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Abstract 

Background: Trisomy of human chromosome 21 is the most frequent genetic cause of mental retardation or intellectual 

disability and others phenotypes, including developmental defects, dysmorphic features and cognitive impairments collectively 

known as Down syndrome. Mainly a consequence of developmental and functional brain alterations, the mental retardation is 

the most invariable and invalidating neuropathological characteristic caused by the overdosage of genes triplicated in the 

chromosome 21. Methods and Results: The cytogenetic and molecular analysis facilitate the identification of the minimal 

region or Down Syndrome Chromosomal Region responsible for many phenotypes including mental retardation as the major 

constant phenotype caused by the overexpression of chromosome 21 genes. The complete sequence of human chromosome 21 

and the transcriptome analysis in Down syndrome patients and in trisomic mouse models facilitate the genetic dissection of 

neurological and cognitive phenotypes. As a result of high degree of conservation of genomes and of molecular mechanisms 

between mouse and human, the mouse models of Down syndrome showed similar neuropathological features seen in Down 

syndrome persons and facilitate the identification of associated genetic targets. Conclusion: The genetic dissection of 

neurological phenotypes in trisomic mouse models highly developed our understanding of cellular and molecular mechanisms 

of gene overexpression caused by trisomy 21 and contributed significantly to the identification of specific genetic targets for 

pharmacological therapeutics. These pharmacological treatments in mouse models of Down syndrome allowed successfully 

post-drug rescue of neurological alterations and associated cognitive deficits and could be useful therapeutic tools of 

neurocognitive deficits and mental retardation seen in Down syndrome persons. 
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1. Introduction 

Trisomy of human chromosome 21 (HSA21) or Down 

syndrome (DS), affecting 1 in 700 newborns, produces a 

variety of developmental anomalies in different organs 

involving dysmorphic features, hypotonia, immunological, 

haematological and endocrinal defects, neurological and 

neurotransmitter alterations, and increased occurrence of 

Alzheimer’s disease [1-3]. DS is also a risk factor for a 

number of diseases, such as cardiac malformations, 

childhood onset leukemia and Hirschsprung disease [4-7]. 

Down syndrome is the most frequent genetic cause of mental 

retardation or intellectual disability that is mainly a 

consequence of functional and developmental brain 

alterations. DS individuals are characterized by several 

neurological defects in cortex lamination, in the shape and 
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volume of several cerebral and cerebellar regions, cognitive 

impairments and low Intelligence Quotient (IQ). The brain 

morphological alterations have been found at cellular level 

determined by alteration in neurogenesis, neuronal 

differentiation, myelination, dendritogenesis and 

synaptogenesis [8-12]. 

The genetic discovery of DS genetic and neurocognitive 

phenotypes in trisomic mouse models highly developed our 

understanding of cellular and molecular mechanisms of gene 

overexpression caused by trisomy of human chromosome 21 

and contributed to the discovery of associated genetic pathways 

and molecular targets for potential pharmacotherapies. 

2. Genetic and Neurocognitive 
Disorders 

Generally, DS results from an extra copy of chromosome 21 

in all cells of the afflicted individuals and in some rare cases 

DS results from a partial trisomy 21 showing variable 

phenotypes depending of the triplicated region. The 

cytogenetic and molecular analysis of such patients allowed 

the discovery of the minimal region or Down Syndrome 

Chromosomal Region (DSCR), at 21q22.2 sub-band, 

responsible for many traits of DS, including mental 

retardation as the major constant phenotype caused by the 

overdosage of genes triplicated in the chromosome 21 [13, 

14]. The complete sequence of human chromosome 21 [15], 

the sequence of the human genome [16], and the 

transcriptome investigations in DS patients and in trisomic 

mouse models [17-20] facilitate the genetic dissection of DS 

neurological and cognitive phenotypes. 

The Ts(1716)65Dn, named Ts65Dn, produced by reciprocal 

translocation T(16C3-4; 17A2)65Dn, is the first segmental 

trisomic mice created and is the most commonly used and the 

best-characterized DS mouse models [21]. Ts65Dn mice are 

trisomic for the most of HSA21 orthologous genes conserved 

in the distal end of mouse chromosome 16 and exhibit many 

neurological features that are reminiscent of those seen in 

people with DS. The Ts65Dn mouse models showed 

neurotransmitter alterations [22], reduced hippocampal volume 

and dentate gyrus density [23], decreased Long-Term 

Potentiation (LTP) and increased Long-Term Depression 

(LTD) in the brain [24, 25], reduced cerebellum and granular 

cell layers [26], degeneration of Basal Forebrain Cholinergic 

Neurons (BFCN) [27, 28], decreased synaptic density in the 

cortex [29], decreased neuronal density and decreased synaptic 

density in the dentate gyrus [30], enlarged synapses in the 

cortex [31]. The abnormal cognitive behaviors, analogous to 

DS cognitive defects, have been demonstrated using different 

behavioral tests for spatial learning and memory such as T-

maze, Y-maze, radial maze and Morris water maze. The 

Ts65Dn mouse models of DS showed motor dysfunction [32], 

reduced responsiveness to painful stimuli [33], decreased fear 

conditioning [34], decreased spatial learning and memory in 

the Morris water maze, the radial-arm maze, the water T-maze 

and the water radial-arm maze [35-39]. 

Furthermore, the mouse models of DS are powerful tools that 

greatly enhanced our understanding of the molecular and 

cellular mechanisms involved in DS pathogenesis because of 

the possibility to genetically manipulate their genome, the 

tissue accessibility and the high degree of conservation of 

genomes and molecular mechanisms between mouse and 

human. Interestingly, these mouse models demonstrate similar 

DS neurological and cognitive phenotypes and have 

significantly contributed to the discovery of altered genetic 

pathways associated to DS neurological and cognitive features 

[40]. Remarkably, an altered genetic pathway implicated in 

some neurological and cognitive DS phenotypes has been 

identified in which two critical HSA21 genes are involved and 

located in the Down syndrome critical region (DSCR). MNB / 

DYRK1A (Minibrain / Dual specificity tyrosine 

phosphorylation-Regulated Kinase 1A) and DSCR1 or 

RCAN1 (Regulator of the Calcineurin 1 protein) operate 

synergistically to control the phosphorylation levels of Nuclear 

Factor of Activated T cells (NFATc) and NFATc-regulated gene 

expression [41]. It has been demonstrated that the 

overexpression of DYRK1A and RCAN1 genes dysregulates 

the NFATc pathway which play an essential role in the central 

nervous system and that the NFATc mice show neurological 

dysfunctions similar to those seen in DS patients and also in 

the Ts65Dn mice, the famous and the most extensively studied 

trisomic mouse models of DS [41]. 

3. Genetic Targets and 

Pharmacotherapies 

The mouse models overexpressing DYRK1A gene show a 

significant impairment in spatial learning and memory in the 

behavioral tests, indicating hippocampal and prefrontal 

cortex function alterations, particularly concerning a 

cognitive dysfunction of the reference memory. Moreover, 

these transgenic mice show abnormal long-term potentiation 

(LTP) and abnormal long-term depression (LTD), suggesting 

also a synaptic plasticity alteration [42-44]. These functional 

brain alterations are comparable with those found in trisomic 

mouse models of DS and suggest a causative role of 

DYRK1A in mental retardation in DS persons. 

Interestingly, the treatment of DYRK1A transgenic mice with 

injection into striatum of inhibitory Dyrk1A shRNA restores 

the motor coordination, attenuates the hyperactivity and 

improves the sensorimotor gating [45]. In addition, the 

treatment of DYRK1A transgenic mice with epigalloctechin-
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3-gallate, a major polyphenolic component of green tea, 

rescues brain alterations and improve cognitive deficits 

induced by the overexpression of DYRK1A gene [46] 

indicating DYRK1A as a therapeutic target (TABLE 1). 

Table 1. Treatments and pharmacotherapeutic effects in mouse models of Down syndrome. 

Treatments Pharmacotherapeutic Effects References 

Picrotoxin PTZ Learning improved in the novel objet recognition, Fernandez et al., 2007 

 in the T-maze, Rescue Long Term Potentiation (LTP).  

PTZ Pentylenetetrazol Learning improved in the Morris water maze. Rueda et al., 2008 

Memantine Learning improved in the conditioning fear test, Costa et al., 2008 

 Rescue Morris water maze, water radial arm maze. Rueda et al., 2010 

Dyrk1A- sh RNA Rescue of motor coordination, Hyperactivity, Ortiz-Abalia et al., 2008 

 and improve the sensori-motor gating.  

Epigallocatechin-3-gallate Rescue brain defects and improve cognitive deficits. Guedj et al., 2009 

Fluoxetine 

Rescue: Neurogenesis, Brain development, LTP,  

Brain-Derived Neurotrophic Factor, Serotonin 5-HT1A,  

Dendritic pathology, Synaptic plasticity, Cognitive  

deficits, Spatial memory. 

Bianchi et al., 2010  

Guidi et al., 2014 

Begenisic et al. 2014 

 

Some pharmacotherapies for cognitive impairments in 

trisomic mouse models of Down syndrome have been 

developed. It has been demonstrated that administering the 

GABAAantagonistspicrotoxin, bilobalide or Pentylenetetrazol 

(PTZ) restored cognition and long-term potentiation LTP in 

the Ts65Dn mouse models of DS [47]. These studies were 

confirmed using the non-competitive GABAA antagonist 

Pentylenetetrazole (PTZ) that rescued learning and memory 

performances of Ts65Dn trisomic mice in the Morris water 

maze tests [48]. These findings illustrate that GABAergic 

inhibition of specific brain circuits is a potential cause of 

intellectual disability in DS, and that GABAA antagonists 

may be useful therapeutic tools to facilitate the functional 

changes that can improve the cognitive deficits (TABLE 1). 

In other similar experiments, it has also been established that 

acute injections of the N-methyl-D-aspartate (NMDA) 

receptor antagonist memantine rescue the performance 

deficits in the Ts65Dn mouse models of DS on a conditioning 

fear test, and that one target of memantine is the NMDA 

receptor, whose function is predicted to be disturbed by the 

integrated effects of increased expression of critical HSA21 

genes RCAN1 and DYRK1A [49, 50]. Remarkably, these 

treatments with NMDA receptor or GABAAantagonists 

allowed post-drug rescue of cognitive deficits in mouse 

models of DS indicating a hopeful post-drug rescue of 

neurocognitive deficits seen in DS persons. 

More importantly, other pharmacological approaches have 

been developed recently to treat mouse models of DS in utero 

and demonstrated therapeutic effects that persisted to 

adulthood. In the Ts65Dn trisomic mice, fluoxetine treatment 

restored the expression of serotonin 5-HT1A receptors and  

Brain-Derived Neurotrophic Factor (BDNF) and rescued also 

the cognitive deficits [51]. The early treatment of Ts65Dn 

trisomic mice with fluoxetine fully restored all the defects of 

the dendritic pathology (hypotrophic dendritic arbor, fewer 

spines and reduced innervations) in the dentate gyrus [52]. In 

adulthood, it has been demonstrated also that fluoxetine 

normalizes GABA release and rescues hippocampal synaptic 

plasticity and spatial memory in trisomic mouse models of 

DS [53]. 

These early treatments in mouse models of DS are of the 

most interest because they allowed successfully and 

completely post-drug rescue of neurological alterations and 

associated cognitive deficits and could be useful therapeutic 

tools of neurocognitive deficits and mental retardation seen 

in DS persons. 

4. Conclusion 

In parallel to development of genome whole technologies and 

the promising experimental results obtained in mouse models 

of DS, considerable progresses have been made in the last 

years in the cellular biology and molecular genetics of DS. 

The genetic investigations of DS neurological phenotypes in 

trisomic mouse models highly developed our understanding 

of cellular and molecular mechanisms of gene 

overexpression caused by trisomy 21 and the related 

molecular pathways involved in the functional neurogenetic 

and associated cognitive disorders seen in DS persons. 

Remarkably, these advances contributed significantly to the 

identification of specific genetic targets for pharmacological 

therapeutics of neurocognitive impairments in Down 

syndrome, particularly the mental retardation. 
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