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Abstract 

As the most important indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect 

chain. The present study aims to investigate the characteristics of phytoplankton dynamics using an ecological model of 

BLOOM II (one module of the Delft3D suite), and to give insight in the predictions with an integration of uncertainty analysis. 

The comparisons of the model output and the observations demonstrate that the BLOOM II model is able to reproduce the 

reliable levels of the phytoplankton biomass (in terms of chlorophyll a) and the associated environmental variables (nutrients 

and suspended matter). Compared with nitrogen, phosphorus is less sensitive to the phytoplankton biomass. The Gamma 

distribution can fit with the values of the phytoplankton biomass regardless of the observations, the model output in the surface 

layer, and the depth-averaged values. Pay particular attention to the depth-averaged chlorophyll a, the model output varies 

from 4.80 mg m
-3

 to 17.33 mg m
-3

. With respect to uncertainty arising from the model itself, the prediction with uncertainty 

analysis ranges from 8.00 mg m
-3

 to 15.27 mg m
-3

 within the 95% confidence interval, with a Monte Carlo error of 0.03 mg m
-3

. 
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1. Introduction 

The coastal ecosystem is facing a big challenge caused by the 

effects of anthropogenic activities and coastal development 

(Conley et al., 2002; Andersen, 2006). As the indicator of the 

coastal ecosystem, phytoplankton plays an important role in 

the whole impact-effect chain and is responsible for most of 

primary production. The investigation of phytoplankton 

dynamics has provided useful insights and a better 

understanding of the coastal ecosystem. 

Phytoplankton dynamics (i.e. growth, loss, grazing, biomass, 

bloom) causes changes with the characteristics of the 

environmental variables in the water column (Pedersen and 

Borum, 1996; Mei et al., 2002; Recknagel et al., 2006; 

Taylor and Ferrari, 2011). The associated environmental 

variables are divided into three categories: physical condition, 

chemical condition and biological condition. Take the 

physical condition as an example to illustrate the relations 

with phytoplankton dynamics: temperature and light intensity 

are closely linked with the phytoplankton growth (Eppley, 

1972; Smith, 1980; Geider et al., 1997, 1998; Ornolfsdottir et 

al., 2004); a change of salinity has an effect on the 

phytoplankton community (Schmidt, 1999; Lionard et al., 

2005); wind stress and tidal currents affect the turbulent 

mixing rate, determining the vertical distributions of the 

phytoplankton biomass (Serra et al., 2007; Wong et al., 2007; 

Woernle et al., 2014) and affecting the species composition 

due to the effects on the availability of light intensity and 
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nutrients (Ferris and Christian, 1991); suspended matter 

absorbs and scatters light intensity, implying that the 

phytoplankton is limited by light availability in the high 

turbidity zone (Allen et al., 2002). Of all the environmental 

factors, phytoplankton dynamics is mainly refined by the 

limitations of light and nutrient availability (Cloern, 1987; 

Eilers and Peeters, 1988; Boyer et al., 2009; Swart et al., 

2009). 

However, measuring in situ properties of the phytoplankton 

is a time consuming and expensive task. As such, the 

mathematical models become useful tools to perform the 

investigation based on the limited number of observations. 

Evans and Parslow (1985) present a model to explain the 

annual cycle of the phytoplankton population. Steele and 

Henderson (1992) elucidate that the plankton models depend 

on both the form of the mortality closure and the parameter 

estimation. Skogen et al. (1995) use a coupled three-

dimensional physical-chemical-biological ocean model to 

study the primary production. Los and Wijsman (2007), Los 

et al. (2008), Los (2009), Blauw et al. (2009), and Niu et al. 

(2015) develop the ecological model of BLOOM II/GEM to 

investigate the phytoplankton processes in coastal waters. 

In this study, the BLOOM II model (one module of the 

Delft3D suite) is introduced to investigate the phytoplankton 

variability at the Frisian Inlet located in the north of the 

Netherlands (figure 1), Lauwersoog and Huibertgat as the 

proxies to explain the phytoplankton variability. With the 

well-known simplification of the model, the predictions over 

a certain area and a certain time have a large uncertainty. 

Stressing the uncertainty arising from the model, the 

Bayesian Markov Chain Monte Carlo (BMCMC) simulation 

is approached to give insight in the model output with 

uncertainty analysis within the 95% confidence interval. 

 

Figure 1. Location map of the Frisian Inlet and surrounding water zones, A: Lauwersoog station, B: Huibertgat station. 

2. Methodology and Materials 

2.1. Data Information 

The water environment in this area is favourable for the 

phytoplankton (Van Beusekom et al., 2012). Seven variables 

(chlorophyll a, Chla , mg m
-3

; nitrate, 
3

NO , mg l
-1

; 

ammonium, 
4

NH , mg l
-1

; phosphorus, 
4

PO , mg l
-1

; silicate, 

Si , mg l
-1

; suspended matter, 1IM , mg l
-1

; salinity, PSU) 

over the year of 2009, measured either biweekly or monthly, 

are collected from the main database of DONAR (accessible 

through http://www.eea.europa.eu/data-and-

maps/data/external/donar-historical-water-measurement-

data ). Another three variables of light intensity ( I , W m
-2

), 

water temperature ( T , 
0
C) and wind profile (speed: m s

-1
, 

direction: degree), measured daily, are collected from the 

KNMI database (accessible through www.knmi.nl). Note that 

the variables of I , T , and wind profile are set as domain 

parameters, while the others are site-specific. Various studies 

have completely accepted that chlorophyll a can be a reliable 

estimate of the phytoplankton biomass (Voros and Padisak, 

1991; Scharler and Baird, 2003; Boyer, et al., 2009), which is 

also the focus in this study.  

2.2. BLOOM II Model 

The BLOOM II model has been well applied in the Dutch 

coast, the Wadden Sea, and the North Sea (Blauw and Los, 

2004; Los et al., 2008; Blauw et al., 2009; Los, 2009; Niu et 

al., 2015). As one module of the Delft3D suite, the BLOOM 

II model can simulate the phytoplankton processes, the 

nutrient cycling, and the transport of the substances. This 

model can be applied in any water systems. The detailed 

information of the BLOOM II model can be found after Los 
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(2009). The main governing equation can be explained by the 

advection-diffusion equation, written as: 

2 2 2

2 2 2

( )

( )

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

∂ ∂ ∂= + + +
∂ ∂ ∂

x y z s

h z

C C C C
u u u u

t x y z

C C C
E E S

x y z

                     (1) 

In which, C  denotes the concentration of the substance; 
x

u , 

yu , and 
z

u  denote the velocity in the x -, y -, and z -

direction; su  denotes the sinking velocity; 
h

E  denotes the 

horizontal turbulent diffusivity; 
z

E  denotes the vertical 

turbulent diffusivity; S  denotes the sources of mass. 

The BLOOM II model is coupled with the hydrodynamic 

conditions (i.e. velocity, water level, salinity, sediment, wind 

stress, tidal currents, vertical eddy viscosity, and vertical 

eddy diffusivity) calculated in the Delft3D-FLOW module. 

In the set-up of the hydrodynamic model in this case, 85×77 

grids are generated. For the vertical dimension, the water 

column is subdivided into 10 layers using a sigma-

coordinated approach. While in the set-up of the BLOOM II 

model, three layers are integrated: surface layer, middle layer, 

and bottom layer.  

2.3. Uncertainty Analysis 

The classic modelling approaches are processed with some 

simplifications, but the actual processes are not deterministic 

in the presence of uncertainty. The object has three possible 

values: original and original ± uncertainty. The uncertainties, 

arising from input parameters, model itself, and model 

scenarios, cannot be avoided in any of the analyses. For 

example, we stress the significance of the phytoplankton in 

this study, and the grazing rate of the zooplankton is 

considered as a constant value. However, the grazing process 

of the zooplankton is sensitive to the analysis of the 

phytoplankton, actually varied with the environmental factors 

(Steele and Henderson, 1992; Haney and Jackson, 1996). 

Therefore, the simplification of the model is accompanied 

with an overestimate or underestimate of the real state. The 

BMCMC simulation, a full description of the uncertainty, is 

approached to integrate the uncertainty analysis, processed 

with the WinBugs (accessible through http://www.mrc-

bsu.cam.ac.uk/software/bugs/). 

Bayesian inference accesses to the quantification and 

propagation of uncertainty via a probability, in light of the 

known information of the object. 

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )
Θ

= =
∫

p x y p y p x y p y
p y x

p x p x y p y dy
               (2) 

In which, x  denotes the known information; y  denotes the 

unknown information; ( )p y  denotes the prior distribution; 

( | )p x y  denotes the likelihood function; ( | )p y x  denotes 

the posterior distribution. 

Markov Chain Monte Carlo is a general method to compute 

the posterior distribution. With the commonly used algorithm, 

Gibbs Sampler, the Bayesian Markov Chain Monte Carlo 

simulation has been widely applied to describe the 

uncertainty (Kuczera, 1999; Kelly and Smith, 2009; Niu et 

al., 2015). 

3. Results 

3.1. Observational Analysis 

The statistics of the observed variables at the Frisian Inlet are 

shown in table 1. At Lauwersoog station, chlorophyll a 

fluctuates around a big interval, 0.64-87.89 mg m
-3

, with the 

mean value of 26.92 mg m
-3

 and the standard deviation of 

25.1 mg m
-3

. The minimum chlorophyll a appears on the day 

of 18
th

 May and the maximum appears on the day of 17
th
 

April. The nutrients show a similar pattern in the entire 

Frisian Inlet, increasing since winter but decreasing quickly 

in spring. The nitrate ranges from 0.01 mg l
-1

 to 0.53 mg l
-1

, 

while 0.005-0.520 mg l
-1

 for ammonium, 0.013-0.14 mg l
-1

 

for phosphorus and 0.03-1.42 mg l
-1

 for silicate. Most of the 

ratios of /N P  are lower than the optimal condition of 16:1 

(Brzezinski, 2004), which indicates a nitrogen deficiency 

relative to the phosphorus. At Huibertgat station, chlorophyll 

a varies from 1.11 mg m
-3

 to 124 mg m
-3

, with the mean 

value of 12.07 mg m
-3

 and the standard deviation of 25.67 

mg m
-3

. The minimum appears on the day of 20
th

 February 

and the maximum appears on the day of 20
th

 April. The 

concentrations of the nutrients are lower than that at 

Lauwersoog station. It is to infer that the phosphorus limits 

the phytoplankton growth from November to March because 

the ratios of /N P  are larger than the optimal condition 

during that time period. 

The phytoplankton biomass is not a single factor but as a 

consequence of many environmental variables. The 

contributions of the associated variables are shown in table 2. 

The phytoplankton biomass (in terms of chlorophyll a) is 

significantly correlated with suspended matter ( r =0.6, p

<0.01), and is moderately correlated with silicate, ammonium, 

and light intensity (| r |>0.3, p<0.05), in which, silicate and 

ammonium denote the negative contributions. The random 

effects of the variables are also taken into account using the 

Bootstrap method, based on 500 random samples.  
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Table 1. Statistics of the observed variables at the Frisian Inlet over the year of 2009. 

Variables 
Lauwersoog station Huibertgat station 

Min Max Mean SD Min Max Mean SD 

Chla  0.64 87.89 26.92 25.1 1.11 124 12.07 25.67 

3NO  0.01 0.53 0.15 0.16 0.01 0.72 0.19 0.2 

4
NH  0.005 0.52 0.147 0.16 0.005 0.3 0.08 0.08 

4
PO  0.013 0.14 0.051 0.03 0.008 0.043 0.021 0.01 

Si  0.03 1.42 0.47 0.4 0.01 0.9 0.28 0.27 

/N P  0.22 21.6 7.41 6.8 1.35 51.43 14.1 14.28 

1IM  27 390 105 77.3 3.6 37 17.6 8.79 

Salinity 25.9 31.7 29.56 1.81 27.4 31.9 30.2 1.35 

I  4.51 354.63 123.5 97.3 

 T  2.1 19.8 11.27 5.59 

Wind speed (m s-1) 0.2 13.1 5.38 2.55 

*. Min indicates the minimum value; 

*. Max indicates the maximum value; 

*. SD indicates the standard deviation. 

Table 2. Correlation analysis between the phytoplankton biomass (in terms of chlorophyll a) and other environmental forces, determined by the observations 

in 2009. 

 
Salinity 4

PO  Si  4
NH  3

NO  1IM  I  T  Wind 

Chla  

Pearson Correlation ( r ) -.243 -.194 -.443* -.527* -.171 .593** .534* .195 -.333 

Sig. (2-tailed) ( p ) .289 .399 .044 .014 .459 .005 .013 .396 .140 

Bootstrapc 

Bias .037 .025 -.013 -.015 -.004 -.035 .006 .011 -.006 

Std. Error .266 .226 .136 .100 .168 .222 .128 .169 .146 

95% Confidence Interval 
Lower -.699 -.550 -.695 -.719 -.468 -.022 .258 -.129 -.606 

Upper .322 .360 -.168 -.326 .214 .872 .774 .526 -.054 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

c. Unless otherwise noted, bootstrap results are based on 500 bootstrap samples. 

3.2. Estimate of the Phytoplankton Growth 

Rate 

The commonly used estimate of the growth rate is as the 

functions of temperature, light intensity and nutrients (Eppley, 

1972; Smith, 1980; Geider et al., 1997, 1998; Ornolfsdottir et 

al., 2004; Bissinger and Montagnes, 2008). In this study, we 

integrate the growth-temperature function into the light curve. 

The phytoplankton growth rate presents a seasonal variation, 

increasing gradually since the winter time, reaching the peak 

values in the summer days and then decreasing till the winter. 

Normally, the maximum growth rate is around 2.0 day
-1

 in 

coastal waters (Bowie et al., 1985; Arhonditsis and Brett, 

2005). In this case, the maximum growth rate is 1.87 day
-1

 

appeared on the day of 18
th

 August and the minimum is 0.38 

day
-1

 appeared on the day of 6
th

 March.  

3.3. Validation of the BLOOM II Model 

Prior to the application of the BLOOM II model, it is 

necessary to question whether the model is reliable in this 

case. In this validation section, the graphical view of the 

comparisons between the model outputs and the observations 

is displayed in figure 2 and figure 3, involved six variables 

( Chla , 4NH , 3NO , Si , 4PO , and 1IM ) at two stations 

(Lauwersoog and Huibertgat). The comparisons demonstrate 

that the BLOOM II model can reproduce reliable predictions 

of the phytoplankton biomass (in terms of chlorophyll a), 

nutrients, and suspended matter at the Frisian Inlet. 

3.4. Model Output 

In view of the specific demand, the phytoplankton species 

can be distinguished by the classification of Margalef (1978): 

the order of vertical turbulent diffusivity and nutrient 

availability. Thus, dinoflagellates and diatoms are equally 

significant at Lauwersoog station, while diatoms are the 

dominant species at Huibertgat station. 

The annual variations of the phytoplankton biomass and the 

associated variables are derived in the different water layers 

at the Frisian Inlet. Chlorophyll a is largely varied between 

the layers, while small variations of other variables appear 

within the layers. The increase of chlorophyll a is followed 

by a decrease of nutrients, excluding the trend of 4PO . 
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Figure 2. Graphical view of the comparisons between the observations (the red scatters) and the model outputs (the blue smooth lines) at Lauwersoog station 

over the year of 2009, confined in the surface layer. 

 

Figure 3. Graphical view of the comparisons between the observations (the red scatters) and the model outputs (the blue smooth lines) at Huibertgat station 

over the year of 2009, confined in the surface layer. 
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The previous section has presented the model outputs in the 

surface layer (the blue smooth lines in the figure 2 and figure 

3). Take Huibertgat station as an example to describe the 

variations of the variables. Chlorophyll a varies from 3.85 

mg m
-3

 to 26.18 mg m
-3

, with the mean value of 10.30 mg m
-

3
 and the standard deviation of 2.79 mg m

-3
. The maximum 

value appears on the day of 1
st
 May and the minimum 

appears on the day of 13
th

 January. The ammonium varies 

from 0.011 mg l
-1

 to 0.292 mg l
-1

, with the mean value of 

0.098 mg l
-1

 and the standard deviation of 0.067 mg l
-1

. The 

nitrate ranges from 0.010 mg l
-1

 to 0.602 mg l
-1

, with the 

mean value of 0.218 mg l
-1

 and the standard deviation of 

0.200 mg l
-1

. The phosphorus ranges from 0.009 mg l
-1

 to 

0.045 mg l
-1

, with the mean value of 0.025 mg l
-1

 and the 

standard deviation of 0.010 mg l
-1

. The silicate ranges from 

0.040 mg l
-1

 to 0.921 mg l
-1

, with the mean value of 0.322 mg 

l
-1

 and the standard deviation of 0.298 mg l
-1

. The suspended 

matter varies from 8.230 mg l
-1

 to 36.888 mg l
-1

, with the 

mean value of 18.925 mg l
-1

 and the standard deviation of 

7.601 mg l
-1

. Higher values of nitrogen and silicon appear in 

February and March.  

 

Figure 4. Annual-averaged distributions of phytoplankton biomass (in terms of chlorophyll a) and water properties in the surface layer at the Frisian Inlet over 

the year of 2009.

Figure 4 displays the annual-averaged distributions of the 

variables in the entire Frisian Inlet, confined in the surface 

layer. Higher values of chlorophyll a appear in the west zone, 

accompanied with a similar trend of 4NH  and an opposite 

pattern of 1IM . Compared with 4NH , other nutrients have a 

relative small range. Most of chlorophyll a distributes at a 

range of [10, 11] mg m
-3

, while [0.11, 0.14] mg l
-1

 for 4NH , 

[0.25, 0.30] mg l
-1

 for 3NO , [0.30, 0.35] mg l
-1

 for Si , [0.04, 

0.045] mg l
-1

 for 
4

PO , and [16, 18] mg l
-1

 for 1IM . The 

relationships between chlorophyll a and other variables 

coincide with the observational analysis. Among the nutrients, 

4NH  is the most sensitive parameter to chlorophyll a, 
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followed by the importance of Si . Meanwhile, 1IM  has a 

close link with chlorophyll a, a lower chlorophyll a 

corresponding to a higher 1IM . 

Particular attention is paid to the depth-averaged distribution 

of chlorophyll a, varying from 4.801 mg m
-3

 to 17.337 mg m
-

3
, with the mean value of 11.334 mg m

-3
 and the standard 

deviation of 1.874 mg m
-3

. Considering the random effects, 

the Bootstrap method is used, displayed in table 3. The mean 

value of chlorophyll a ranges from 11.137 mg m
-3

 to 11.519 

mg m
-3

 within the 95% confidence interval, with a bias of -

0.001 mg m
-3

  and a standard error of 0.097 mg m
-3

. The 

standard deviation of chlorophyll a varies from 1.715 mg m
-3

 

to 2.030 mg m
-3

 within the 95% confidence interval, with a 

bias of -0.006 mg m
-3

 and a standard error of 0.081 mg m
-3

. 

The statistics of the depth-averaged nutrients and suspended 

matter have a reliable range within the 95% confidence 

interval. In addition, the Gamma distribution can fit with 

chlorophyll a regardless of the observations, the model 

outputs in the surface layer, and the depth-averaged values, 

displayed in figure 5. 

3.5. Uncertainty Analysis 

Simplification of the model must be accompanied with 

uncertainty. The BMCMC simulation is used to describe the 

uncertainty and to give insight in the model output with 

uncertainty analysis. The object is the depth-averaged 

phytoplankton biomass (in terms of chlorophyll a). Prior to 

the approaching of the BMCMC simulation in this case, the 

convergence is required to be tested. Figure 6 displays the 

statistics of the BMCMC simulation, including the widely 

used Gelman-Rubin convergence test and the density of the 

phytoplankton biomass with uncertainty. Two chains are 

designed in this case, and 2000 random samples are 

distributed to each chain. The rule of the convergence in the 

Gelman-Rubin test is to make the red line tended to 1. The 

prediction with uncertainty analysis varies from 8.006 mg m
-

3
 to 15.27 mg m

-3
 within the 95% confidence interval, with a 

Monte Carlo error of 0.031 mg m
-3

. Figure 7 shows the 

completely trace plots of the phytoplankton biomass (in 

terms of chlorophyll a), based on 4000 samples. 

Table 3. Statistics of the depth-averaged variables at the Frisian Inlet over the year of 2009. 

Depth-averaged Statistic 

Bootstrap 

Bias Std. Error 
95% Confidence Interval 

Lower Upper 

Chla  

Mean 11.334 -0.001 0.097 11.137 11.519 

SD 1.877 -0.006 0.081 1.715 2.030 

Skewness -0.487 0.003 0.157 -0.768 -0.160 

4
NH  

Mean 0.096 0.000 0.003 0.089 0.103 

SD 0.066 0.000 0.001 0.063 0.068 

Skewness 0.233 -0.002 0.097 0.052 0.419 

3
NO  

Mean 0.219 0.000 0.011 0.197 0.240 

SD 0.201 0.000 0.005 0.189 0.210 

Skewness 0.701 0.003 0.099 0.509 0.895 

4
PO  

Mean 0.026 0.000 0.001 0.025 0.027 

SD 0.011 0.000 0.000 0.010 0.011 

Skewness 0.652 0.000 0.094 0.483 0.835 

Si  

Mean 0.324 0.000 0.016 0.292 0.353 

SD 0.298 -0.001 0.008 0.281 0.313 

Skewness 0.709 -0.001 0.098 0.533 0.904 

1IM  

Mean 19.076 0.017 0.379 18.333 19.850 

SD 7.648 -0.021 0.285 7.050 8.202 

Skewness 0.823 -0.006 0.071 0.686 0.963 

*. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples 

*. The object of the 95% confidence interval in the Bootstrap method is the estimate, like mean value, standard deviation, and skewness. 

 

Figure 5. Gamma distribution fit with the phytoplankton biomass (in terms of chlorophyll a), involving the observations, the modelled chlorophyll a in the 

surface layer, and the depth-averaged values. 
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Figure 6. Statistics of the BMCMC simulation. A: the Gelman-Rubin convergence test; B: the density of the phytoplankton biomass (in terms of chlorophyll 

a); C: the quantiles of the phytoplankton biomass (in terms of chlorophyll a), including the 2.5%, the median, and the 97.5%; D: the autocorrelation function. 

 

Figure 7. Trace plots of the prediction with uncertainty analysis (in terms of chlorophyll a) at the Frisian Inlet over the year of 2009, based on 4000 random 

samples and expressed in mg m-3. The red line indicates chain 1, and the blue line indicates chain 2. 

4. Discussion 

In order to better understand the coastal ecosystem, an 

ecological model of BLOOM II, widely applied to a range of 

water systems, is proposed in this case based on the limited 

number of observations. Graphical view of the comparisons 

between the model output and the observations demonstrates 

that the BLOOM II model can reproduce reliable predictions 

in this case (figure 2 and figure 3): five programme for the 

parameter calibration (
4

NH ,
3

NO , Si ,
4

PO , and 1IM ) and 

one programme for the model validation (chlorophyll a). 

In this case, there is a low vertical mixing rate due to the 

semi-enclosed position (figure 1). The slow exchange 

between the tidal inlet and the North Sea also increases the 

water residence time, which promotes the phytoplankton 

growth. The characteristics of the phytoplankton biomass are 

derived in the different water layers. In the surface layer, the 

chlorophyll a varies around a big range, 3.85-26.18 mg m
-3

. 

Higher values appear in spring, followed by a rapid reduction 

of the nutrients. There is a small variation between the 

middle layer and the bottom layer. In another words, the 

water column can be subdivided into two layers: surface 

layer and bottom layer. With the random effects, the value of 

the object is not deterministic but a reliable range. For the 

depth-averaged chlorophyll a, the mean value varies from 

11.13 mg m
-3

 to 11.52 mg m
-3

 within the 95% confidence 

interval, and the standard deviation varies from 1.71 mg m
-3

 

to 2.03 mg m
-3

 (table 3). 

To stress the uncertainty of the model output, the Bayesian 

Markov Chain Monte Carlo simulation is approached to get 

insight in the prediction with uncertainty analysis. The 

modelled depth-averaged chlorophyll a varies from 4.80 mg 

m
-3

 to 17.34 mg m
-3

, with the mean value of 11.33 mg m
-3

 

and the standard deviation of 1.874 mg m
-3

. While the new 

prediction of chlorophyll a fluctuates from 8.01 mg m
-3

 to 

15.27 mg m
-3

 within the 95% confidence interval, with a MC 

error of 0.03 mg m
-3

, based on 4000 random samples. 

The findings of this research are expected to provide valuable 
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information for the coastal ecosystem management. More 

observed environmental factors are needed to improve the 

prediction, like the biological properties and the chemical 

conditions.  
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