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Abstract 

The present paper introduces a numerical modeling for one of the most important problems of two-phase flows; namely the 

breakup mechanism of stretched liquid ligaments. The challenge problem of such complex flow is how to deal with the 

breakup of liquid ligaments in natural way without any constraints or numerical instability. The present modeling is based on 

solving the governing equations of motion in the liquid phase by the aid of the control volume strategy on a non-sta-ggered 

grid system. The level set function is further applied to track and capture the moving interface by using the normal velocity 

components located directly at the liquid interface. Some numerical test cases are performed to indicate the ability of the 

proposed numerical method in predicting the breakup mechanism of liquid ligaments. The obtained results showed that the 

developed numerical method is capable of simulating the formation and the breakup mechanism of the ligaments formed in 

two-phase flows without any numerical constraints. 

Keywords 

Breakup Mechanism, Liquid Ligaments, Level Set Method, Numerical Modeling, Two-Phase Flow Dynamics 

Received: May 20, 2015 / Accepted: June 6, 2015 / Published online: July 15, 2015 

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license. 

http://creativecommons.org/licenses/by-nc/4.0/ 

 

1. Introduction 

The separation and breakup of liquid ligaments are 

considered as the most challenging topic of the numerical 

simulation of two-phase flows [1]. That can be seen in 

numerous industrial and engineering applications, e.g., 

atomization and spray of liquid jet [2], bubble and droplet 

dynamics [3], and other multiphase flow systems [4]. 

Numerical simulations have recently become an important 

tool for predicting and understanding many engineering 

processes. The mean feature of such engineering processes is 

the moving interface between the two phases. This moving 

interface can be advected by the normal velocity components 

on the separating surface according to the existed interfacial 

boundary conditions. The advection process may be a linear 

or a nonlinear regime according to the included terms in the 

governing equations. In the nonlinear regimes, there is a few 

numbers of developed methods for solving the governing 

equations [5, 6] 

The most general methods for treating two-phase flows with 

moving interfaces are boundary integral formulations [7] and 

further applications in [8]. Many incompressible flow 

algorithms have been used to solve the two-phase flow 

problems accompanied by a suitable surface tracking method. 

As mentioned in [9], both of conventional conservative and 

high order conservative schemes can produce excessive 

numerical diffusion and oscillations which destroy the 

smoothness of the front. That can be seen in [10]. Another 

scheme is based on the projection method developed in [11], 

and it has been combined along with the level set to simulate 

two-phase flows, e.g. [12]. In conclusion, a truly general 

method is not yet available [13]. 
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A great challenge in the numerical simulations of unsteady 

motion of two-phase flows is how to predict the topological 

change of the interface because the motion is very sensitive 

to small numerical perturbations, such as merging and 

breaking of the interface. Many techniques have been used to 

deal with the propagation of the interface in two-phase flows. 

These techniques are based basically on two different 

approaches: the Lagrangian approach and the Eulerian 

approach see for more details [14-17]. 

Based on the Eulerian approach, another technique has been 

used in [9]. This technique is based on tracking the interface 

using a grid that moves through a stationary Eulerian grid. 

Here complication occurs when one needs to add or subtract 

points to the moving grid. The major limitation of this 

method is the treatment of interfaces that interact. Moreover, 

these problems are become important when solving a three 

dimensional problem. Another example for moving grid 

technique is used in [18]. In this technique the fluid is 

bounded by a height function varying with time along the 

fluid interface. This function determines the radial distance 

through evolution. This algorithm is limited to a case in 

which the interface does not overturn, see for more details 

[19]. 

Two types of methods are available and widely used; the 

Volume-Of-Fluid (VOF) methods [20, 21] and the Level Set 

methods [22]. These methods avoid explicitly tracking the 

interface, and consequently, avoiding many of the topological 

limitations. 

The level set method, unlike the VOF method, divides the 

solution domain containing the two phases into a region 

where a scalar quantity, say, is smaller or larger than a fixed 

value φ0. The value of the level set function φ is assigned to 

each grid point in the calculation domain, thereby 

determining whether it belongs to the liquid or the gas phase. 

The level set method is widely applied in two-phase flows 

applications, e.g. [25, 12] and more recently in [26-33]. 

2. Mathematical Formulations 

The governing equations for incompressible two-phase flow 

are mathematically expressed by the conservation equations 

of the mass and momentum at each point of the flow field. 

These equations can be written in the primitive variables 

formulation in form of continuity equation and Navier-Stokes 

equations, respectively, as follows: 

u 0
i

∇ ⋅ =                                           (1) 

              (2) 

Where ρ, u, p, µ are the density, velocity vector, pressure and 

viscosity of the fluid. The subscript i denotes the liquid phase 

(i=1) and the gas phase (i=2), respectively 

The coupling between the pressure and velocity field is made 

through the Poisson equation for pressure: 

                  (3) 

The Poisson equation is solved by the Successive Over-

Relaxation method in each phase to obtain the pressure in the 

considered phase. 

2.1. Computational Methodology 

The so-called implicit fractional step-non iterative method is 

applied in our present work by presuming that the velocity 

field reaches its final value in two stages; 

                                   (4) 

Whereby,  is an imperfect velocity field based on a 

guessed pressure field, and  is the correction velocity. The 

'starred' velocity will be obtained from solving of the 

momentum equations. After that, the solution of Poisson 

equation for the pressure: 

                             (5) 

where cp  will be called the pressure correction. 

The velocity correction is obtained according to: 

                                (6) 

This fractional step method described above ensures the 

proper velocity-pressure coupling for incompressible flow 

fields [32]. 

2.2. Level Set Method 

In absence of the interfacial mass transfer such as 

evaporation or condensation, the equation of the level set 

method can be written as: 

                             (7) 

And from the level set function, the normal vector and the 

interface curvature can be calculated as: 
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It should be pointed out that, the curvature of the interface is 

calculated only on the main grid points. However, the exact 

curvature should be calculated at the interfacial markers 

located on the intersection points of the computational grid 

with the interface. Consequently, the interpolation scheme 

applied for obtaining the fluid variables at the interface is 

also applied for calculating the interfacial curvature, for more 

details one can see [27] 

In another form of the level set method, where the normal 

velocity component is included, the level set equation 

becomes 

                               (9) 

By further manipulation, the normal velocity is replaced by 

the velocity field Fext known as the extension velocity, which 

at the zero level set, equals the given speed Vn. In other 

words, the level set equation can be written as:  

                            (10) 

Where, 

                               (11) 

The above equation is solved by using the second-order 

Runge-Kutta method and the overall domain is re-initialized 

each time step [27]. 

2.3. Interfacial Boundary Conditions 

The boundary conditions at the interface, or jump conditions, 

may be written in the following general form: 

                (12) 

Where I is the identity matrix, p is the pressure, µ is the 

dynamic viscosity, σ is the surface tension coefficient, and D 

is the rate of deformation tensor. The bracket means the jump 

of the stresses along the fluid interface Γ, the unit normal 

vector n is taken from fluid 2 to fluid 1, t∇ denotes the 

gradient in the local free surface coordinates, and t is an 

arbitrary vector perpendicular to the normal of the interface. 

The curvature of the interface κ is computed from the 

following equation: 

                                     (13) 

In contrast to the previous two-phase numerical methods, in 

which the interfacial jump conditions are embedded naturally 

on the momentum equations by applying CSF model [35], 

the jump conditions between the two fluids are treated here 

as a boundary conditions enforced explicitly at the interface 

Γ. 

The above interfacial boundary equation, Eq. (12) can be 

written in the normal and tangential directions, respectively:  

                        (14) 

                      (15) 

The kinematic conditions are satisfied by assuming the 

continuity of the normal velocity components, i.e. 

                                   (16) 

In addition to that, the liquid gas interface requires equality 

of dynamic stresses, especially shear stresses, on both sides 

of the interface, i.e. 

                                        (17) 

The system of the above equations and the prescribed 

boundary conditions should be solved simultaneously to 

determine the flow field in the two fluids. The normal 

velocity components are then used for the advection of the 

interface by solving the appropriate equation of the level set 

function. 

3. Results and Discussions 

The first test case performed using the above developed 

numerical method is the falling of a water droplet from a 

pipette with specified dimensions and with a constant initial 

velocity. The sequence of the pictures presented shows that 

the droplet is firstly formed from a nearly sinusoidal wave 

form initiated at the open side of the pipette. Under the effect 

of the initial velocity, the droplet is formed and a thin 

ligament is shown to connect the droplet with the liquid 

inside the pipette. At the last stages of the simulation the 

droplet detaches from the liquid surface and a single droplet 

moves under the gravity downward. 

 

Figure 1. A sequence of pictures of a drop of water falling from a pipette. 

From the above results, it can be shown that the formation of 

the ligament and the breakup of the single droplet are carried 

out in natural way without any numerical instabilities or 

constraints. 

The second performed test case shows the breakup 

mechanism of an elongated droplet with initial ellipsoid 
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shape under the surface tension effects only. The deformation 

of the droplet is started according to the nonlinear theory of 

droplet deformation. At later steps of the simulation, two 

satellite droplets and a mother droplet can be observed. As in 

the previous example, the breakup mechanism is carried out 

without any numerical problems. 

 

Figure 2. A sequence of breakup mechanism of an elongated drop under 

surface tension effects. 

4. Conclusions 

In the present paper, the numerical modeling of the formation 

of liquid ligament and the further breakup of the liquid 

droplet is carried out. The numerical method developed is 

based on solving the momentum equations coupled with the 

level set method. The obtained results showed a remarkable 

capability of the developed numerical method in predicting 

the formation and the further breakup of the ligaments and 

satellite droplets without any numerical constraints. This 

encourages us to further include a wide range of two-phase 

flow industrial and engineering applications.1 
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