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Abstract 

The aim of this work is to provide a high accuracy computational technique for tracking moving interfaces, which can be found 

in a wide range of micro- and nano-mechatronic devices, using the level set method. The solution of the time-dependent partial 

differential equation of the level set is performed by replacing the spatial derivatives with central difference and with a second 

order Runge-Kutta scheme for the temporal advance. The fulfilment of the Eikonal equation is performed through a modified 

reinitialization process. By adjusting the values of constants used in the reinitialization process for the considered cases, one 

should not have to evolve more than a few iterations to achieve the steady state solution. That is found to have a large effect on 

the error in mass conservation that is associated with level set methods. The total calculation time is reduced, as the 

reinitialization process becomes a non-iterative one. This computational technique does not require an entropy-satisfying 

approximation to the gradient terms and it can easily be combined with the Fast Extension Velocity Method. Some numerical 

test cases have been performed and good results have been obtained. 
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1. Introduction 

The micro and nano mechatronics (MNM) area introduces 

novel solutions through the study of the devices used in 

micro- and nano-systems. The application areas of micro- 

and nano mechatronics include robotics, sensors, actuators, 

semiconductor materials, automobiles, portable electronic 

devices. 

The application of micro- and nano-devices in the life 

sciences and biotechnology applications has extremely 

increased over the last few years due to huge improvements 

in the manufacturing processes needed for such micro- and 

nano-scale dimensions. The advantages of using such devices 

over conventional equipment are plenty. However, as the use 

of such devices is still in the early stage, there are still a lot of 

uncertainties over their use. 

Microfluidic devices used for various aspects of engineering 

and biomedical purposes are known types of devices used in 

micro- and nano- mechatronic systems [1]. Microfluidics 

refers to a set of technologies that control the flow of small 

quantity of liquids or gases, typically measured in nano- and 

picoliters, in miniaturized systems and microfluidic devices, 

see Fig. 1. Such systems and devices are characterized by 

micro-channels having dimensions in the micrometer (Mm) 

region, e.g. inkjet printer which uses orifices less than 

100Mm in diameter to generate ink droplets. Microfluidic 

devices have also participated to applications in 

biotechnology such as the development of DNA chips and 

lab-on-a-chip technology where they are being used to detect 

bacteria, viruses and cancer cells and having many 

advantages as compared to conventional analysis such as 
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lower fluid consumption, better process control, higher 

analysis speed and a lower fabrication cost. 

The numerical simulation of such cases hence plays an 

important role in helping to understand the interactions of the 

fluid-structure interaction inside the system under 

consideration. Experimentally, it is often difficult to visualize 

and quantify the interface evolution in such complex flows 

due to the intrinsic nature of the interface, e.g. the near-zero 

thickness and complex topological changes. Moreover, 

important information on flow field characteristics is not 

available experimentally. Consequently, carefully executed 

simulations can virtually replace the experimental 

measurements in such types of microfluidic systems. The 

improvements of the numerical simulations applied for such 

systems are dependent of the numerical accuracy of tracking 

and/or capturing the moving interfaces. The level set method 

is considered as one of the most important methods for 

tracking interfaces and describing their topological changes, 

such as merging and breaking of moving interfaces. This 

method has been widely used in two-phase flow simulations 

[3-14], as well as in combustion phenomena [15]. 

 

Figure 1. Droplet breaking process with different viscosities of the dispersed 

phase taken from the study of [2]. 

In general, different numerical methods have been recently 

developed either for tracking or capturing the moving 

interface in two-phase flow systems. A brief discussion of 

such methods can be found in [16]. The most popular 

interface-capturing methods are the Volume-of-Fluid (VOF) 

[17] and the Level Set Method (LSM) [3]. These methods are 

extensively implemented, in particular in many commercially 

available codes, to handle the relatively complex topological 

changes and to obtain the mass-conserving property. 

However, the implementation of these schemes is still more 

complicated in complex free surface flow. Referring to the 

advantages of LSM over VOF, the LSM has been widely 

adopted in the numerical simulation of multi-fluid flows [16]. 

2. Level Set Method 

The formulation of the level set is used basically to identify 

two separated regions with different properties. As a clear 

example is the incompressible two-phase flow. Recently, the 

level set methods developed for predicting fluid problems 

involving moving interfaces are becoming increasing popular. 

Since the development of the level set method for 

incompressible two-phase viscous flow [4], a large number 

of articles on the subject have been published and several 

types of problems have been tackled with this method; see 

for instance [14]. However, the implementation of the level 

set method in predicting the moving interfaces under 

microfluidic characteristics is indeed very scarce. 

In the formulation of the level set method, the computational 

domain is divided into grid points containing the level set 

function φ, which is taken positive inside the liquid phase, 

negative in the gas phase and zero at the interface Γ, see Fig. 2. 

The update of the level set function with time can be 

determined by solving the following transport equation: 

u 0
t

ϕ ϕ∂ + ⋅∇ =
∂

                                 (1) 

 
Figure 2. Computational grid and the level set characteristics. 

Since the interface is captured implicitly, the level set 

algorithm is capable of capturing the intrinsic geometrical 

properties of highly complicated interfaces in a quite natural 

way. Consequently, the normal vector and the curvature of 

the interface can be defined as: 

                             (2) 

An important step in the solution algorithm of the level set 

function is to maintain the level set function as a distance 

function within the two fluids for all times, especially near 

the interface region, i.e. the Eikonal equation, ; 

should be satisfied in the computational domain. This can be 

achieved each time step by applying the re-initialization 

algorithm proposed and described in [4]. 

n , n
ϕ κ
ϕ

∇= = ∇ ⋅
∇

1ϕ∇ =
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2.1. Fast Marching Method (FMM) 

In order to solve the level set equation, Eq. 1, different 

methods have been also recently developed to overcome the 

associated numerical problems with the standard level set 

methods. One of the most important numerical methods is 

known as the Fast Marching Method (FMM), which has been 

developed by [18]. 

The FMM has been mainly developed in order to decrease 

the computational labour of the standard level set method and 

maintain the conservative property. The main idea of the 

FMM is to construct an extension velocity field, Fext, starting 

from the known normal velocity at the interface Vn, and 

consequently, the level set equation to be solved is given by: 

          (3) 

The extension velocity field should satisfy the following 

equation: 

                                        (4) 

2.2. Problem of the Level Set Method 

As seen before, one has to solve a simple scalar hyperbolic 

transport equation in order to obtain the interface properties, 

such as position, normal vector, and curvature. These 

parameters play an important role in many physical and 

engineering phenomena. Therefore, the solution technique of 

the level set has to be carefully chosen. It can also lead to a 

stable or unstable solution of the problem under 

consideration. 

As described by [4], when the level set function has been 

moved with the correct velocity, a steep gradient could be 

developed. Therefore, the level set must be reinitialized to 

keep it as a distance function. Without that, the level set 

function will become irregular and loses its important 

characteristics. 

The resulted numerical diffusion from solution algorithm and 

reinitialization process of the level set function is directly 

responsible for the mass conservation error as well as the 

inaccurate calculation of interface properties. Although, the 

mass error problem associated with the level set methods 

could be neglected in many numerical simulations, it will 

become a very important parameter in others, such as the 

simulation of two-phase flows. In such cases, this error can 

affect the physical process, and consequently, it can not be 

more neglected. 

As a general, it is impossible to prevent the level set function 

from deviating away from a signed distance function. Our 

goal in this paper is two fold; firstly, the analysis of the 

reinitialization process, provided by [4], in order to eliminate 

its disadvantages. Secondly, we turn our attention to the 

approximation of the space and time derivatives in the level 

set equation to obtain high accuracy algorithms. 

2.3. Reinitialization Process 

As mentioned before, the level set function φ will move with 

Eq.(1), using the correct velocity components. The associated 

problem is that φ is no longer a distance function after a 

period of time, (i.e., ). In order to keep the level set 

as a normal distance function for all times, one has to solve 

the Eikonal equation, 

                                         (5) 

Many level set methodologies have been developed to solve 

the above equation, or in otherwise, to keep  by the 

so called reinitialization algorithm. A straightforward way to 

reinitialize the level set is proposed by [4], that can ensure 

that φ remains a distance function and prevent inaccurate 

computations near flat/steep regions. This is achieved by 

performing a pseudo time integration of the following 

equation: 

                              (6) 

Until a steady state, with the initial conditions 

                                 (7) 

is defined as a sign function according to the followin

g equation: 

                                  (8) 

where δ is constant. 

The steady state solution is reached when the convergence 

criterion is achieved, and it is given by: 

             (9) 

where M ≡ a specified number of grid points and α denotes 

the prescribed thickness of the interface. 

The later reinitialization process works very well and 

produces the desired signed distance function. However, it is 

somewhat wasteful of calculation time due to its iterative 

technique. The steady state solution could not be achieved in 

some cases, even after a large number of iterations. As a 

result of these iterations, we refer the most of the associated 

problems, such as: the movement of the zero level set and 

consequently the non-conservative mass. By studying the 
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effects of the constants used in the reinitialization process, 

we have found that, the variable δ, described in Eq.(8), has a 

large effect on the number of iterations required for the 

steady state solution and on the mass conservation as well. 

This constant has no physical meaning, and it is taking as δ = 

ζ∆x, where ζ is a positive number equals one [4]. Our 

analysis showed that, this constant δ should not be the same 

from case to case. Through the adjustment of its value to suit 

the case under consideration, the iteration process takes just 

one iteration (in the considered cases) until the steady 

solution is achieved. Fortunately, one need to define the 

value of δ only at the start of the calculation as this value 

does not change during the calculation process. For the 

considered cases, we have found that, good results have been 

obtained when δ ≤ 17x. This is evident through a reduction of 

the error in the mass conservation and a saving in the 

computation time, as the reinitialization process takes only 

one iteration. 

2.4. Numerical Approximation of the Level 

Set Equation 

In the following section, the numerical approximation of the 

level set method is presented; namely, the temporal 

derivative and the convective terms. These approximations 

are relatively new and developed by the present author. 

2.4.1. Temporal Derivative 

The most common method for level set temporal advection is 

based on an important family of time-integration techniques 

which are of a high order of accuracy and provided by 

Runge-Kutta methods. The Runge-Kutta method was used 

for the advection scheme presented by [19], and it is used 

also in the present calculations. 

2.4.2. Convection Terms 

In the present work, the central difference scheme is applied 

for the approximation of the convection terms in the level set 

equation. However, it has been shown that the central 

difference scheme is failed in two special cases [20], as it 

produces a miscalculation which propagates outwards as wild 

oscillations. Therefore, we have to perform these two special 

cases using our developed algorithm, along with the 

application of the modified reinitialization process. 

3. Numerical Validation 

The central difference approximations are applied in the 

present paper for the convective terms, providing a high 

order accurate solver compared with the first order upwind 

scheme used in all the previous level set numerical methods. 

However, the original work of [20] has showed that the 

central difference is failed in two specified cases; namely; the 

movement of a V-front under a dependent gradient normal 

speed and the movement of a cosine curve under a normal 

speed along it normal vector field. The central difference 

approximation produces in such cases a miscalculation at the 

junction point of the V-front, which propagates outwards as 

wild oscillation. These oscillations cause blow-up in the code. 

It should be pointed that these miscalculations have nothing 

to do with the computational grid distance or the definite 

time step. Accordingly, it has been concluded that more 

attention should be given for the gradient term discretization 

of φ in a way that correctly accounts for the entropy 

condition [20]. Following that, the majority of the papers 

concerned with the development of the level set technique 

have applied different orders upwind schemes for solving the 

level set equation ranging from first-order to second-order 

ENO or fifth-order WENO scheme. Therefore, we have to 

perform the specified cases as an important test for our 

proposed algorithm. 

Case I: 

The initial configuration of The V-front initial is a "V" 

formed by rays meeting at (0.5, 0) and can be given by: 

                     (10) 

The equation of motion for this case is given by: 

                               (11) 

Consider F equals 1 for initial value problem and the 

difference numerical approximation of the temporal and the 

spatial derivative is given by: 

           (12) 

The expected problem due to central approximation of the 

gradient term is at x=0.5, where the slope is not defined. In 

the exact solution,  for all x≠0.5, and this should 

also hold at x=0.5. However, from Eq.(12) we get the value 1. 

The Huyghen's construction proposed by [20] sets the correct 

value for φ at x=0.5. Instead of that, we use the 

reinitialization process to reconstruct the level set according 

to the other correct values where x≠0.5 after each time step. 

Consequently, the value at the middle is reconstructed 

correctly. Figure (3-a) shows the exact solution of the 

problem. Figure (3-b) shows the calculated results using the 

central difference without reinitialization and the appearance 

of the miscalculation at x=0.5 can be seen. The 
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miscalculation of φ at x=0.5 is then spread over a wide range 

in successive time steps. Figure (3-c) shows the calculated 

results using the central difference approximation with the 

reinitialization process. It can be observed that as a result of 

the reinitialization process, the miscalculations disappear. 

The reconstructive strength of the reinitialization process also 

holds, when cups with different forms are formed during 

other front evolution processes, as follows next. 

 

(a) 

 

(b) 

 

(c) 

Figure 3. The advection of a "V"-front using the central difference 

approximation for the level set function, (a) the exact solution, (b) without 

reinitialization, (c) with the reinitialization. 

Case II: 

 

Figure 4. The advection of smooth cosine curve along its normal. 

The second case that indicates the effectiveness of the 

proposed level set algorithm is the propagation of an initially 

simple and smooth cosine curve along its normal vector field 

with a normal speed Vn=1.0. As seen in [20], the front 

develops a sharp corner in finite time, and consequently, it is 

difficult to continue the evolution as the normal vector is 

ambiguously defined. By using the central difference scheme 

along with the reinitialization process, the front forms a cusp 

but the evolution is continued without any disturbances, as 

seen in Fig. 4. 

4. Numerical Results and 
Discussion 

In this section, different simple problems for pure translation 

and rigid body rotation or oscillation for a circular shape are 

considered.  The oscillation of the circular shape is produced 

by an oscillatory motion of a simple pendulum whose small 

amplitude motion is well known. Table 1 gives the summary 

of the considered test cases and the average area losses of the 

circular shape over the specified time period. The results of 

the average area losses of the circular shape, defined over N-

iterations as , reveal that, even for the 

coarse grid applied, the maximum average area losses is 

about 4.06e
-4

, which might be accepted as a numerical error.  

The preservation of the circular shape during the different 

movement starting from a specified initial location can be 

seen in Fig. 5-a, b, c. 

 

(a) 

0
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(b) 

 

(c) 

Figure 5. (a) Axial translation of a circular shape, (b) Solid body rotation of 

a circular shape, (c) Oscillatory pendulum of a circular shape. 

Table 1. Summary of the considered data for different movement of a circular shape. 

Movement of 

Circular 

Shape 

Num. 

grid 

No. of grids equipped 

by circular shape (D) 

Grid 

dist.∆∆∆∆x, ∆∆∆∆y 

Initial location of 

circular shape 

(xc,yc)|t=0 

Time 

step ∆∆∆∆t 

Velocity field; u(x,y), 

v(x,y) 

Average 

area losses 

Axial 

translation 
73×73 20 0.01 (17,37) 35e-4 (1,0) 4.907e-5 

Rigid body 

rotation 
73×73 20 0.01 (57,37) 35e-4 (-1,1) 4.221e-5 

Oscillatory 

pendulum 
73×73 20 0.01 (52,51) 35e-4 

(cos(∆yc(t)/2.4), 

sin(∆yc(t)/2.4)) 
4.06e-4 

 

 

Figure 5. d. Temporal evolution of the normalized area of circular shape 

under different movements Moreover, the evolution of the normalized area 

(A(t)/Ainit) of the circular shape as a function of the dimensionless time 

 is plotted in Fig. 5-d for the different cases considered. The 

obtained numerical error can be accepted for all movements considered. 

5. Droplet Collision inside 
Microfluidic Device 

The dynamics of droplets inside microfluidic devices has 

been recently extensively investigated; see for more details 

[21]. The applications are ranged from squeezing, dripping, 

jetting and flow-focusing devices. The collision dynamics of 

microfluidic droplets has been recently emerged as an 

important technology for a wide range of two-phase flow 

microfluidic applications including encapsulation, chemical 

synthesis and biochemical assays. More recently, in some 

micro devices, used in the chemical, pharmaceutical or 

medical technology or related industries. The results of the 

collision process are dependent on different factors, such as 

collision energy, droplet size and the collision angle and 

distance, see for more details [8, 11]. Moreover, the 

numerical algorithm is described in details in [13]. 

In the present section, a very complex problem for the 

droplet collision dynamics in microfluidic device is 

numerically simulated.  The computational domain and the 

boundary conditions for such problem can be seen in Fig. 6, 

where two unequally droplets in the so-called head-on 

collision process. 

 

Figure 6. Initial configurations and boundary conditions for two colliding 

droplets. 

The computational domain has 101x101 grid points in x and 

y directions, respectively. The uniform grid distance is given 

as ∆x=∆y=1.0e
-6

m. The diameter ratio is considered as 

D2/D1=2. The time step is chosen as small as possible to 

ensure the stability of the computational algorithms and 

equals 0.8e
-5

s. No-slip boundary conditions are applied for all 

the boundaries of the computational domain. The adopted 

*t ut D=
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numerical algorithm is described in more details in [13]. 

Initially, two unequally droplets are located head-on in 

stagnant gas. The moving droplet is called the "ejected" 

droplet, while the other is called the "target" droplet. The 

distance between the centres of the droplets is denoted by Xc.  

The dimensionless numbers control such collision process 

are the Weber number (We), Reynolds number (Re), and 

Ohnesorge number (Oh) [22]. All these parameters are 

dependent on the collision velocity, droplet diameters, and 

the droplet and the surrounding gas properties. 

Simply, two test cases are numerically performed. The 

dimensionless Weber number for the two cases are as We2/ 

We1=3, by increasing the colliding velocity while all other 

properties remain constant. It should be pointed out that the 

chosen data for our cases is arbitrary. 

Figure 7 and Figure 8 show the dynamics of droplet collision 

process for the considered cases performed with relatively 

low We reflecting the dynamics of collision process in 

microfluidic devices. The results show the effects of 

increasing the colliding velocity of the ejected droplet on the 

resulting collision process dynamics. Initially, as the ejected 

droplet approaches the target droplet, it is deformed 

according to the bag break-up mechanism, while the target 

droplet is deformed accordingly. As a result of the low 

colliding velocity, a small amount of air between the two 

droplets is allowed to form an entrapped air cavity. This 

cavity can form a bubble inside the target droplet. During the 

deformation process of the target droplet, the bubble inside 

goes further in a deformation process due the initial kinetic 

energy of the ejected droplet and the evolution of the target 

droplet. Finally, the target droplet is reaches a statistically 

steady state with an entrapped air bubble involved.  

By increasing the colliding velocity, the air bubble is not 

allowed to form between the two droplets, Fig. 8. Both 

droplets are nearly deformed according to the bag break-up 

mechanism. The ejected droplet goes through the cavity 

formed by the target droplet due its deformation process. The 

ejected droplet continues its deformation and break-up 

process until it reaches to equally size droplets with a circular 

shape. The target droplet is deformed further due to the initial 

kinetic energy of the ejected droplet and the induced gas flow. 

However, the target droplet does not break, but it returns to 

the initial circular shape.  

In general, the developed numerical method, applied in the 

present paper, shows the effectiveness of the level set 

algorithm in predicting merging and breaking of droplets in 

natural way without any numerical constraints. 

 

Figure 7. Collision of two unequally droplets at different time steps for 

We1=0.847. 

 

Figure 8. Collision of two unequally droplets at different time steps for 

We2=3 We1. 

6. Conclusions 

A high accuracy algorithm for solving the level set equation 

has been presented. The algorithm is based basically on 

approximating the convection term with the central difference 

and using the Rung-Kutta scheme for the time advection. This 

level set methodology is combined with a reinitialization 

process in order to keep the level set as a distance function. 

The accuracy of the algorithm is in the range of the accepted 

numerical error. This indicates that the present developed 

numerical method can be applied for predicting the moving 

fronts in micro- and nano-mechatronic devices. 
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