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Abstract 

Adjudge the neuroprotective ability of Ellagic acid (EA) as a constructive herbal drug to impede cholinergic dysfunctions and 

oxidative stress in Alzheimer’s disease (AD) in chronically administered scopolamine induced Alzheimer’s type dementia in 

rats. Alzheimer’s type dementia was induced by chronically administered intraperitoneal injection of scopolamine (0.7 mg/kg) 

to rats for period of 7 days. EA (25 mg/kg and 50 mg/kg) and Donepezil (0.5 mg/kg) were administrated to rats orally daily for 

a period of 13 days. Memory-related behavioral parameters were evaluated using the elevated plus maze (EPM) for 2 days and 

morris water maze (MWM) for 5 days. At the end of protocol schedulei.e day 14, biochemical parameters were estimated like 

AChE, MDA, GSH, catalase and SOD to evaluate the neuroprotective action of EA via AChE inhibition and antioxidant 

activity. Chronically injected scopolamine treatment increased the transfer latency in EPM, escape latency time and shortened 

time spent in the target quadrant in MWM; these effects were reversed by EA. Scopolamine-mediated changes in 

malondialdehyde (MDA) and AChE activity were significantly attenuated by EA in rats. Recovery of antioxidant capacities, 

including reduced glutathione (GSH) content, and the activities of SOD and catalase was also evident in EA treated rats. The 

present findings sufficiently encourage that EA has a major role in the neuroprotection in chronically injected Scopolamine 

induced Alzheimer type dementia. The EA can be used as an effectual herbal treatment to prevent cholinergic dysfunctions and 

oxidative stress associated with Alzheimer type dementia. 
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1. Introduction 

Alzheimer’s disease (AD) is a severe neurodegenerative 

disorder that gradually results in loss of memory and 

impairment of cognitive functions in the elderly.[1-5] In 2014, 

an estimated 5.2 million people of all ages have AD in U.S. 

This includes an estimated 5 million people age 65 and older 

and approximately 200,000 individuals under age 65 who have 

younger-onset Alzheimer’s. [6] The pathological features of AD 

include extracellular amyloid deposition and intra-neuronal 

neurofibrillary tangles (NFTs) of hyperphosphorylated 

microtubule-associated tau protein. [7-9] The deposition of 

amyloid plaques is the primary event that leads to an 

inflammatory reaction, NFTs formation, and ultimately cause 

neuronal death. [10-12] The mechanisms of neuronal cell loss in 

AD have not yet been fully elucidated, but increased oxidative 

stress and inflammation are considered important mediators of 

neuronal damage in AD. [13-17] 
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Many naturally occurring compounds have been proposed as 

potential therapies to slow or prevent the progression of AD, 

mostly by acting as antioxidants, [18-24] but also with some 

direct anti-amyloid actions. [18,23,25-30] Recent studies have 

suggested the positive effects of dietary antioxidants as an 

aid in potentially reducing somatic cell and neuronal damage 

by free radicals. [18-21,31-34] The beneficial health effects of 

plant-derived products have been largely attributed to 

polyphenolic compounds, as well as vitamins, minerals and 

dietary fibers. [18,19,35] 

Ellagic acid (EA), a non flavonoid polyphenol, plays an 

essential role in explaining the sensory properties of fruits, 

food and beverages which exhibit this phyto-constituent. [36-

40] EA has been well proven to contain anti-oxidant, [41-46] 

anti-inflammatory, [47-51] anti-proliferative, [52-56] 

antidiabetic[57-59] and cardioprotective[60,61]properties. 

Neuroprotection can be a property of EA as it prevents both 

neuro-oxidation and neuroinflammation. [62-68] Moreover, by 

in-vitro studies it was observed that EA inhibits β-secretase 

(BACE1), thus inhibiting Aβ-fibrillation and decrease AChE 

activity. [4,69-71]Recent studies suggested that glucose 

metabolism is affected during AD. [72-75]The EA stimulated 

GLUT4 translocation primary factor responsible for insulin 

induced glucose uptake and maintain glucose homeostasis. 

[76,77]The EA also shows modulation of monoaminergic 

system (serotonergic and noradrenergic systems) and 

GABAnergic system. [78-80]Cognitive impairment in AD 

patients correlates with disturbance in various 

neurotransmitters, as the ratio of excitatory-inhibitory 

neurotransmitter levels disturb, cytotoxic damage to neurons 

and glia occurs and norepinephrine and serotonin levels 

declined. [81-91] Further, Gamma-amino butyric acid (GABA) 

increases the formation of soluble receptor for advanced 

glycation end products (RAGE) and decreases the levels of 

full-length RAGE, lowering the Aβ uptake and inflammatory 

mediated reactions. [92,93] 

Scopolamine, an antimuscarinic agent, competitively 

antagonizes the effect of acetylcholine on the muscarinic 

receptors by occupying postsynaptic receptor sites with high 

affinity and increases AChE activity in the cortex and 

hippocampus. [94-103] Scopolamine abolishes cerebral blood 

flow due to cholinergic hypofunction. [104-107]Scopolamine 

additionally triggers ROS, inducing free radical injury and an 

increase in a scopolamine-treated group brain MDA levels 

and deterioration in antioxidant status. [108-112] Scopolamine 

induces neuro-inflammation by promoting high level of 

oxidative stress and pro inflammatory cytokines in the 

hippocampus. [113-119]Scopolamine is proven to increase levels 

of APP and Tau. Chronic administration of scopolamine led 

to marked histopathological alterations in the cerebral cortex, 

including neuronal degeneration. [30,120-122] Scopolamine 

administration has been used both in healthy human 

volunteers and in animals as a model of dementia to 

determine the effectiveness of potential new therapeutic 

agents for Alzheimer's disease[123-128] (Fig.1). 

 
Fig. 1. Scopolamine induced experimental model of Alzheimer’s type dementia 

Donepezil, a reversible inhibitor of AChE, is neuroprotective 

due to not only activation of cholinergic transmission but 

also by reducing the amount of the toxic form of amyloid β 

fibrils. [129-136] Donepezil ameliorated the scopolamine 

induced memory impairment by reducing AChE activity and 

oxidative stress and restoring cerebral circulation. [137-143]With 

this background, EA might show neuroprotection via 

inhibiting neuronal dysfunctions. There is major requirement 

to determine therapeutic potential for EA in cases of AD with 

suitable behavioral and biochemical markers. This research 
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was an attempt to investigate the neuroprotective effect of 

EA, potential of doses for the treatment of Alzheimer’s 

disease. 

2. Material and Method 

2.1. Chemicals 

EA was purchased from Yucca Interprises, Mumbai, India 

and suspended in saline solution. Scopolamine hydrochloride 

was purchased from Sigma–Aldrich, St, Louis, MO, USA. 

Donepezil was obtained from Ranbaxy Pvt. Limited, 

Mumbai, India and both scopolamine and doenpezil were 

dissolved in saline solution. All reagents used in this study 

were of analytical grade and high purity. 

2.2. Animals 

Male Wistar rats (weighing 220-250 g, aged 8-10 months) 

obtained from the Animal House of the Institute were 

employed in the studies. The animals were kept in 

polyacrylic cages with wire mesh top and soft bedding. They 

were kept under standard husbandry conditions of 12h 

reverse light cycle with food and water ad libitum, 

maintained at 22±2o C. The experimental protocol was 

approved by Institutional Animal Ethics Committee (IAEC) 

as per the guidelines of Committee for the Purpose of 

Control and Supervision of Experiments on Animals 

(CPCSEA), Government of India (RITS/IAEC/2013/01/01). 

Animals were acclimatized to laboratory conditions prior to 

experimentation. 

2.3. Drug Administration 

EA was administered by oral (p.o.) route in dose of 25 mg/kg 

and 50 mg/kg. Scopolamine was administered by 

intraperitoneal (i.p.) route in dose of 0.7 mg/kg. Donepezil 

was administered by oral (p.o.) route in dose of 0.5 mg/kg. 

Six groups (each group consist six rats) were employed in the 

present study. (i) Group1-Normal Control (ii) Group2-

Scopolamine Control (0.7mg/kg,i.p.) (iii) Group3-EA Perse 

(50mg/kg, p.o.)25mg/kg, p.o.+ Scopolamine (0.7mg/kg, i.p.) 

(vi) Group6-EA 50mg/kg, p.o.+ Scopolamine (0.7mg/kg, 

i.p.). After a 5-day habituation period, rats were given EA 

(25 and 50 mg/kg, p.o.) and Donepezil (0.5 mg/kg, p.o.) for 

total of 13 days. EA alone was treated for 6 days and then 

scopolamine (0.7 mg/kg, i.p.) was administered together with 

EA for another 7 days. Rats underwent locomotor activity 

(LMA) for 2 days i.e. 6th day and 13th day, MWM test for 5 

days i.e. 7th day to 11th day. The day after completion of 

morris water maze (MWM), the elevated plus maze (EPM) 

was conducted for 2 days i.e. 12th to 13th day. The day after 

EPM, the rats were sacrificed and biochemical parameters 

were estimated (Fig. 2). 

 
Fig. 2. Protocol schedule to determine the neuroprotective effect of Ellagic 

Acid in scopolamine induced Alzheimer’ type memory and cognitive 
dysfunctions 

2.4. Elevated Plus Maze 

Elevated plus maze (EPM) served as the behavioral model 

(where in the stimulus existed outside the body) to evaluate 

learning and memory in rats. It consists of two opened arms 

(50 cm*10cm) and two covered arms (50cm*40cm*10cm). 

The arms were extended from central platform (10cm * 10 

cm), and the maze was kept elevated to a height of 50cm 

from the floor. The EPM was conducted for 2 days i.e. 12th 

to 13th day of protocol schedule. Each animal was kept at the 

end of an open arm, facing away from the central platform on 

12th day. Transfer Latency (TL), which was taken as the time 

taken by the animal to move into any one of the covered 

arms with all its four legs, recorded on 12th day i.e. 

acquisition trial[144]. If the rat did not enter into one of the 

covered arms within 120s then it was gently pushed into one 

of the two covered arms and thetransfer latencywas assigned 

as 120s. The rats were allowed to explore the maze for 10s 

and then were returned to its home cage. TL was again 

examined 24hr after the first trial on 13th day of protocol 

schedule i.e. retention latency.  

2.5. Spatial Navigation Task in Morris 

Water Maze 

Morris water maze employed in the present study was a 

model to evaluate spatial learning and memory. Escape from 

water itself acts as motivation and eliminates the use of other 

motivational stimuli such as food and water deprivation. 

Water provides uniform environment and eliminates 

interference due to olfactory clues. [145] Animals were trained 

to swim to a platform in a circular pool (180 cm diameter*60 

cm) located in a sound attenuated dark test room. The pool 

was filled with water (28±2°C) to a depth of 40 cm. A 

movable circular platform, 9cm in diameter and mounted on 

a column, was placed in the pool 2 cm below the water level 

for escape latency time (ELT), while during time spent in the 

target quadrant (TSTQ) the platform was removed. Four 
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equally spaced locations around the edge of the pool (N, S, 

E, and W) were used to divide the pool into 4 quadrants and 

one of them is used as start point, which was same during all 

trials. The pool was filled with opaque water to prevent 

visibility of the platform in the pool. The escape platform 

was placed in the middle of one of the random quadrants of 

the pool and kept in the same position throughout the 

experiments. Animals received a training session consisting 

of day 7 to 10 and ELT was recorded. ELT defined as the 

time taken by the animal to locate the hidden platform. ELT 

was noted as an index of learning. Each animal was 

subjected to single trial for four consecutive days (starting 

form 7th day of EA administration to 10th day), during 

which they were allowed to escape on the hidden platform 

and to remain there for 20 s. If the rats failed to find the 

platform within 120 s, it was guided gently onto the platform 

and allowed to remain there for 20 s.  

On fifth day (i.e., 11th day of EA administration) the 

platform was removed. Rats were placed in water maze and 

allowed to explore the maze for 120 s. Time spent in three 

quadrants, that is, Q1, Q2 and Q3 was recorded and TSTQ in 

search of the missing platform provided as an index of 

retrieval. Care was taken not to disturb the relative location 

of water maze with respect to other objects in the laboratory. 

2.6. Assessment of Locomotor Activity 

Gross behavioral activity was assessed by digital 

actophotometer on 6th day and 13th day of protocol schedule 

to rule out any interference in locomotor activity by drugs 

which may affect the process of learning and memory, in 

before and after of MWM task. Each animal was observed 

over a period of 5 min in a square (30 cm) closed arena 

equipped with infrared light-sensitive photocells and values 

expressed as counts per 5 min. [146] The beams in the 

actophotometer, cut by the animal, were taken as measure of 

movements. The apparatus was placed in a darkened, sound-

attenuated and ventilated testing room. 

2.7. Preparation of Brain Homogenate 

On 14th day of protocol schedule, Animals were sacrificed 

by decapitation, brains removed and rinsed with ice cold 

isotonic saline solution. Brain tissue samples were then 

homogenized with 10 times (w/v) ice cold 0.1M phosphate 

buffer (pH 7.4). The homogenate was centrifuged at 10,000 x 

g for 15min, supernatant was separated and aliquots were 

used for biochemical estimations. [146] 

2.8. Protein Estimation 

The protein content was measured by using Agappe protein 

estimation kit (Biuret method). 

2.8.1. Estimation of Acetylcholinesterase 

Levels 

The quantitative measurement of AChE activity in brain was 

performed according to the method described by Ellman et 

al. (1961). [147] The enzymatic activity in the supernatant was 

expressed as nmol per mg protein. 

2.8.2. Estimation of Malondialdehyde 

The quantitative measurement of MDA – end product of 

lipid peroxidation - in brain homogenate was performed 

according to the method of Wills (1966). [148]The 

concentration of MDA was expressed as nmol per mg 

protein. 

2.8.3. Estimation of Reduced Glutathione 

GSH in brain was estimated according to the method 

described by Ellman et al. (1959). [149] The concentration of 

glutathione in the supernatant expressed as µmol per mg 

protein. 

2.8.4. Estimation of Superoxide Dismutase 

Activity 

SOD activity was measured according to the method 

described by Misra and Frodvich (1972). [150]The activity of 

SOD was expressed as % activity. 

2.8.5. Estimation of Catalase Activity 

Catalase activity was measured by the method of Aebi 

(1974). [151] The activity of catalase was expressed as % 

activity. 

2.9. Statistical Analysis 

All the results and data were expressed as mean±standard 

deviation. Data was analyzed using two way ANOVA 

followed by Post hoc test bonferroni and one way ANOVA 

followed by Post hoc test tukey’s multi-comparison test. 

P<0.05 was considered as statistically significant. 

3. Results 

3.1. Effect of Ellagic Acid on Rats in 
Elevated Plus Maze 

On 12th day of protocol schedule, acquisition latency was 

recorded. Retention was observed as transfer latency (TL) on 

13th day to evaluate learning and memory in rats using EPM. 

On 12th and 13th day Scopolamine administered rats showed 

remarkable increase (113±9.380 and 106.5±11.148 sec) in 

TL, when compared to normal (64±4.242 and 36.833±6.765 

sec) and EAperse rats (63.333±10.385 and 32.833±3.311 

sec). During experiment, EAperse administration did not 

reveal any change, when compared to normal rats in TL. 

Donepezil, a well established standard drug for AD 
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considerably decrease (65.5±13.003 and 21.666±5.085 sec) 

TL, when compared to Scopolamine managed rats and 

reversed the memory impairment induced by Scopolamine. 

Administration of EA at the dose of 25 mg/kg, p.o. exhibit 

notable decrease (72.00±8.049 and 39.333±6.186 sec) in TL, 

when compared to Scopolamine treated rats. EA (50 mg/kg, 

p.o.) administration also decrease (69.333±8.041 and 

25.333±3.881 sec) TL, when differentiate to Scopolamine 

handled rats and there were expressively variation was found 

in between treatment doses of EA 25 & 50 mg/kg, p.o. 

indicating improved retention memory (Fig. 3).  

 
Fig. 3. Effect of Ellagic acid on Transfer latency of rats using Elevated Plus Maze 

Values were mean ± SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + 
Scopolamine 

3.2. Effect of Ellagic Acid on Rats in Spatial 

Navigation Task Using Morris Water 
Maze  

On 7th to 10th day of 14 day protocol schedule, escape latency 

time (ELT) was observed. On 7th day, there were no 

significant changes observed in Scopolamine (94.33±13.125 

sec) treated rats, when compared to normal (89±9.859 sec) 

and EAperse governed (86.33±13.937 sec)rats.EAperse 

administration did not show any significant change when 

compared to normal rats. Moreover, Donepezil treated rats 

did not show any considerable changes (88±9.033 sec), when 

compared to Scopolamine responded rats. In the treatment 

groups, administration of EA did not confirm notable 

changes (96.33±10.053; 88.66±10.689 sec) in ELT at 25 and 

50 mg/kg, p.o. when compared to Scopolamine treated rats. 

There were no changes found in ELT between treatment 

doses of EA 25 & 50 mg/kg, p.o. 

Comparison data of 8th day, 9th day and 10th day ELT in 

MWM, showed that Scopolamine administered rats manifest 

remarkable increase (92±8.173, 85.33±12.75 and 83.33±8.664 

sec) in ELT, when collate to normal (76.33±7.840, 

29.16±7.808 and 15.33±3.723 sec) and EAperse (67.33±5.645, 

29.33±8.710 and 15±2.898 sec) rats. EAperse administration 

did not show any significant difference, when compared to 

normal rats during ELT. Donepezil served rats outstandingly 

decreased (51±10.158, 26.16±6.40 and 10.83±4.622 sec) ELT 
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when compared to Scopolamine dosed rats. EA at 25 mg/kg, 

p.o. proved remarkable decreased (79±10.807, 60.83±8.658 

and 38.16±9.703 sec) in the ELT, when compared to 

Scopolamine employed rats. EA at the dose 50 mg/kg, p.o. 

significantly decreased (65.33±11.707, 43±9.838 and 

24.5±8.312 sec) the ELT, when compared to Scopolamine and 

EA 25 mg/kg, p.o. treated rats, indicating remarkable 

improvement in learning (Fig. 4). 

 
Fig. 4. Effect of Ellagic acid on Escape latency time of rats on 7th day to 10th day using Morris Water Maze 

Values were mean ± SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + 
Scopolamine.  

 
Fig. 5. Effect of Ellagic acid on time spent in target quadrant of rats using Morris Water Maze 

Values were mean±SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + Scopolamine 
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On 11th day of protocol schedule TSTQ was performed. Time 

spent in target quadrant (TSTQ) in search of missing 

platform provided as an index of retrieval. Scopolamine 

treated rats showed remarkable decrease (7.667±3.077 sec) in 

TSTQ when compared to normal (45.17±8.060 sec) and 

EAperse treated (43.83±6.242 sec) rats. In perse group of 

EA, there were no changes during TSTQ when compared to 

normal group. Further, Donepezil served rats improved 

(46.17±5.345 sec) memory when compared to Scopolamine 

treated rats. EA (25 mg/kg, p.o.) administration showed 

remarkable increase (19.50±1.517 sec) in TSTQ when 

compared to Scopolamine treated rats. EA (50 mg/kg, p.o.) 

administration indicated improvement (32.00±8.149 sec) in 

memory function when compared with Scopolamine 

governed rats. Moreover, markedly difference was also 

observed in between treatment doses of EA(Fig. 5). 

3.3. Effect of Ellagic Acid on Rats in 

Locomotor Activity 

On 6th day and 13th day of protocol schedule, locomotor 

activity was observed to rule out any interference in 

locomotor activity by treatment drugs. Scopolamine 

employed rats did not reveal any significant changes 

(281.333±15.318 and 274.833±5.344) in locomotor activity 

when compared to normal (263.833±17.474 and 

274.5±21.314) and EAperse (270.666±18.250 and 

274.5±4.764) rats. EAperse administration also did not show 

any considerable change in locomotor activity at 50 mg/kg, 

p.o. when compared to normal rats. Donepezil treated also 

showed trivially changes (267.5±21.314 and 274.833±5.344) 

when compared to Scopolamine treated rats. EA 25 mg/kg, 

p.o. (266.833±15.458 and 270.833±20.692) and 50 mg/kg, 

p.o. (274.5±4.764 and 283.5±16.208) administration did not 

showed any notable changes in locomotor activity of rats 

when differentiate to Scopolamine treated rats, indicating 

there were no effect on locomotor activity (Fig. 6).  

3.4. Effect of Ellagic Acid on 

Acetylcholinesterase Levels  

Prolongation of availability of acetylcholine has been used to 

enhancing cholinergic function. This prolongation may be 

achieved by inhibiting AChE. Scopolamine administered rats 

significantly increased (415.0±19.62) the AChE level when 

compared to normal (136.8±4.956) and EAperse 

(137.2±4.167) rats. EAperse administration did not show any 

appreciable changes in AChE level at the dose of 50 mg/kg, 

p.o. when compared to normal rats. Donepezil treated rats 

appreciably decreased (231.0±7.668) the AChE level in 

contrast to Scopolamine dosed rats. EA (25 mg/kg, p.o.) 

showed remarkably diminished the AChE level 

(360.8±15.96) when compared to Scopolamine rats. 

Administration of EA (50 mg/kg, p.o.) significantly reduced 

(311.7±17.63) the AChE level when compared to 

Scopolamine employed rats. Moreover, there were expressive 

distinction was present in between treatment doses of 

EA(Fig.7). 

 
Values were mean±SD 

Fig. 6. Effect of Ellagic acid on locomotor activity of rats using actophotometer. 
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Fig. 7. Effect of Ellagic acid on Acetylcholinesterase levels. 

Values were mean±SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + Scopolamine  

 
Fig. 8. Effect of Ellagic acid on Malondialdehyde levels 

Values were mean±SD, @ p<0.05 as compared to normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + Scopolamine. 

3.5. Effect of Ellagic Acid on 

Malondialdehyde Levels  

MDA is an indicator of lipid peroxidation. Scopolamine 

administration increased (42.50±3.082) the MDA level when 

compared to normal (19.88±0.960) and EAperse 

(19.15±1.841) rats. Further, EAperse administration did not 

show any considerable changes in MDA levels when 

compared to normal rats. Donepezil appreciably decreased 

(23.12±0.511) the MDA level when compared to 
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Scopolamine managed rats. EA (25 mg/kg, p.o.) 

administration showed remarkably decrease (33.57±3.347) in 

MDA level when compared to Scopolamine treated rats. EA 

administered rats at the dose of 50 mg/kg, p.o significantly 

decreased (27.97±2.089) in MDA level when compared to 

Scopolamine and EA 25 mg/kg, p.o. treated rats(Fig. 8). 

3.6. Effect of Ellagic Acid on Reduced 

Glutathione Levels  

Reduced GSH is a marker of cellular antioxidant and provide 

protection against oxidative stress. Scopolamine governed 

rats remarkably decreased (2.067±0.417) the GSH level 

when compared to normal (9.833±0.776) and EAperse 

treated (9.733±0.799) rats. EAperse administration did not 

show any considerable changes in GSH levels in contrast to 

normal rats. Donepezil outstandingly increase (7.767±0.361) 

the GSH levels when compared to Scopolamine treated rats. 

EA (25 mg/kg, p.o.) administration exhibited remarkable 

increase (5.250±0.575) in GSH level when compared to 

Scopolamine treated rats. EA (50 mg/kg, p.o.) showed 

significantly increase (6.317±0.386) in GSH level when 

compared to Scopolamine treated rats. Moreover, in between 

treatment doses of EA, there were significance difference 

was present (Fig. 9). 

3.7. Effect of Ellagic Acid on Superoxide 

Dismutase Activity 

SOD is an antioxidant enzyme, which plays a key role in 

detoxifying superoxide anions. Scopolamine administered 

rats significantly decreased (27.33±3.386) the SOD levels in 

brain homogenate when compared to normal (100.0±0.0) and 

EAperse (95.83±2.639) rats. EAperse administration did not 

reveal any considerable change in SOD activity when 

collated to normal rats. Donepezil expressively increase 

(82.00±3.950) SOD activity when compared to Scopolamine 

treated rats. In treatment group, EA (25 mg/kg, p.o.) 

administration showed remarkable increase (59.17±8.060) in 

SOD activity when compared to Scopolamine treated rats. 

EA (50 mg/kg, p.o.) administration showed significantly 

increase (71.33±4.033) in SOD activity when compared to 

Scopolamine treated rats and there were remarkably disparity 

was found in between EA treated groups (Fig. 10). 

 
Fig. 9. Effect of Ellagic acid on reduced Glutathione levels 

Values were mean±SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + 
Scopolamine.  
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Fig. 10. Effect of Ellagic acid on Superoxide dismutase activity 

Values were mean±SD, @ p<0.05 as compared to Normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + 
Scopolamine.  

 
Fig. 11. Effect of Ellagic acid on catalase activity 

Values were mean±SD, @ p<0.05 as compared to normal & EA perse, # p<0.05 as compared to Scopolamine, * p<0.05 as compared to EA 25 + Scopolamine.  

3.8. Effect of Ellagic Acid on Catalase 

Activity 

Catalase is also an antioxidant enzyme which has capability 

to detoxify oxidative free radicals. Scopolamine treated rats 

manifested remarkable decrease (36.50±4.461) in catalase 

activity in brain homogenate when differentiated to normal 

(100.0±0.0) and EAperse treated (95.50±1.871) rats. 



 International Journal of Preventive Medicine Research Vol. 1, No. 2, 2015, pp. 45-64  55 
 

EAperse administration did not show any considerable 

changes in catalase activity when compared to normal rats. 

Donepezil significantly increase (81.67±4.033) in catalase 

activity when compared to Scopolamine treated 

(36.50±4.461) rats. EA (25 mg/kg, p.o.) remarkably 

increased (59.17±4.579) the catalase activity when compared 

to Scopolamine treated rats. EA (50 mg/kg, p.o.) 

administration exhibited significantly increase (73.67±3.559) 

in catalase activity when compared to Scopolamine and EA 

25 mg/kg, p.o. treated rats (Fig. 11). 

4. Discussion 

Clinically AD is characterized by an insidious degradation of 

memory, associated with functional decline and 

neurobehavioral disturbances. [152,153]Despite the availability 

of various treatment strategies, the severity and prevalence of 

this disease are not yet under control. Therefore, alternative 

and complementary medicines including herbal supplements, 

phytochemicals and extracts are being utilized in the 

management of AD. [154-160]The current hypothesis about the 

mechanisms by which neurons come into necrotic or 

apoptotic processes has led to believe that the therapeutic use 

of natural antioxidants may be beneficial in aging and 

neurodegenerative disorders. [161-163] 

In the present study, the effect of improving memory deficit 

of EA was evaluated using chronically administered 

scopolamine induced Alzheimer’s type dementia in rats.  

It is well known that scopolamine as a cholinergic receptor 

antagonist has been shown to impair learning and memory 

processing. [95,97,100,103] Scopolamine produces deficits in 

acquisition, immediate retention and working memory. [164-

169] 

The current study has revealed that long term administered 

scopolamine significantly increased the levels of lipid 

peroxidation products such as MDA, and decreased the 

levels of antioxidants viz., GSH, SOD and catalase. The 

increase in oxidative stress was found to be associated with 

increase in AChE activity and spatial cognitive deficit. 

Present findings are in tune with previous reports. [99,102, 

111,118] 

Scopolamine induced Alzheimer’s type dementia model has 

been widely used to provide a pharmacological model of 

memory dysfunction for screening potential cognition 

enhancing agents. [99,110-112,170]The cognitive-enhancing 

activity of EA on chronically administered scopolamine 

induced memory impairments in rats was investigated by 

using behavioral and biochemical parameters.  

During elevated plus maze, decrease in retention latency 

indicated improvement of memory and vice versa. [142,171-

173]In EPM, it was shown that long term injected scopolamine 

also drastically increase in TL, demonstrating that the central 

cholinergic neuronal system plays an important role in 

learning acquisition. EA dose-dependently decreased TL 

prolongation induced by scopolamine. These results 

suggested that the neuroprotective effect of EA on 

scopolamine-induced memory impairment may be related to 

mediation of the cholinergic nervous system.   

In order to confirm the effects of EA, MWM was used to test 

spatial learning in rats, where scopolamine treated rats were 

taking more time to reach at the hidden platform which 

shows memory impairments in this spatial task. EA treated 

rats impressively reduced the escape latency prolonged by 

scopolamine. Moreover, EA exhibited appreciable 

improvement of cognitive performance as indicated by 

significant decrease in ELT. It is important to notice that 

MWM test investigating spatial learning and memory has 

been used in detecting changes of the central cholinergic 

system. [174-178] If the animals spent more time in target 

quadrant where the platform had previously been placed 

during the training session, this would indicate that the 

animals learned from prior experience with the MWM test, 

showing the spatial memory improvement. Scopolamine 

treated rats decreased TSTQ, on the other side EA treated 

rats expressively increased the TSTQ. Both the test doses 

viz., 25 mg/kg, p.o. and 50mg/kg, p.o. significantly 

attenuated these behavioral changes in rats with chronically 

administered scopolamine induced memory and cognitive 

impairment.  

Along with EPM and MWM, Locomotor activity also was 

investigated using actophotometer to determine any 

modulation in locomotor activity by treatment drugs which 

may affect locomotion in EPM and MWM. However no 

significant difference in locomotor activity was observed in 

any of the animal groups. These results suggest that there 

was not any sedative effect or interference in EPM and 

MWM locomotion. Therefore, transfer latency in EPM, 

escape latency and TSTQ in MWM were purely result of 

improved memory. Thesefore, EA can repair the long-term 

memory in chronically injected scopolamine-induced 

memory impairments.  

To investigate the effect of EA on cholinergic function, that 

governs vital aspects of memory and other cognitive 

functions, brain acetylcholinesterase activity was measured 

in the present study. The hippocampus, amygdala and 

cortical regions of the brain are mainly involved in 

cholinergic transmission to monitor learning and memory 

processing and seem to be more prone to oxidative damage. 

[9,179-181] Moreover, oxidative damage to the rat synapse in 

these regions of brain has been reported to contribute to 

cognitive deficits. [182,183]The AD is characterized by 
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alterations at the level of various neurotransmitters. The most 

severely affected is the cholinergic system, which is 

responsible for the storage and retrieval of items in memory 

and its degradation correlates well with the severity of 

cognitive and memory impairment.[10,184] 

In this study, scopolamine was found to significantly elevate 

AChE activity, an enzyme responsible for degradation of 

ACh, which is in tune with earlier reports. [102,118] This 

increase in AChE activity was significantly restored dose 

dependently by EA. These observations suggest the 

modulation of cholinergic neurotransmission and/or 

prevention of cholinergic neuronal loss. 

Recently, many studies have reported that memory 

impairments is associated to oxidative damage in the 

scopolamine-induced dementia in rats. [110-112] Moreover, 

many clinical studies have reported that oxidative stress is 

closely involved in the pathogenesis of AD. [13,185-188] 

Lipid peroxidation is an important indicator of 

neurodegenration of brain. Unlike other body membranes, 

neuronal membranes contain a very high percentage of long 

chain polyunsaturated fatty acids because they are used to 

construct complex structures needed for high rates of signal 

transfer. ROS are generated continuously in nervous tissues 

during normal metabolism and neuronal activity. The brain is 

subjected to free radical induced lipid peroxidation because it 

uses one-third of the inspired oxygen.[189,190]Lipids and 

proteins, the major structural and functional components of 

the cell membrane, are the target of oxidative modification 

by free radicals in neurodegenerative disorders. [191] 

Extensive evidence exists on lipid peroxidation and protein 

oxidation leading to loss of membrane integrity, an important 

factor in acceleration of aging and age-related 

neurodegenerative disorders. Oxidative stress has been 

implicated in the pathogenesis of AD in humans. [192-194] 

In the present study, scopolamine-injection in rats 

significantly induced peroxidation of lipids and proteins, and 

reduced antioxidant defense indicating increased oxidative 

stress. MDA is an end product of lipid peroxidation and is a 

measure of free radical generation and scopolamine injected 

rats showed extensive lipid peroxidation as evidenced by 

increase in MDA levels. In order to evaluate the effect of EA 

on lipid peroxidation in brain, MDA level was assessed. 

MDA level was remarkably increased by scopolamine and 

EA dose-dependently reduced MDA level, indicating the 

reduced peroxidation of lipids.     

Lipid peroxidation may enhance due to depletion of GSH 

content in the brain, which is often considered as the first line 

of defense of the cell by this endogenous antioxidant against 

oxidative stress. [191,195-197] Evidence has been presented that 

the neuronal defense against H2O2, which is the most toxic 

molecule to the brain, is mediated primarily by the 

glutathione system. [198-200] GSH is a tri-peptide, an 

endogenous antioxidant found in all animal cells in variable 

amounts and is a very accurate indicator of oxidative stress. 

[197]Consistent with previous studies, in present study, 

scopolamine treatment significantly decreased the GSH 

levels. Further, co-administration of EA markedly improved 

GSH levels. 

The most important antioxidant enzymes are SOD and 

catalase. SOD plays a key role in detoxifying superoxide 

anions, which otherwise damages the cell membranes and 

macromolecules. Scopolamine administration showed a 

significant reduction in enzymatic activity of SOD and 

catalase. On the other side, Catalase has the capability to 

detoxify H2O2 radicals. Release of H2O2 promotes the 

formation of numerous other oxidant species that greatly 

contributes for oxidative stress leading to the pathogenesis of 

AD. [189,201] Scopolamine treatment was found to be 

decreased SOD and catalase activities. Treatment of rats with 

EA significantly preserved the activities of SOD and 

catalase.  

It has been well documented that persistent administration of 

scopolamine in response to degradation of ACh and increase 

the level of AChE enzyme, further responsible for the 

production of oxidative stress and pro-inflammatory 

mediators viz., cytokines and further activation of these 

cells.
[99,110-112] A strong and long lasting administration of 

scopolamine has been demonstrated to cause cholinergic 

dysfunction while inhibition of this scopolamine mediated 

abnormalities has shown to reverse cholinergic dysfunction 

as well as inhibit the release of oxidative and inflammatory 

markers. [99,103,112] The results of the present study suggest 

that chronic administration of EA perse did not have any 

significant effect on cognitive performance in normal 

animals. But, EA treatment groups at the dose of 25 & 50 

mg/kg, p.o. showed marked improvement in cognitive tasks 

when compared to scopolamine treated rats suggesting the 

significant role of ACh in long lasting administrated 

scopolamine mediated cognitive dysfunction. Reports also 

support that ACh is involved in memory acquisition and 

retention. [10,155,202,203]Moreover, scopolamine injection 

drastically impaired memory retention, resembling 

Alzheimer's dementia. [103,112]The same has been reported to 

be attenuated by pretreatment with herbal supplements and 

extracts, and phytochemicals. [156-158,160] 

The presented data in this study also suggests that EA 

possesses potent antioxidant activity by scavenging ROS and 

exerting a neuro-protective effect against oxidative damage 

induced by long term administration of scopolamine(Fig. 

12). Predominant role of AChE inhibition, antioxidant 

activity reveal an important contributory factor to the 
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beneficial effects of EA against dementia. Higher dose of 

Ellagic acid i.e. 50 mg/kg, p.o. was found more 

neuroprotective in all behavioral and biochemical 

evaluations. At lastly, the neuroprotective effects of EA 

might result from the regulation of AChE and the anti-

oxidative defense system. These results suggest that EA can 

be used as a constructive herbal drug to impede cholinergic 

dysfunctions and oxidative stress in AD. 

 
Fig. 12. Neuroprotective action of Ellagic Acid via modulating various signaling pathways involved in the progression of Alzheimer’s Disease. 

5. Conclusion 

It was concluded that long term injected scopolamine could 

persuade Alzheimer’s type dementia via increase AChE 

levels and oxidative stress like bio-markers. Scopolamine 

mediated Alzheimer’s type dementia is mainly associated 

with cognitive and memory impairments in behavioral 

models like elevated plus maze and morris water maze. 

Ellagic acid diminished the acetylcholinesterase level and 

improves the anti-oxidant defense system. Further, Ellagic 

acid downturned the cognitive impairments induced by 

scopolamine. Like Donepezil, Ellagic acid reversed the 

scopolamine induced Alzheimer’s type dementia in rats. 

Therefore, Ellagic Acid can be used as an effectual herbal 

treatment to prevent cholinergic dysfunctions and oxidative 

stress associated with Alzheimer’s type dementia. 

On the basis of this study, the major bio-markers of 

Alzheimer’s disease like amyloid beta, inflammatory 

cytokines and histopathological changes can be further 

evaluated according to current protocol schedule to confirm 

and justify the strong evidence of Ellagic acid in long term 

injected scopolamine mediated dementia.  
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