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Abstract 

Modeling the contaminant transport process in soils requires the solute transport parameters. Displacement experiments were 
carried out on soil columns (Sand – Silt – Clay) by injecting a solution of 0.8 M KCl in a steady state. Breakthrough curves are 
symmetrical, characteristics of an equilibrium solute transport. The hydrodynamic dispersion coefficients were estimated by 
optimizing the measured breakthrough curves with the analytical solution of the advection-dispersion equation (EAD) by the 
software CXTFIT. The validations of the results were performed by a direct simulation with Hydrus-1D model. The estimation 
results were assessed by calculating the mean square error RMSE, the average geometric error GMER and the non-parametric 
Mann-Whitney test. Statistical analysis showed the success of the used method to estimate the solute transport parameters of 
the studied soils. 
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1. Introduction 

Over the past few decades, the characterization of the solute 
transport parameters in the unsaturated zone has been the 
center of interest of researchers in environmental sciences. 
These parameters play a major role in the transport of 
contaminants in the soil. However, the characterization of 
water flow and solute transport in the soil is a complex 
operation that requires the coupling of mechanistic models 
with appropriate data of water content and solutes 
concentration variations (Álvarez-benedí and Munoz-
carpena, 2005). 

The mechanistic model describes the process of solute 
transport in the using the advection-dispersion equation 
(EAD). It in the case of a non-reactive transport, the transport 
parameters are the coefficient of hydrodynamic dispersion 
and the coefficient of molecular diffusion. In the absence of a 
slow water flow in the unsaturated soil, the coefficient of 

molecular dispersion can be neglected and the transport 
parameters are reduced to the coefficient of hydrodynamic 
dispersion. The estimation of this coefficient is quite difficult 
since there are no direct methods of measurement. In fact, 
indirect methods are used for the determination of this 
coefficient. In the most cases, these methods are experiments 
of solute displacement through soil columns in the 
laboratory. The dimensions of the soil columns mentioned in 
the literature vary between a few centimeters to 100 cm in 
diameter, and from 10 cm to over 3 m in height 
(Vanderborght and Vereecken, 2007). This gives an idea on 
the large number of experimental situations which can be 
covered from situations close to the laboratory scale to other 
more related to field scenarios. Several types of solute have 
been used like miscible substances, isotopic tracers and 
chemical tracers. These latter are the most easy to 
characterize, as the measurement of the electrical 
conductivity for the potassium chloride (KCl) by Mallants et 
al. (1994) and Goncalves et al. (2001). 
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The characterization of the solute concentration as a function 
of time is called the breakthrough curve which corresponds 
to an analytical solution of the advection-dispersion equation 
in the appropriate boundary conditions. By adopting an 
inverse solution of the EAD equation, the dispersion 
coefficient is thus estimated. The available analytical tools 
for the interpretation of the breakthrough curves are few in 
number. The main codes are: the software CATTI (Sauty et 
al., 1992), TRACI95 (Käss, 1998), QTRACER2 (Field, 
2002), specialized in the karstic areas and CXTFIT (Torrid et 
al., 1999) available via the program STANMOD (Šimůnek et 
al., 1999), built for the laboratory experiments. These 
software programs have been developed with the operating 
systems MS-DOS (Li et al., 1999; Tang et al., 2010) which 
explains that some of them are no longer compatible with the 
latest operating systems such as Windows except in the case 
of CXTFIT (Torrid et al., 1999) and STANMOD (Šimůnek et 
al., 1999).  

The objective of this paper is the characterization of chemical 
tracer (KCl) migration through a soil column and using the 
software CXTFIT 2.1 to adjust experimental data on 
analytical solutions of the EAD. The expected results will 
enable the estimation of the dispersion in unsaturated soils.  

2. Transport Problem 

The classical one-dimensional ADE for equilibrium transport 
during steady state in a homogeneous soil is given by: 
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where z and t denote depth (L) and time (T), C is the solute 
concentration (ML-3), D is the dispersion coefficient (L2T-1), 

v is the average pore-water velocity (note that v = Jw/θ with 

Jw as the Darcy or volumetric water flux density (LT-1) and θ 
as the volumetric water content), and R is a retardation factor 
to describe the effect of linear equilibrium adsorption on 
transport. The latter factor is defined by: 
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in which ρ  is the soil bulk density (ML-3) and Kd is the 

distribution coefficient quantifying the relative amounts of 
solute in the liquid and solid phases (M-1L3). 
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Equation (3) admits analytical solutions for known initial and 
boundary conditions (van Genuchten and Parker, 1984; Leij 
et al., 1993).  

For the case of a solute injection by pulse with a duration τ 
and using the following initial and boundary conditions 
(Parker and van Genuchten, 1984; Leij et al., 1993): 
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the solution is (Parker et van Genuchten, 1984): 
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3. Materials and Methods 

3.1. Soil Column Preparation 

Three soils presented in Table 1 were sampled from a land 
parcel (35°15’47.58’’N; 10°4’17.16’’E in the village of 
Bouhajla (Central Tunisia). The soil samples were crushed 
and then placed in small clear plastic column (5.5 cm 
diameter / 10 cm long). Vertical soil columns were saturated 
slowly from the top (Figure 1). Steady-state flow conditions 
were established by maintaining a 3 cm layer of solute-free 
water on top of the soil. Subsequently, the water supply was 
interrupted. Immediately after all ponded water had 
infiltrated, a 50 ml pulse of a 0.8M KCl solution was applied. 
The initial time for the breakthrough curve (T = 0 in the 
initial condition) was determined by the moment when the 
solution was first spread uniformly over the soil surface. As 
soon as all the applied solution infiltrated the soil, solute-free 
water was again added to the soil surface to establish a 3 cm 
water level on top of the sample. Effluent samples of 
approximately 100 cm3 were collected. The Cl- concentration 
of the effluent samples was determined potentiometrically. 
For all 3 soils a chloride breakthrough curves BTC was 
obtained with the dimensionless concentration leached 
through the soil column as a function of time. 



 American Journal of Geophysics, Geochemistry and Geosystems Vol. 1, No. 4, 2015, pp. 149-154 151 
 

 
Figure 1. Schematic diagram of soil column experiment. 

Table 1. Soil particle size analysis of the three soils. 

Soil Clay (g kg-1) Silt (g kg-1) Sand (g kg-1) Texture (USDA*) 

1 9.5 4.5 85 Sand 
2 12.5 30.5 57 Silt 
3 35 5 60 Clay 

* Scheme: United States Dept. of Agriculture 

3.2. Parameters Estimation 

Transport parameters were then obtained with the non-linear 
parameter estimation code CXTFIT 2.1 of Toride et al. 
(1999) by fitting solutions of the CDE to observed 
breakthrough data. The software is based on the least squares 
method for the parameters optimization. The retardation 
factor (R) occurs only for reactive solutes. For non-reactive 
(ideal tracer), R is equal to 1. The only parameter of this 

equation is then to determine the dispersivity (λ). 
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3.3. Direct Simulation with Hydrus-1D 

The Hydrus-1d model (Šimůnek et al., 2005) simulates one-
dimensional water flow and solute transport in 
incompressible, porous, variably saturated media, in steady 
or transient regime, for a known metric system and various 
time steps. Hydrus-1d solves a modified version of the 
Richards (1931) equation in order to complete water 
movement modeling and the EDA equation for solute 
transport. KCl displacement experiment in a steady 
hydrodynamic regime have been the subject of a direct 
numerical simulation using the Hydrus-1D model in order to 

validate the estimated values of dispersivity. The water 
content values for each soil type: sand, silt and clay are, 
respectively, 0.253, 0.394 and 0.411 cm3.cm-3. Table 2 
summarizes the geometric information of the domain, the 
hydrodynamic parameters and boundary conditions used as 
model input parameters for the three soils. Solute transport 
parameters are specified in the results section. 

Table 2. Hydrus-1D Input Parameters. 

Parameters Values 

Domain information 
Length 10 cm 
Layer 1 
Observation nods  1 at 10 cm 
Times Information 
 Sand Silt Clay 
Duration 110 mn 100 mn 400 mn 
Output data  1 at the end of each simulation  
Hydrodynamic Properties  
 Sand Silt Clay 
θr (cm3.cm-3) 0.01678 0.0093 0.07620 
θs (cm3.cm-3) 0.25305 0.39429 0.69635 
α (cm-1) 0.0104 0.00854 0.00774 
n (-) 2.62368 1.71022 1.39895 
Ks  (cm. j-1) 129.67 62.98 15.04 
Boundary Conditions  
Water Flow  
Upper Constant Water Content  
Lower  Neumann 
Solute Transport  
Upper   Dirichlet 
Lower Neumann 

3.4. Statistical Analysis 

To evaluate the measured dispersivities values by the 
proposed laboratory method, two statistical parameters were 
used: the root mean square error (RMSE) and the geometric 
mean error ratio (GMER). These statistical parameters are 
calculated as follows: 
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where iL  is the value measured by the laboratory method, 

iP  is the value of the direct simulation and j  is the number 

of observations. The RMSE and the GMER equal to 0 and to 
1, respectively, correspond to an exact match between 
observed and fitted data. The GMER value less or greater to 
1 indicates that the corresponding model underestimates or 
overestimates fitted data. The smaller (closer to 0) the RMSE 
value was, the better the model was. 
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Statistical processing was achieved by the STATISTICA 
software, Version 5 (Statsoft France, 1997). The Non-
parametric Mann-Whitney test was also performed at the 
significant level of 0.05 (test is significant at p < 0.05) to find 
out whether there is a significant difference between the 
proposed method and direct simulation with Hydrus-1D or 
not. 

4. Results and Discussion 

4.1. Breakthrough Curves of the Three Soils 

The measured breakthrough curves by the displacement 
experiments, the breakthrough curves adjusted by CXTFIT 
and simulated curves with Hydrus-1D are shown in Figure 2 
for all three types of soil. The obtained curves are regular and 
symmetrical. They therefore exhibit typical solute transport 
properties in soils without an immobile phase that could 
affect the migration of the solutes (Goncalves et al., 2001). 

The three breakthrough curves present the same behavior. 
The peak of concentration (C/C0) appears to 0.5 for clay soil, 
0.8 for sandy soil and 0.98 for the silty soil. Within three 
breakthrough curves, there is coherence between the ascent 
and descent with different times. Nevertheless, there is a 
slight difference of the rise in the clay soil which can be 
explained by the soil enrichment by small particles that retain 
the solutes and slows down their movement. 

The estimation procedure with CXTFIT was used to estimate 
the values of the transport parameters of the advection-
dispersion model. The results of these calculations are 
presented in Table 3. 

A good agreement was found between the measured values 
and those which are adjusted by CXTFIT. The values of the 
correlation coefficient vary between 0.83 and 0.89. GMER 
values are less than 1 which means that the used laboratory 
method has a tendency to underestimate the breakthrough 
curve compared to direct simulation by Hydrus-1D (Table 4). 
The calculated values of the Mann-Whitney test of the three 
soils: sand, silt and clay, respectively, 0.465, 0.517 and 0.758 
are above 0.05. Therefore, there is no significant difference 
between the estimation of solute transport parameters and 
numerical simulation. 

The obtained results are confirmed in the literature. In fact, 
according to studies conducted in the laboratory to estimate 
dispersivity, Wierenga and Van Genuchten (1989) and Costa 
and Prunty (2006), suggested in unsaturated soils, it depends 
on the traveled distance. Bycons, Khan and Jury (1990) and 
Kasteel et al. (2009), found no clear relationship between the 
dispersivity and the measurement range. Referring to this 
work, the dispersivity values found at sandy loam soil in 
unsaturated conditions vary between 1 and 5 cm. These 

results are also confirmed by Vanderborght and Vereecken 
(2007) in their literature review that encompassed most 
dispersivities values according to soil texture and scale 
experiments 

 

 

 

Figure 2. Measured breakthrough curves by the displacement experiments, 
the breakthrough curves adjusted by CXTFIT and simulated curves with 

Hydrus-1D. 
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Table 3. Estimated solute transport parameters for the three soils. 

Soil ν (cm.min-1) D (cm².min-1) R² θ (cm3.cm-3) Jw (cm.min-1) λ (cm) 

Sand 17.00 10.96 0.82 0.12 2.04 2.64 

Silt 16.16 07.18 0.89 0.25 4.04 0.44 

Clay 23.3 53.98 0.87 0.35 8.16 0.81 

 

Table 4. RMSE and GMER values of the three soils. 

Soil RMSE GMER 

Sand 0.023 0.90 

Silt 0.024 0.89 

Clay 0.027 0.79 

4.2. Relationship Between Dispersivity and 

Water Content 

 Several authors have attempted to find theoretical models to 

calculate the relationship between λ and θ for unsaturated 
soils in the laboratory (Yasuda, 1996; Padilla et al., 1999; 
Young et al., 2000; Nützmann et al., 2002; Toride et al., 
2003; Costa and Prunty, 2006).  

In our case and according to similar experiments under 
different water content state, the relation is (Figure 3): 

2,10.03.λ θ −= ; R² = 0.9                          (9) 

The dispersivity decreases as the water content increases. 
Indeed, the measured moisture content is very close to the 
saturation conditions (Figure 3). Similar relationships were 
found by Smet and Wierenga (1984), Maraqa et al. (1997) 
and Padilla et al. (1999). However, it should be noted that the 
dispersivity can be totally independent of the water content 
as it was suggested by Yule and Gardner (1978) and Costa 
and Prunty (2006). 

 
Figure 3. Relationship between dispersivity and water content. 

5. Conclusion 

Solute displacement experiments were carried out on three 
types of soils by applying a 0.8 M of KCl pulse. The 
breakthrough curves were symmetric characteristic for 
equilibrium transport in unsaturated soils. It allowed the 
estimation of solute transport parameters the relationship 
between dispersivity and water content. These data are 
essential for a possible modeling of water and solute 
dynamics in field conditions. 
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