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Abstract 

This paper presents a nonlinear evolution of gravity waves on the surface deep-water under the effects of viscosity and 

surfactant in terms of their space and time evolution, that is, their motion and also in terms of mechanical transformations that 

these systems may suffer in their dealings with other systems. We give a formal derivation of evolution equations, obtained 

from the modified nonlinear Schrödinger equation, for viscous capillary-gravity waves with surfactants in water of infinite 

depth. To fully simulate the non-linear evolution of the wave train in the presence of viscosity and surfactant, a new numerical 

model, based on the Bogning-Djeumen Tchaho-Kofane method (BDKm) and the Peregrine model, is developed. On the basis 

of these different approaches, the role of viscosity and surfactant on gravity waves in water of infinite depth is analyzed. The 

results show the effect of viscosity and surfactants on the nonlinear evolution of gravity waves on the surface deep-water. 

Naturally, they affect the remote images strongly in radar and lidar remote sensing of the sea surface. 
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1. Introduction 

Descriptions of gravity waves on the sea surface for a short 

time have been considered as a part of marine folklore for a 

long time. A number of instrumental registrations have 

appeared recently making the community to pay more 

attention to this problem and to reconsider known 

observations of this gravity waves. However, when a layer of 

contaminant (surfactant) is present on the free surface, its 

concentration varies with the motion of the free surface, 

causing so a surface-tension gradient that must be balanced 

by a non-zero surface shear stress [1-3]. Moreover, the 

comprehension and prediction of the physical processes 

responsible of this phenomenon are not completely 

understood. Generally, mathematical models offer more 

formidable opportunities for understanding real phenomena 

whose physics is, at the current level of our knowledge, 

difficult to obtain. A mathematical model based on modified 

nonlinear Schrödinger equation coupled with assumptions 

derived from the literature on the nature to incorporate the 

effects of viscosity and surfactant of these waves is 

developed. In this work, we use a new method of 

construction of soliton solutions of modified nonlinear 

Schrödinger equation, named Bogning-Djeumen Tchaho-

Kofané method (BDKm) [4-6] and Peregrine model [7, 8], to 

numerically simulate the equations that model the impact of 

viscosity and surfactant. The work presented in this paper is 

structured as follows: In Section 2, we describe the BDKm to 



51 Augustin Daïka and Cesar Mbané Biouélé:  Nonlinear Evolution of Gravity Waves on the Surface  

Deep-water Under the Action of Viscosity and Surfactant 

seek wave solutions of nonlinear evolution equations. In 

Section 3, we implement nonlinear evolution equation for the 

capillary-gravity wave with viscosity and surfactant. In 

section 4, we illustrate the methods in detail with the 

modified non-linear Schrodinger equation in deep water for 

the capillary-gravity wave with viscosity and surfactant. In 

Section 5, we investigate numerically nonlinear evolution 

equation for the capllary-gravity wave with viscosity and 

surfactant in water of infinite depth. In section 6, some 

conclusions are given. 

2. Description of  
Bogning-Djeumen  

Tchaho-Kofane Method 

This method has been adopted to facilitate the resolution of 

certain type of nonlinear partial differential equations where 

the nonlinear terms and dispersive terms coexist and intends 

to look for the solutions of certain categories of nonlinear 

partial differential equations on the form: 
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Where iγ , ib , ic  and id are the constants; i , j , l , mand n  

the positive integer; f  a linear arbitrary function of u  and 

2
u . u  the function unknown to be determine and 

2
u the 

magnitude of u . 

Hence, considering equation (1), we propose to construct the 

solution under the form: 

( )
( )

sinh

cosh

i

ij j
ij

x
u a

x

α
α

=∑                                (2) 

Where α is a fixed constant and 
ij

a  the coefficients to 

determined. 

We introduce equation (2) into (1) and we obtain the form: 
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where ( )ij
F a , ( )ij

G a , ( )ij
H a , ( )ij

T a  and ( )ij
W a are 

functions of the coefficients 
ij

a . 

Here the importance or priority makes reference to the range 

that permits to obtain good results or merely that which tends 

more to the exact value. Obtaining the coefficients through 

equation (3) boils down to solving the coefficient equation as 

follows: 
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The ranges ( )ij
W a  is considered now as the one that brings 

no reliable information. It is important to mention that this 

method appears complicated in the case where the properties 

of transformations of hyperbolic functions are not mastered. 

A mastery of these transformations reduces the difficulties 

considerably as regard to the calculations. 

It should be noted that the best solution depends on the shape 

of solution considered from the onset, the symmetry of the 

equation to solve as well as from its nonlinearity degree. In 

these conditions, one moves directly to the equations of 

lower powers until the good equation to solve is obtained. 

3. Implementation of Equation 
for the Capillary-gravity 

Wave with Viscosity and 
Surfactant 

Under the effects of gravity and dissipation, the wave moves 

through successive deformations of its surface. This situation 

is perfectly described by the modified Nonlinear Schrödinger 

Equation which can be obtained from the fully nonlinear 

potential theory by using the multi- scales method [9]. To 

investigate both viscosity and surfactants effects on the 

capillary-gravity wave, we have used the amplitude equation 

given by [10]: 

2
0ia Pa Q a a Raτ ζζ+ + − =                 (8) 

Where 
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g
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a is the wave envelope, p, q and r are three coefficients that 

depend on the weber number κ  and the surface tension 

coefficient T, of the carrier wave. λ  is a proportionality 

constant. θ  is an angle to the wave direction and the 

transformation. 

The free-surface elevation ( ), ,x y tη  is given by the relation: 

( ) ( ) ( )( )0 0, , , , expx y t a x y t i k x k tη ω = −
 

r
       (9) 

This equation (8) called the modified nonlinear Schrodinger 

equation which can be obtained from the fully nonlinear 

potential theory. The just mentioned numerical results are all 

based on the amplitude equation for the capillary-gravity 

wave with viscosity and surfactant. 

The dissipation term proportional to a in (8) is attributed to 

the surfactant, whereas for a clean surface the dissipation is 

of higher order, as shown in the previous section where 

different scaling was required. Therefore, if either λ  or κ  is 

zero, the dissipation term in (8) is absent, and we recover the 

amplitude equation for capillary-gravity waves in inviscid 

flow. The linear term of (8) has a complex coefficient; the 

imaginary part is related to the decay rate, and the real part 

corresponds to a frequency change due to the surfactant. This 

last is characterized by a surface-dilatational modulus, which 

measures the resistance to the compression/expansion type of 

surface deformation. Changes in surfactant concentration 

cause the surface tension to vary in time and space. The flow 

is caused by initial surface disturbances with small but finite 

amplitude, and is irrotational everywhere except in the 

boundary layer beneath the free surface, since the viscosity is 

considered to be small. 

When the surfactant is insoluble and non-diffusive, the mass 

in a surface material element is conserved. 

4. Illustration of Methods 

4.1. Solitary Wave Solutions in the BDK 

Method for the Capillary-gravity Wave 
with Viscosity and Surfactant 

We obtain an exact analytical solution of equation (8) for the 

capillary-gravity wave with viscosity and surfactant: 
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4.2. Homoclinic Solution for the  

Capillary-gravity Wave with Viscosity 
and Surfactant 

We define the nonlinear solution of the amplitude under the 

analytical shape given as follows: 
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                                 (11) 

Where ( ),ς τΓ  and ( ),ς τΛ  are both arbitrary functions we 

assume that ( ),ς τΛ  is real function. 

The substitution of this relation (11) in (8), we obtain finally 

the exact analytical solution of the equation for the capillary-

gravity wave with viscosity and surfactant in a homoclinic 

orbit to the fixed point: 
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With ( )0

2
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Q
a

P
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Where β  is an arbitrary constant and γ is an arbitrary phase. 

4.3. Peregrine Solution of the NLS Equation 

for the Capillary-gravity Wave with 
Viscosity and Surfactant 

This peregrine solution has the peculiarity of being not 
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periodic in time and in space. It has been recently reproduced 

experimentally in wave tank laboratories [11], in optical 

fibers [1] and in plasmas [12]. 

The exact analytical solution of the equation (8) for the 

capillary-gravity wave with viscosity and surfactant in a 

Peregrine breather type is given by: 
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5. Numerical Investigation and 
Discussion 

The main objective of this section is to confirm the 

correctness of the analytical approach used in section 4. 

Despite the relevant phenomena describe by these 

solutions, they were obtained after some approximations 

and assumptions (or inputs). Thus, a set of numerical 

experiment is done in order to check the analytical 

solutions obtained from the modified nonlinear 

Schrodinger equation (8) by verifying the analytical 

predictions; checking the validity of the analytical 

solutions by comparing them with direct numerical 

integrations of the original equation of motion such that 

Euler and Navier-Stokes equations allowing a 

mathematical formulation of the gravity wave motion. The 

abovementioned numerical experiments are done because 

an analytical solution leads to wrong results if the initial 

condition used in the numerical integration is not close to 

the exact solution. 

The upsurges of gravity wave on the sea surface are due to 

complex physical mechanisms. Figures presented in this 

manuscript provide evidence of surfactants and viscosity 

effects on a wave’s packets propagating in deep water. 

Figures 1 (a)-(c), give a 3D representation of surface 

elevation as a function of space and time of the equation 

(10). In figure 1, the effects of viscosity ( λ ) and 

surfactant (T) are examined with the Weber number 

2κ = : a – T = 0,02; 0,25λ = ; b- T = 0,02; 0,125λ =  

and c- T = 0,1; 0,25λ = . One can see exactly the green 

color representing a calm ocean surface, gradually gains 

space. 

Figures 2 (a)-(b) give the Simulations of geometry of oceans’ 

surface wave with the presence of viscosity and surfactant 

shown on Figure 1: a- T = 0,1; 0,5λ =  and b- T = 0,1; 1λ = . 

According to these figures, oceans’ surface wave influence 

by the viscosity and surfactant. 

Figures 3 (a)-(b) describe Evolution of oceans’ surface wave 

in presence of viscosity and surfactant in the homoclinic orbit 

model: a – T = 0,1; 0,125λ =  and b- T = 0,3; 0,125λ = . 

The simulations of geometry of oceans’ surface wave with 

the presence of viscosity and surfactant shown on Figure 3b 

is represented in the figure 4. In the Figures 5 (a)-(b), we see 

the evolution of the slowly varying Water elevation with 

small viscosity: a – T = 0,1; 0,125λ =  and b- T = 1; 

0,125λ = . Here, the 3D-representations of Peregrine model 

is simulated with 2κ = . 

6. Conclusion 

In this manuscript, the modified nonlinear Schrodinger 

equation has been used in a formal derivation of evolution 

equations for nonlinear viscous water waves. The fully 

nonlinear evolution of the wave packet in the presence of 

viscosity and surfactant was resolved using the BDKm and 

Peregrine model. This research work is an important tool for 

acquiring information on the scientifically conceivable 

reasons for the data acquisition in radar and lidar remote 

sensing of the sea surface and surfactants affects these remote 

images strongly. According to pertinent results obtained of 

this study, viscosity and surfactant determine the validity of 

the linear dissipation terms added to the amplitude equations 

of studies. Adding an insoluble surfactant with a linear 

dependence of surface-tension coefficient on concentration 

again allows only linear dissipation, consistent with many 

experimental observations. Soluble or diffusive surfactants 

generally exhibit smaller surface dilatational modulus, but we 

have determined that these modifications would also have 

dissipative terms. 
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Figure 1. Evolution of Water elevation under the effects of viscosity and surfactant: a – T = 0,02; 0,25λ = ; b- T = 0,02; 0,125λ =  and c- T = 0,1; 0,25λ = . 
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Figure 2. Simulations of geometry of oceans’ surface wave with the presence of viscosity and surfactant shown on Figure 1: a- T = 0,1; 0,5λ =  and b- T = 

0,1; 1λ = . 

 

 

Figure 3. Evolution of Water elevation under the effects of viscosity and surfactant ((3D-representations of homoclinic orbit model): a – T = 0,1; 0,125λ =  

and b- T = 0,3; 0,125λ = . 

 

Figure 4. Simulations of geometry of oceans’ surface wave with the presence of viscosity and surfactant shown on Figure 3b. 
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Figure 5. Evolution of Water elevation under the effects of viscosity and surfactant ((3D-representations of Peregrine model): a – T = 0,1; 0,125λ =  and b- T 

= 1; 0,125λ = . 
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