which 

include power generation in a power plant, production of 

micro electronics, advanced nuclear system and many others. 

Because of the wide range of applications of nanofluids, 

significant research interest has been carried out in recent 

years to study heat transfer characteristics of such fluids. 

Nanofluid is actually a homogeneous mixture of base fluid 

and nanoparticles. Nanofluid is a fluid contains nanometer 

sized particles, called nanoparticles. These fluids are 

engineered colloidal suspensions of nanoparticles in a base 

fluid. Some nanoparticle materials that have been used in 

nanofluids are Oxide Ceramics (Al2O3, CuO), Nitride 

Ceramics (AlN, SiN), Carbide Ceramics (SiC, TiC), metals 

(Ag, Au, Cu, Fe), semiconductors (TiO2) and single, double or 

multi-walled carbon nanotubes (SWCNT, DWCNT, 

MWCNT). The base fluid is usually a conductive fluid, such 

as water, ethylene glycol, oil and other lubricants and polymer 

solutions. Normally the size of the nanoparticle is1–100 nm in 
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diameter but according to shape and size, it can vary slightly. 

In addition, few commonly used base fluids namely water, 

engine oil or ethylene glycol have poor thermal conductivity. 

To enhance the thermal conductivity of such kind of base 

fluids, nanoparticles are suspended in the fluids so that the 

thermal conductivity of the mixture (nanofluid) can be 

enhanced ultimately. Nanofluids commonly contain up to a 5 % 

volume fraction of nanoparticles to ensure effective heat 

transfer enhancement (see [2], [3]). 

The study of stagnation point flow and heat transfer over a 

stretching surface has a large number of applications such as 

in the colons of electronic devices, paper production, glass 

blowing and continuous casting, aerodynamic extrusion of 

plastic sheets, etc. On the other hand, the flow of an 

electrically conducting fluid over a stretching surface in the 

presence of a transverse magnetic field has attracted the 

attention of many researchers in view ofits wide applications 

in many industrial problems such as MHD generators, nuclear 

reactors, geothermal energy extraction and boundary layer 

flow control in the field of aerodynamics. Different aspects of 

the flow and heat transfer over a continuous moving surface 

have been investigated by different researchers under different 

physical conditions (see [4]-[10]).  

Meanwhile, after the pioneering work of Choi [1], studies 

related to the nanofluid dynamics have increased greatly in 

recent due to its wide applications in both industrial and 

engineering systems. A comprehensive review of the literature 

about nanofluids is given in the references [11]-[12]. The 

Cheng-Minkowycz problem for flow of nanofluid embedded 

in a porous medium was considered by Nield and Kuznetsov 

[13]. Natural connective boundary layer flow of nanofluid 

past a vertical flat plate was studied by Kuznetsov and Nield 

[14]. Bachok et al [15] investigated the flow of nanofluid over 

a continuously moving surface with a parallel free stream. 

Khan and Pop [16] investigated the boundary layer flow of 

nanofluid past a linear stretching sheet. Yacob et al [17] solved 

the Falkner–Skan problem for flow of nanofluid with 

prescribed surface heat flux. In a recent paper, Makinde and 

Aziz [18] discussed the effect of convective boundary 

conditions on the flow of nanofluid past a stretching sheet. 

Recently Ibrahim et al [19] numerically analyzed the 

hydromagnetic stagnation point flow and heat transfer due to 

nanofluid towards a stretching sheet. 

Recently, the flow over a shrinking sheet has attracted the 

attention of many researchers. In this type of flow, the fluid is 

stretched towards a slot and the flow is quite different from the 

stretching case. The physical reason is that the vorticity 

generated due to shrinking sheet is not confined within the 

boundary layer and consequently a situation appears where 

some other external forces are to be imposed. In confining the 

vorticity within the boundary layer, the external forces are 

either suction at the sheet (Miklavcic and Wang [20]) or 

stagnation flow added to main flow (Wang [21]). Later several 

researchers studied the boundary layer flow over a shrinking 

surface under different physical conditions ([22]-[25]). 

All studies mentioned above refer to the boundary layer flow 

towards a stretching/shrinking sheet in a viscous Newtonian 

fluid. Meanwhile, stagnation point flow and mass transfer 

with chemical reaction past a permeable stretching/shrinking 

sheet in a nanofluid was studied by Rosca et al [26]. Unsteady 

boundary layer flow and heat transfer of nanofluid over a 

permeable stretching/shrinking sheet was investigated by 

Bachok et al [27] and they found that dual solutions exist for 

shrinking sheet. In another paper, the unsteady flow over a 

continuously shrinking surface with wall mass suction in a 

nanofluid was investigated by Rohni et al [28]. Very recently 

the effects of slip and heat generation/absorption on MHD 

boundary layer stagnation point flow and heat transfer of 

nanofluid over a stretching / shrinking surface was analyzed 

by Nandy and Mahapatra [29]. 

The objective of the present study is to investigate the 

dynamics of the natural convection boundary layer stagnation 

point flow and heat transfer of a viscous incompressible 

nanofluid over a nonlinearly shrinking surface in the presence 

of an applied magnetic field and thermal radiation. In certain 

polymeric and metallurgical processes, nonlinearly stretching 

/shrinking effects are very much important because the final 

product is strongly influenced by the processes of stretching 

and the rate of cooling. Thus the main focus of the analysis is 

to investigate how flow and temperature fields of a nanofluid 

influenced by the magnetic parameter, the nonlinearity of the 

sheet and the thermal radiation. To the best of our knowledge, 

no research has been carried out considering the above stated 

flow model for a nanofluid.  

2. Flow Analysis 

We consider the steady two dimensional stagnation-point flow 

of a viscous incompressible nanofluid over a nonlinearly 

stretching/shrinking sheet in the presence of magnetic field 

and thermal radiation. The coordinates (x,y) are such that x is 

along the sheet and y is normal to the sheet. A variable 

magnetic field of strength B(x) is applied in a direction normal 

to the sheet. It is assumed that the velocity of the sheet is uw(x) 

=cx
n 

where c is a dimensional constant, known as the 

stretching / shrinking rate and n is an arbitrary positive 

constant known as the stretching index. The velocity outside 

the boundary layer is u(x)=ax
n
, where a >0 is a constant 

denotes the strength of the stagnation flow. We also assume 

that the constant temperature and constant nanoparticle 

fraction at the surface of the sheet are Tw and Cw, while these 

values in the ambient fluid are denoted by T∞ and C∞, 
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respectively. A schematic representation of this problem is shown in Fig.1. 

 

Fig. 1. Physical model and the coordinate system. 

Under these assumptions, the basic conservation equations of 

mass, momentum, thermal energy and nanoparticle fraction 

can be written as 
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The velocity components along x and y axes are u and v 

respectively, υ is the kinematics viscosity, σ is the electrical 

conductivity, ρ is the density, cp is the specific heat at constant 

pressure, αm is the thermal diffusivity, DB is the Brownian 

diffusion coefficient, DT is the thermophoresis coefficient, qr is 

the radiative heat flux, τ is the ratio between the effective heat 

capacity of the nanoparticle material and heat capacity of the 

fluid and U(x) is the free stream velocity. 

The term 
2

f

B
u

 
  
 

σ
ρ

 in the R.H.S of equation (2) is the 

Lorentz force which arises due to the interaction of the fluid 

velocity and the applied magnetic field. In writing equation (2), 

we have neglected the induced magnetic field since the 

magnetic Reynolds number for the flow is assumed to be very 

small. This assumption is justified for flow of electrically 

conductive fluids such as liquid metals e.g. mercury, liquid 

sodium etc. (see Shercliff [30]). Also for similarity solution, 

we assume that the transverse magnetic field strength applied 

to the sheet is ( 1)/ 2

0( )
n

B x B x
−= , where B0 is the constant 

magnetic field. 

Equation (3) depicts that heat can be transported in a nanofluid 

by convection, by conduction and also by virtue of 

nanoparticle diffusion and radiation. The term 
T T

u v
x y

∂ ∂+
∂ ∂

is 

the heat convection, the term 
2

2m

T

y
α ∂

∂
is the heat conduction; 

the term B

C T
D

y y
τ ∂ ∂

∂ ∂
is the thermal energy transport due to 

Brownian diffusion, the term τ

2

TD T

T y∞

 ∂
 ∂ 

 is the energy 

transport due to thermophoretic effect and 
1 r

f p

q

c yρ
∂
∂

 is the 

nanoparticle heat diffusion by radiation. 

Equation (4) shows that the nanoparticles can move 

homogeneously within the fluid (by the term 
C C

u v
x y

∂ ∂+
∂ ∂

), 

but they also possess a slip velocity relative to the fluid due to 
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Brownian diffusion 
2
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 and the thermophoresis

2
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. 

The boundary conditions for the present problem are 

u = Uw(x)=cx
n
, ν=0, T=Tw , C=Cw, at y=0 

u→U(x) = axn ,T→ T∞ ,C→
C∞ as y→∞    (5) 

The radiative heat flux (Sparrow and Cess [31] or Magyari 

and Pantokratoras [32]) is given as 
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where *σ (= 8 2 45.67 10 /w m K−× ) is the Stefan Boltzmann 

constant and k ∗ 1( )m−  is the Rosseland mean absorption 

coefficient. Assuming the temperature difference within the 

flow is such that 
4T  can be expanded in a Taylor series about 

T∞  and neglecting higher order terms, we get 

4 3 44 3T T T T∞ ∞≈ − . 

Hence from equation (6) and using the above result, we have 
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We look for a similarity solution of equations (2)-(4) together 

with the boundary conditions (5) of the following form 
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where the stream function ψ is defined in the usual way as  
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Hence from equation (8) we have  
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Substituting equations (8) and (9) into equations (2) – (4), we 

have the following ordinary differential equations as  
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where the prime denotes the differentiation with respect to the 

similarity variable η. The dimensionless parameters for this 
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number. 

The boundary conditions then become  
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Quantities of physical interest are the skin friction coefficient 

fC , the local Nusselt number xNu
 

and the local Sherwood 

number xSh , which are defined as  
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where 
w

τ is the surface shear stress, 
w

q is the surface heat 

flux and 
m

q is the mass flux at the surface, which can be 

expressed as  
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Hence using(8) and (15) in equation (14), we have 
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1/2 'Re (0)
x x

Sh ϕ− = −              (16) 

where Re /
x w

U x ν=  is the local Reynolds number. 

3. Numerical Method 

Numerical solutions to the governing non-linear ordinary 

differential equations (10)–(12) subject to the boundary 

conditions (13) have been solved numerically for different 

values of the governing parameters using fourth order Runge–

Kutta scheme coupled with a conventional shooting procedure. 

In this method, dual solutions are obtained by setting different 

initial guesses for the values of F
''
(0), -θ

'
(0) and -φ

'
(0) where 

all profiles satisfy the far field boundary conditions 

asymptotically but with different shapes. Step size of ∆η = 

0.001 and the convergence criteria 610−  are used in the 

program. In practice η =∞ must be replaced by an 

approximation η = η max , where η max is arbitrary as long as 

chosen large enough. We ran our computations with the value 

ηmax=12, which was sufficient to achieve the far field 

boundary conditions asymptotically for all values of the 

parameters considered. 

4. Verification of the Computer 
Code 

To verify our computer code, we check the results in terms of 

skin friction coefficient F
''
(0) for different values of α (< 0) 

with those of Bhattacharyya [24] and Rosca et al [26] in the 

absence of some particular parameters. The comparison given 

in Table 1 shows excellent agreement between the results and 

gives us confidence in our numerical approach. 

Table 1. Comparison of the values of F''(0)with M=0, n=1 for viscous fluid with those of Bhattacharyya [24] and Rosca et al [26] for several values ofα (< 0). 

 Present study Bhattacharyya [24] Rosca et al[26 ] 

 1st soln. 2nd. soln 1st soln. 2nd. soln  1st soln. 2nd. soln 

-0.25 1.402242  1.4022405  1.4022407  

-0.50 1.495672  1.4956697  1.4956697  

-0.75 1.489296  1.4892981  1.4892981  

-1.0 1.328819  0 1.3288169 0 1.3288168 0 

-1.15 1.082232  0.116702 1.0822316 0.1167023 1.0822311 0.1167020 

-1.20 0.932470 0.233648 0.9324728  0.2336491 0.9324733  0.2336496 

-1.2465 0.584374  0.554208 0.5842915  0.5542856 0.5842816  0.5542962 

 

5. Results and Discussion 

The influence of the magnetic field on the wall shear stress 
'' (0)F  is shown in Fig. 2. The shear stress acting between the 

wall and fluid layer is defined as the wall shear stress. It is 

observed that the solution for particular values of M exists up 

to a critical value ( 0)
c

α α= <  (say), beyond which the 

boundary layer separates from the sheet and the solution based 

on the boundary layer approximations is not possible. The 

solution is unique for 0α ≥ (i.e., for stretching sheet) and 

non-unique for 0
c

α α< < (i.e., for shrinking sheet). From 

numerical computations, we have found that for M= 0.0, the 

critical values of α (which is 
c

α ) = -1.278104, for M =0.1, 

c
α = -1.353544and for M = 0.2, 

c
α = -1.429454. From the 

figure it is observed that the values of F
' '
(0) increases as |α| 

increases and these values reach the maximum before 

decreasing to zero. The maximum value is higher if the effect 

of magnetic field is strong. This is due to the fact that 

application of a magnetic field to an electrically conducting 

fluid produces a drag-like force called Lorentz force. Hence 

this Lorentz force will be enhanced by increasing M, which 

imparts additional momentum into the boundary layer. Also 

the application of the magnetic field enhances the existence 

range of solution domain. The variation of heat transfer rate 

-θ
'
(0) and concentration rate - φ

’
(0) with α for different M are 

shown in Figs. 3 and 4. From these figures, we can conclude 

that due to an increment of the values of M, both heat transfer 

rate and concentration rate increase. These figures also reveal 

the existence of dual solutions for both heat transfer rate and 

concentration rate. 

 

Fig. 2. Variation of the skin friction coefficient ''(0)F with α  for different 

values of the magnetic parameter M with n=1.2. 
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Fig. 3. Variation of the Nusselt number '(0)θ− with α  for different values 

of the magnetic parameter M with Nb=Nt=0.1, Le=1, Pr=0.71, Preff=0.5 and 

n=1.2. 

 

Fig. 4. Variation of the Sherwood number '(0)φ− with α  for different 

values of the magnetic parameter M with Nb=Nt=0.1, Le=1, Pr=0.71, 

Preff=0.5 and n=1.2. 

Figures 5-7 represent the horizontal velocity component 
' ( ),F η the temperature θ(η) and the nanoparticle 

concentration φ(η) for different values of the magnetic 

parameter M with fixed values of the other parameters. Fig. 5 

depicts the dual velocity profiles 
' ( )F η  for several values of 

M. The figure also reveals that the velocity at a point increases 

with increase in M for the first solution and the reverse is true 

for the second solution. The first solution approaches to unity 

(since 
' ( ) 1F ∞ = ) faster than the second solution, which is 

consistent with the fact that the boundary layer thickness of 

the first solution is smaller than that of the second solution. 

Figs 6 & 7 show temperature profiles θ(η) and concentration 

profiles φ(η) versus η for different values of M. From these 

figures, we found that the temperature and the concentration 

of a nanofluid both decrease with the increase of M (for first 

solution). This is due to the fact that the application of a 

magnetic field on the flow domain creates a Lorentz force 

which accelerates the fluid motion and as a consequence the 

temperature of the fluid within the boundary layer decreases. 

The thickness of the thermal boundary layer also decreases 

with the increase of M. Thus the surface temperature and 

nanoparticle concentration of the sheet can be controlled by 

controlling the strength of the applied magnetic field. 

 

Fig. 5. Variation of the velocity profiles '( )F η  for several Values of M with 

α =-1.35 and n=1.2. 

 

Fig. 6. Variation of the temperature distribution ( )θ η  for several values of 

M with α = -1.35, Nb = Nt = 0.1, Le = 1, Preff =0.7 and n=1.2. 

 

Fig. 7. Variation of the concentration profiles φ(η) for several values of M 

with α =-1.35, Nb = Nt = 0.1, Le = 1, Preff =0.7 and n=1.2. 
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Plots of the velocity profile 
' ( )F η for different values of α(< 

0) for selected values of the other parameters are shown in Fig. 

8. As |α |increases, the velocity of the fluid within the 

boundary layer also increases for the first solution. Fig. 9 

depicts the variations of velocity profiles 
' ( )F η for different 

values of the stretching index parameter n. It is worth noting 

that a positive value of n corresponds to accelerated stretching 

surface whereas negative value of n corresponds to a 

decelerated stretching surface. The value n=0 represents a 

uniformly moving surface. In the present paper we have 

considered non negative values of n only. It is observed that 

nanofluid velocity increases with the increase of the non 

linearity stretching index n for the first solution and the flow 

velocity decreases with the increase of n for the second 

solution. The thickness of the hydrodynamic boundary layer 

increases with the increase of n. 

 

Fig. 8. Variation of the velocity profiles '( )F η  for several values of α(<0) 

with M=0.2 and n=0.8. 

 

Fig. 9. Variation of the velocity profiles '( )F η  for several values of the 

power-law index parameter n with α =-1.40 and M=0.2. 

Fig. 10 shows the influence of the effective Prandtl number 

(Preff.) on the temperature profiles θ(η) for other fixed 

parameters. It is worth noting that Preff (=Pr/(1+4R/3) is 

nothing but a simple rescaling of the Prandtl number (Pr) by a 

factor involving the radiation parameter (R). So Preff is directly 

proportional to Pr and inversely proportional to R. Fig. 10 

reveals that as Preff increases, the temperature at a point 

decreases except in a small region near the sheet (for first 

solution branch). Physically this can be explained as follows. 

An increase in Prandtl number (Pr) means a decrease of fluid 

thermal conductivity which ceases the reduction of the 

thermal boundary thickness. The second solution branch is 

different; for the given parameters as Preff increases 

temperature at a point also increases. 

 

Fig. 10. Variation of the temperature distribution ( )θ η  for several values of 

effective Prandtl number with α =-1.40, Nb = 0.1, Nt = 0.1, Le = 1, n=1.2 and 

M = 0.2. 

The influence of Brownian motion parameter (Nb) on 

dimensionless temperature θ(η) for the fixed values of other 

parameters is shown in Fig.11. The figure reveals that the 

dimensionless temperature within the boundary layer 

increases with increasing values of Nb for the first solution 

and decreases with increasing values of Nb for the second 

solution. The physical reason is that the Brownian motion 

enhances the thermal conduction due either to nanoparticle 

transporting heat or the micro-convection of the fluid 

surrounding individual nanoparticle. Fig. 12 represents the 

variation of thermophoresis parameter (Nt) on temperature 

profiles θ(η). It is seen from the figure that the thermophoresis 

parameter increases the temperature of the fluid for the first 

solution, but opposite behaviour is observed for the second 

solution. The variation of the concentration profiles φ(η) for 

different values of Lewis number (Le) is displayed in Fig 13. 

The figure reveals that for both the solution branches, up to a 

certain region φ(η) increases with the increase in the values of 

Le, but beyond this region φ(η) decreases with an increase in 

Le. It is to be noted that Lewis number (Le) is the ratio of 

thermal diffusivity to mass diffusivity and is generally used to 

characterize fluid flows where simultaneous heat transfer and 

mass transfer occur. 
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Fig. 11. Variation of the temperature distribution ( )θ η  for several values of 

Nb with α = -1.40, Nt = 0.1, Le = 1, Preff =0.7, n=1.2 and M = 0.2. 

 

Fig. 12. Variation of the temperature distribution ( )θ η  for several values of 

Nt with α = -1.40, Nb = 0.1, Le = 1, Preff =0.7, n=1.2 and M = 0.2. 

 

Fig. 13. Variation of the concentration profiles φ(η) for several values of Le 

with α = -1.40, Nb = Nt = 0.1, Preff =0.7, n=1.2 and M = 0.2. 

6. Concluding Remark 

In summary, the problem of MHD stagnation-point flow and 

heat transfer in a nanofluid past a nonlinearly 

stretching/shrinking sheet is studied in this paper. Similarity 

transformation technique is employed to reach the partial 

differential equations in to an ordinary differential equation 

group. The equation group is solved numerically using the 

shooting method. We have found that non–unique solutions 

exist for certain chosen parameters and the flow and heat 

transfer are significantly influenced by these parameters. It is 

also found that the magnetic parameter enhances the existence 

range of solution domain. Also the effect of magnetic field on 

wall shear stress, Nusselt number and Sherwood number is 

shown graphically. A rise in Brownian motion parameter (Nb) 

and thermophoresis parameter (Nt) enhance the temperature in 

the boundary layer region. The influence of stretching/shrinking 

index parameter (n) is to increase the fluid velocity. 
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Nomenclature 

a: Constant proportional to the free stream velocity. 

B0: Magnetic field. 

C: Constant proportional to the stretching/shrinking velocity. 

C: Nanoparticle volume fraction. 

Cf: Skin friction coefficient. 

CW: Nanoparticle volume fraction at the stretching surface. 

C∞: Nanoparticle volume fraction in the free stream. 

DB: Brownian diffusion coefficient. 

DT: Thermophoresis diffusion coefficient. 

F(η): Dimensionless stream function. 

k: Thermal conductivity. 

Le: Lewis number. 

M: Dimensionless Magnetic parameter. 

n: Stretching index 

Nb: Dimensionless Brownian motion parameter. 
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Nt: Dimensionless Thermophhoresis motion parameter. 

Nux: Local Nusselt number. 

Pr: Prandtl number.  

Preff:Effective Prandtl number. 

qm: Wall mass flux. 

qw: Wall heat flux. 

R: Thermal radiation parameter. 

Rex: Local Reynolds number. 

Shx: Local Sherwood number. 

T: Temperature of the fluid. 

Tf: Temperature of the base fluid at the stretching surface. 

T∞: Temperature of the fluid in the free stream. 

u, v:V elocity components along x and y axes, respectively. 

uw: Velocity at the stretching/shrinking sheet. 

U: Free stream velocity. 

Greek Symbols 

α: Ratio of the free stream velocity to the free stream velocity 

to the stretching/shrinking velocity. 

αm: Thermal diffusivity of the fluid. 

φ(η): Rescaled nanoparticle volume fraction. 

η: Similarity variable. 

θ (η): Dimensionless temperature of the fluid. 

ν: Kinematic viscosity of the fluid. 

ρf: Density of the base fluid. 

τ: Ratio of the effective heat capacity of the nanoparticle 

material and the ordinary fluid. 

ψ: Stream function. 
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