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Abstract 

The study of effect of temperature change and pre stress in plane load on natural frequency of single layered circular graphene 

sheet fixed on an elastic medium is discussed in this paper. The small scale parameters are taken into consideration to study the 

impact. This paper deals with classical boundary conditions such as free and guided boundary conditions. The governing 

differential equations of motion are derived using nonlocal plate model and newton-raphson method of numerical method 

solving is used to solve the corresponding equations. 
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1. Introduction 

Plate structures are major load carrying elements in structural 

mechanics, both in aeronautics, on land and in naval 

engineering. Such plates are frequently subjected to 

significant in plane compression forces. Graphene is a new 

form of two-dimensional carbon nanostructure with excellent 

electronic and mechanical properties, holding great promise 

for the endless applications in numerous innovative 

technological fields. It is one of the new materials for the 

cutting edge nano-electronic devices. There is information 

related to its applications as mass sensor, pressure and strain 

sensors, atomic dust detectors and enhancer of surface image 

resolution. Various plate theories are available to describe the 

static and dynamic behavior of such plates. At nanometer 

scales, size effects often become prominent. So it is 

important to include non-local elasticity theories in the 

graphene sheets vibration analysis, because here small scale 

effects are caught by supposing that the stress at a point is a 

function of the strains at all other points in the domain. 

Graphene which is a crystalline allotrope of carbon with two 

dimensional properties forms the basic structure of other 

allotropes like carbon nano tubes. The atoms here are 

arranged in a hexagonal manner, they are transparent, good 

conductors of heat and electricity and around hundred times 

stronger than steel [1]. These extraordinary properties of 

graphene and its contribution to nanotechnology make it an 

interesting and important area of study. 

Effect of temperature change on fundamental frequency of 

micro beams and effect of elastic medium on vibration, 

buckling and bending of micro plates were studied by using 

the modified couple stress theory [2]. These are the non-

classical elasticity theories. Importance of small scale effect 

and effects of boundary conditions on vibration of graphene 

sheets was studied using non-local elasticity theory. Various 

numerical methods were used to solve the differential 

equations. Non-local continuum theory [3] provided 

expressions for natural frequencies in case of in plane 

vibration of micro nano plates. They also provided the 

significance of non-local effect on vibration and buckling 
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loads of graphene sheets [4]. The effect of small scale 

parameters, temperature change, elastic medium (both 

Winkler and Pasternak) [5], boundary conditions and in plane 

compressive load on natural frequencies and buckling of 

circular as well as annular graphene sheets was studied using 

non-local plate theory [6]. These studies provided the relation 

of the small scale effect and mode numbers, temperature 

effect and the compressive load. The frequency equations 

were derived for the cases of clamped and simply supported 

boundary conditions and solved using numerical methods of 

finding roots. 

So far all the researches have been done on classical 

boundary conditions. This paper deals with some more 

classical boundary conditions such as free and guided and 

can as well be extended to non-classical boundary conditions 

such as elastically restrained edges against translation and 

elastically restrained edges against rotation. The governing 

differential equations of motion are derived using the 

nonlocal plate model and newton-raphson method of 

numerical method solving is used to solve the corresponding 

equations. 

2. Nonlocal Plate Model 

Nonlocal elasticity theory is significant because the stress at 

any location in an elastic domain is dependent not only on 

that location; rather it depends on strains at every other 

location [7]. The most general equation of motion for a 

nonlocal homogeneous linear elastic body is given by Eq. (1): 

σ���x� = � λ�|x − x�|, η�C����ε���x��dV�x��        (1) 

Where, 

σ�� is the stress, 

ε�� is the strain and  

C���� is the elasticity tensor of the fourth order. 

The nonlocal effect is incorporated using the nonlocal 

modulus λ�|x − x�|, η� 

η = ����
� 	 is a material constant 

e�  is a constant for approximation of results with other 

models. It’s the nonlocal parameter [8]. 

a is the radius of the circular plate 

l� is the external length 

The integro-differential equation (1) can be simplified to [9]: 

�1 − �e�l���∇��σ � = t                               (2) 

where		t = C: ε 

∇� is the laplacian operator 

According to the principle of virtual work [10] the governing 

EOM is given as: 

D�∇$w� + 'N) + N*�+,-�e�l���∇$w− ρh�e�l���∇� 01
23
1*2 4 −

'N) + N*�+,-∇�w + ρh 123
1*2 = 0                     (3) 

Here, 

D = 678
9��9:;2� is the flexural rigidity of the SLGS 

w is the transverse displacement of the nanoplate  

ρ is the density of the plate 

N) is the boundary tension given by: f/l (load per unit length) 

N*�+, is the resultant thermal stress given by: 
6>

�9:;�hΔT 

The displacement of the plate for free vibration can be 

expressed in terms of polar coordinates as: 

w�r, θ, t� = W�r, θ�e�D*                             (4) 

Where ω  is the natural frequency with which the circular 

plate oscillates.  

Inserting equation (8) into equation (7) and solving using 

separation of variables method, we obtain the general 

solution as: 

w�r, θ� = 'A+9 J+�ζr� + A+� Y+�ζr� + A+J I+�ηr� +
A+$ K+�ηr�-�A+∗ cosmθ�                      (5) 

where, 

m is the mode number and ranges from 0 to n 

ζ and η are the eigen values 

J+  and Y+  are bessel functions of first and second kind of 

order m 

I+ and K+ are modified bessel functions of first and second 

kind of order m 

3. Boundary Conditions 

3.1. Guided Boundary Condition 

Let us consider a circular nano plate of radius a sliding across 

two roller supports as shown in Figure 1 [11]. 

To avoid stresses and deflection on the center of the circular 

nano plate, the terms Y+�ξr�  and K+�ηr�  should be 

considered as zero. 

The boundary conditions are: 

1S�),T�
1) = 0                                      (6) 
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U 11)∇
�w�r, θ� & �1 � ϑ� 9) 11T 09) 12S�),T�1)1T � 9)2 1S�),T�1T 4W � 0  (7) 

 

 

Figure 1. Nonlocal plate model of circular graphene sheet with guided and 
free boundary condition. 

Substituting equations (6) and (7) in equation (5) and 

equating the determinant of the matrix to zero, the 

characteristics frequency equation becomes: 

J��ζa� YI����ηa� & I���ηa�a � m�I��ηa�a� & �1 � ν�m�aJ I�ηa�
� �1 � ν�m�a� I��ηa�[ 

- I��ηa� UJ����ζa� & \]]�^��� � +2\]�^���2 & �1 � ν�+2
�8 J�ζa� ��1 � ν�+2

�2 J��ζa�W � 0                         (8) 

3.2. Free Boundary Condition 

Let us consider a circular nano plate of radius a subjected to 

free vibrations as shown in the Figure 1. 

The boundary conditions are: 

12S�),T�1)² & ;) 1S�),T�1) & ;)2 1
2S�),T�1T² � 0                (9) 

` 11)��w�r, θ� &�1 � ϑ� 9) 11T 09) 12S�),T�1) 1T � 9)2 1S�),T�1T 4a � 0        (10) 

Substituting equations (9) and (10) in equation (5) and 

equating the determinant of the matrix to zero, the 

characteristics frequency equation becomes: 

UJ���ζa� & ;� J��ζa� � +2;�2 J�ζa�W UI����ηa� & b]]�c��� � +2b]�c���2 &
�1 � ν�+2

�8 I�ηa� � �1 � ν�+2
�2 I��ηa�W � UI���ηa� & ;� I�ηa� �+2;�2 I�ηa�W UJ����ζa� & \]]�^��� � +2\]�^���2 & �1 � ν�+2

�8 J�ζa� ��1 � ν�+2
�2 J��ζa�W � 0                          (11) 

The frequency and other non-dimensional parameters are 

given as: 

Ω � ωa�√f7g , N)∗ � N)a�/D, N*�+,∗ � N*�+,a�/D, 

μ � �e�l��/a 

4. Results and Discussion 

Table 1. Comparison of non-dimensional fundamental natural frequencies of square and circular nano plate (simply supported BC). 

Results 
ijkl (nm) 

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 

Pradhan and Phadikar [8] 2.000 1.992 1.969 1.952 1.932 1.909 1.857 1.827 
Mohammadi et al.[7] 2.000 1.990 1.964 1.944 1.921 1.895 1.835 1.802 
Present 2.000 1.990 1.964 1.944 1.921 1.895 1.835 1.802 

 
This paper investigates the effect of thermal and small scale 

factors on the vibration of circular nanoplate under in-plane 

pre-stressed load. The small scale coefficients is assumed to 

be between 0 - 2.0 nm. The properties are E = 1060 GPa, υ = 

0.25, ρ = 2250kg/mJ . For room or low temperature case 

thermal coefficient is α = –1.6* 10:oK:9  and for high 

temperature case thermal coefficient is taken α = l.l*10:oK:9. 

These are the values which were used for CNTs [12-14]. 

Single layered circular graphene sheets are considered for the 

present nonlocal study. The radius of the circular grapheme 

sheet is taken as 20 nm [9]. 

It is seen that frequency parameters decrease as nonlocal 
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parameter increases, implying that the there is a decrease in 

the stiffness of structure as the nonlocal parameter increases 

for a fixed value of temperature. But non-dimensional 

frequency increases with increasing temperature change for 

all temperature cases. A scale coefficient e�l� ranging from 

0.25 nm to 2.0 nm is used in the analysis. The nonlocal 

parameter effect on frequency of vibration without 

temperature change compared to the frequency with 

temperature change is more important. As the temperature 

change increases from 0-100 K, the nonlocal effect decreases 

[15]. As the environment temperature increases, there is an 

increase in the average distance between atoms and this 

causes a decrease in small scale effects [7].  

The variation of non-dimensional frequency with nonlocal 

parameters for different boundary conditions and increasing 

temperature change are shown in Figure 2, Figure 3, Figure 4 

and Figure 5. 

 
Figure 2. Variation of non-dimensional frequency with nonlocal parameter 

for free boundary condition and ΔT � 0 K. 

 
Figure 3. Variation of non-dimensional frequency with nonlocal parameter 

for free boundary condition and ΔT � 100 K. 

 

Figure 4. Variation of non-dimensional frequency with nonlocal parameter 
for guided boundary condition and  ΔT � 0 K. 

 
Figure 5. Variation of non-dimensional frequency with nonlocal parameter 

for guided boundary condition and ΔT � 100 K. 

Results show that the frequency of the single layered circular 

graphene sheet increases with the increase in the temperature 

change at high temperature for both free and guided 

boundary conditions. And there is an increase in values of 

frequency by increasing the nonlocal parameter. 

Relationships between non-dimensional frequency versus 

temperature change for different boundary condition and low 

and high temperature cases demonstrated that the non-

dimensional frequency increases as the change in 

temperature increases at higher temperature but decreases as 

the change in temperature increases at room or low 

temperature. 

The variation of non-dimensional frequency with temperature 

change for different boundary conditions and temperature 

cases and varying nonlocal parameters are shown in Figures 
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6-13. 

 
Figure 6. Variation of non-dimensional frequency with temperature change 
for free boundary condition in the case of high temp and nonlocal parameter 

as 1. 

 
Figure 7. Variation of non-dimensional frequency with temperature change 
and varying nonlocal parameters for free boundary condition in the case of 

high temp. 

 

Figure 8. Variation of non-dimensional frequency with temperature change 
for free boundary condition in the case of room temp and nonlocal parameter 

as 1. 

 
Figure 9. Variation of non-dimensional frequency with temperature change 
and varying nonlocal parameters for free boundary condition in the case of 

room temp. 

 

Figure 10. Variation of non-dimensional frequency with temperature change 
for guided boundary condition in the case of high temp and nonlocal 

parameter as 1. 

 
Figure 11. Variation of non-dimensional frequency with temperature change 
and varying nonlocal parameters for guided boundary condition in the case 

of high temp. 
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Figure 12. Variation of non-dimensional frequency with temperature change 

for guided boundary condition in the case of high temp and nonlocal 
parameter as 1. 

 
Figure 13. Variation of non-dimensional frequency with temperature change 
and varying nonlocal parameters for guided boundary condition in the case 

of room temp. 

 
Figure 14. Variation of non-dimensional frequency with different non-

dimensional tensile pre-stressed load. 

 
Figure 15. Variation of non-dimensional frequency with different non-

dimensional compressive pre-stressed load. 

The study of the variation of non-dimensional frequency with 

in-plane and pre-stressed loads considers the first mode 

number and the scale coefficient as 1 nm. The in-plane loads 

are considered as Pq=1, 2, 3, 4, 5, 6 for tensile pre-stressed 

case and Pq=l, 3, 5, 6, 7, 8, 9 and 10 for compressive pre-

stressed cases. It is seen that non-dimensional frequency 

increases linearly with increase of tensile pre-stressed load. 

On the other hand the natural frequency is 0 for the 

maximum compressive load and it increases with the in-plane 

compressive pre-stressed load decreasing. The variation of 

non-dimensional frequency with various tensile and 

compressive pre-stressed loads is shown in Figure 14 and 

Figure 15. Table 1 illustrates the comparison of non-

dimensional natural frequency of circular and square 

nanoplate with simply supported boundary condition.  

5. Conclusion 

This study illustrates the significance of small scale effects 

and temperature change on the vibration behavior of single 

layered graphene sheets under in-plane pre-stressed load 

via nonlocal plate model theory and newton-raphson 

method of numerical solving. It also obtains the closed 

form solution for the free vibration of circular nanoplates. 

Results of circular graphene sheets with free and guided 

boundary conditions are presented. 
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