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Abstract 

Resolution independent residuals )(/)( oco III σς −=
 
should not show any discontinuities, when plotted against the 

resolution . The density of reflections per resolution range, however, changes with resolution, which limits the 

information value from these plots. Residuals plotted against ranked resolution values, should be uniform and are easy to 

interpret. These plots of individual ranked residuals show more details compared to binned data, and additionally the important 

spread of the data. Therefore, plots of individual ranked residuals, which are currently only very rarely applied (see for 

example Friese et al. (2013)), are superior over the plots of binned values and should be used for the detection of systematic 

errors. Plots against the ranked intensity, significance and standard uncertainties, respectively, can be chosen, too. This work 

concentrates on the resolution dependence. Any discontinuity is evidence for data processing errors e.g. from merging 

resolution batches. Applications to artificial data and to experimental data are given. Non-uniform features are observed in the 

experimental data. Characteristic features in the residuals resulting from distorted standard uncertainty (s.u.) values are 

discussed by means of normal probability plots, plots of observed vs. calculated intensities, and plots of residuals vs. resolution 

for 23 experimental data sets and 3 artificial data sets with accurate, overestimated and underestimated large s.u.s. Distorted 

s.u. values seem to be a very common source of errors as demonstrated here. The underlying cause for distorted s.u. values is 

that the integration software from detector data severely underestimates the s.u.s of the strong reflections. Underestimation of 

the s.u.s of the strong reflections also leads to artificially reduced  values. When a weighting scheme is applied, there 

remains a tendency to not fully compensate for the underestimation. In virtually all data sets the s.u.s are underestimated as is 

seen by Goodness of Fit (GoF) values larger than one and slopes larger than one in the normal probability plots. 

Underestimated s.u. values artificially increase the number of rare events and manifest in form of outliers in other diagnostic 

tools based on the s.u.s, however, when no other systematic errors are present, the plots of observed vs. calculated intensities 

do not show outliers, even in the case of distorted s.u. values. The appearance of outliers in plots of residuals vs. resolution not 

accompanied by outliers in plots of  vs.  is therefore consequently taken as an indicator for distorted s.u. values. Individual 

outliers in plots of observed vs. calculated intensities are surprisingly also observed. 
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1. Introduction 

In a former publication (Henn&Schönleber, 2013), the 

theoretical or predicted R-values were developed, which use 

experimental data to predict the agreement factor without the 

need to specify model parameters. In this approach it is 

assumed that no systematic errors are present and that the s.u. 
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values are accurate. A systematic error is a systematic 

mismatch between observed and model predicted data. 

According to the IUCr, systematic errors are per definitionem 

always on the side of the model (Schwarzenbach et al., 

1989). The mentioned conditions for the correct prediction of 

the agreement factor imply a Goodness of Fit (GoF) very 

close to one. Applications in standard structure 

determinations showed non-Gaussian distributions of 

residuals with a tendency of GoF values to be larger than 

one. Applications in more advanced and much more 

expensive charge density studies that are expected to be 

highly accurate surprisingly also showed very frequently 

non-Gaussian distributions of residuals (Henn & Meindl, 

2014a) despite the large efforts that have to be coped with in 

such studies. Further analysis tools based on conditional 

probabilities were developed (Henn & Meindl, 2014b) and 

applied to the aforementioned high resolution data sets with 

the expectation to single out certain sources of errors with the 

help of graphical representations from conditional probability 

plots in the unit-square, the so-called BayCoN plots. Instead 

of showing large differences between different models 

applied to the same experimental data, more similarities 

rather than differences were seen among different models and 

even between certain different data sets. This led us to the 

hypotheses, that data processing steps are the dominant 

source of systematic errors. For a theoretical study, the s.u. 

values of an artificial data set were manipulated in order to 

show in one case too large and in the other case too small s.u. 

values for the strong intensities. The resulting BayCoN plots 

after a model refinement showed similarities with the 

BayCoN plots of many of the experimental high resolution 

data sets for the artificially lowered s.u. values, whereas the 

data set with artificially increased s.u. values showed to a 

much larger extent smooth and uniform BayCoN plots 

(Henn&Meindl, 2014b). The development of data descriptors 

and quality indicators for diffraction data is a fruitful and 

important topic, every stage of the data acquisition is 

involved: from the instrument parameter settings (see, e.g., 

Sørensen& Larsen 2003), the data integration (Waterman & 

Evans, 2010), the data reduction (see, e.g., Blessing, R. H. 

1997; Evans & Murshudov, 2011, Weiss 2001) and density 

modelling (see, e.g., Zhurov et al. 2011) to the post-

refinement evaluation and global indicators of X-ray data 

quality (see, e.g., Zhurov et al. 2008, Weiss 2001). The cited 

literature is by no means complete. 

In this work we show that many experimental data sets suffer 

from data processing errors and from distorted s.u. values. It 

was earlier shown that underestimation of the s.u.s is a 

problem for CCD data (Waterman & Evans 2010). It persists 

to be a problem.  

2. Distorted and Amplified 
Standard Uncertainty Values 

When all s.u. values of a data set are too large or too small by a 

simple factor x> 0 we do not regard these as being distorted, 

but just by amplified. For simplicity we keep this terminology 

also in cases where the factor x is smaller than one. 

2.1. Amplified Standard Uncertainties 

When the s.u.s are amplified and no systematic errors are 

present this results in a Gaussian distribution of residuals 

with standard deviation of the Gaussian given by x and mean 

value close to zero. When the refinement is performed 

against intensity values and statistical weights are chosen, 

, the resulting  is unaffected as are the 

model parameters, i.e. they remain the same for any factor x> 

0 (Henn & Schönleber, 2013). Application of a significance 

cut off leads to systematic errors, as the residuals necessarily 

cease to be identically distributed (Henn & Meindl, 2015), 

which is a requirement for the least squares procedure.  

What is affected in this case are the s.u.s of the model 

parameters, which will be too large or too small by a factor x, 

the GoF, that will be 1/x, the significance of reflections, 

which also changes with 1/x and the predicted -

value, as it depends on the significance (Henn & Meindl, 

2014a). 

Therefore, when the goal of a model refinement is to obtain 

accurate model parameter estimates and accurate errors of 

model parameter estimates, it is indispensable to employ 

accurate error estimates of the reflection data and to exclude 

systematic errors. 

2.2. Distorted Standard Uncertainties 

A set of distorted s.u. values exists, if a single factor for the 

whole data set is not sufficient to correct these. An example 

would be when the full data set was merged from two 

individual data sets, e.g. from different detector positions, and 

when the s.u.s are not correctly scaled to each other. In that 

case a single factor might be sufficient to scale the s.u.s 

correctly in relation to each other, but the factor is not applied 

to the whole data set but only to a subset. Another example 

would be when an intensity- or resolution dependent function 

is needed to correct the s.u. values. Effects of distorted s.u. 

values are that the model parameter values as well as their s.u.s 

and the significance of intensities will be incorrect. 

The refinement will generally yield a GoF different from one 

and the resulting distribution of residuals cannot be described 

by a Gaussian distribution. Previous results indicated that 

distorted s.u.s are more harmful, when the large s.u. values 
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are underestimated rather than overestimated (Henn & 

Meindl, 2014b). Underestimated large s.u. values lead to 

artificially reduced wR-values at the expense of systematic 

errors in the data (Henn & Meindl, 2014b). 

3. Error Models 

Error models serve to obtain adequate s.u.s from those of the 

reflection file, which are known to be too small. As a 

consequence, it is appropriate to chose one error model for 

one set of experimental data. The same error model should be 

used, when different structure models are fitted to the same 

experimental data, as otherwise the error model is not 

exclusively employed to correct the precision of the 

experimental errors. The error model has the strongest impact 

on the low resolution data, where most of the strong 

observations reside. Different error models are in use in 

different refinement software packages.  

As a consequence of the distinct effect of the weighting 

scheme on the residuals, the error model parameters must be 

chosen with care, as incorrect parameter values or an 

insufficient error model may lead to an incomplete correction 

of the s.u.s, resulting in underestimated s.u. values for the 

reflections in the lowest resolution shell.  

4. Observations from a Study 
of Charge Density Data Sets 

From Henn & Meindl, 2014b the following results were 

obtained: Virtually all 23 studied data sets are contaminated 

by systematic errors, as indicated by the differences between 

predicted and actual R-values and by non-uniform BayCoN 

plots. The R
meta values are all positive, which indicates 

presence of systematic errors and/or underestimation of s.u. 

values (Henn & Schönleber, 2013). All Goodness of Fit 

(GoF) values are larger than one except for those of data sets 

8-11 (for a list of GoF values see Table 2 in the Appendix). 

GoF values larger than one also indicate too small s.u. values 

and/or presence of systematic errors. GoF values smaller 

than one generally indicate over fitting or too large s.u. 

values, however, small GoF values can be achieved also by 

underestimating the s.u.s of a few strong reflections and 

overestimating the s.u.s of the abundant remaining data. 

Virtually none of the studied data sets showed a normal 

distribution of residuals, except data set 13, with sets 8-13 

being generally close to a normal distribution as indicated by 

the normal probability plots and also by the -sums (see 

supplementary material of Henn & Meindl 2014b).  

Table 1. Identical outliers in data sets 5-7. 

Data set  h,k,l Ic Io s.u. sinθ/λ ζ 

5 0,1,-1 3997.69 3141.19 64.8471 0.1221 -13.2079 
 -2, 0 ,0 2886.02 2566.83 23.5159 0.097 -13.5735 
       
6 0,1,-1 3967.08 3167.43 57.0966 0.1219 -14.0052 
 -2,0,0 2871.86 2299.77 446.303 0.097 -1.28184 
       
7 0,1,-1 3905.48 2741.07 33.0748 0.121 -35.2053 
 -2,0,0 2761.15 2160.42 76.3217 0.0971 -7.87102 

Table 2. Goodness of Fit values as given in the literature for data sets 1-23 and for the artificial data sets 24, 30, and 31. 

Data set GoF Data set Gof Data set GoF 

1 1.908 11 0.86 21 1.58 
2 1.069 12 1.25 22 1.53 
3 3.5901 13 1.14 23 1.58 
4 1.177 14 2.000 24 1.0031 
5 1.172 15 1.357 30 3.0275 
6 1.13 16 1.338 31 0.6802 
7 1.282 17 2.190   
8 0.90 18 1.109   
9 0.86 19 1.112   
10 0.85 20 1.8986   

 

The finding that virtually all studied charge density data sets 

are affected by systematic errors is surprising because these 

studies are the most expensive and the most accurate ones. 

Systematic errors should therefore be very small, because 

expensive high resolution diffraction experiments are usually 

conducted to obtain more accurate models. 

In addition, with high quality data and very advanced density 

models, those reflections affected by systematic errors should 

reveal themselves as outliers. If only a few individual 

reflections are affected by systematic errors, it is expected 

that the residual distribution is close to a Gaussian and that 

these individual reflections appear as outliers in both 

observed vs. calculated intensity (Io, Ic) plots and in plots of 

residuals vs. resolution . If, conversely, a whole 
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range of data in one data set is affected by systematic errors 

such that frequent outliers appear for example in 

-plots, those kind of systematic errors are most 

likely connected to data processing steps such as merging 

different batches or to the s.u.s and the error model.  

In the following, the normal probability plots (npps), 

 plots, and (Io, Ic) plots of these data sets are 

discussed. The respective plots are found in the Appendix. 

5. Normal Probability Plots 

A complete list of npps including the weighting schemes, if 

used in the refinement, for all data sets is given in the 

Appendix. Statistical weights were applied in some data sets. 

Examples of npps for artificial data are given in Fig. 1 a, d, 

and g. Employing artificial data gives the opportunity to 

study the pure effects of under- and overestimation of large 

s.u. values under exclusion of other systematic errors and to 

compare these to the case of adequate s.u. values and to the 

experimental data. 

Distinctly curved npps are according to Abrahams & Keve 

(1971) “necessarily caused by systematic error”. 

The artificial data sets 24 (no systematic error), 30 

(underestimation of large s.u.s) and 31 (overestimation of 

large s.u.s) from Henn & Meindl (2014b) are taken to 

visualize the effects of distorted s.u. values in Fig. 1. The npp 

of data set 24 is very close to the diagonal line which 

represents the expected frequency of events under ideal 

circumstances. Small deviations in the periphery are due to 

the finite population. The npps of the other data sets 

immediately indicate deviations from the expected Gaussian 

distribution (Fig. 1 d, g). The case of underestimated large 

s.u. values appears as a line with slope larger than one (Fig. 1 

g), whereas the case of overestimated large s.u. values 

appears as a line with slope lower than one (Fig. 1 d) and 

deviations from a linear behaviour in the periphery. 

From the npps of the experimental data sets, not a single one 

is reminiscent of Fig. 1 d, instead all of them show a 

tendency to slopes larger than one corresponding to Fig. 1 g 

(see column A in Fig. 5, Appendix). This holds in particular 

for those data sets from area detectors and with statistical 

weights (1, 3, 5-7, 14-16, 20-23). For these data sets it is 

known from the literature that their s.u. values are very likely 

to be underestimated, in particular those from strong 

reflections. But also e.g. data sets 17-19, that include a 

weighting scheme, show this slope larger than one in the npp. 

This can even be observed for the high quality data sets 8-12, 

though only in the periphery of their npps and to a distinctly 

reduced extent.  

From this common structural peculiarity of the npps of all 

experimental data sets it is postulated that they may have the 

same origin, which is that the s.u.s are distorted in a way that 

leads to an underestimation of the s.u. values.  

The underestimation of large s.u. values may not be the only 

source of systematic error, as some npps show additional 

curvatures, for instance those for data sets 5-7 (see Fig. 2); 

however, that all data sets show this large slope is a striking 

feature. 

It was discussed earlier (Henn&Meindl 2014b) that the 

underestimation of large s.u. values leads to reduced R 

values. The underestimation of the large s.u.s led from an 

adequate value wR(F2) = 3.60% (data set 24), which 

describes realistically the noise inherent in the data, to the 

artificially reduced value wR(F2)= 0.98% (data set 30). The 

normal probability plots and residuals as a function of 

resolution of these data sets are shown in Fig. 1. 

6. Residuals VS. Resolution, 
Relative Outliers 

The artificial data sets are analysed first to study the effects of 

distorted s.u. values and to compare these to the ideal case of 

no systematic errors. In the case of adequate s.u.s the points of 

the  plot (Fig. 1 b) arrange themselves smoothly 

and symmetrically around the zero line, and fade out gently 

from right to left. This smooth fade out appears because the 

corresponding Gaussian probability density function is 

naturally mapped out from the frequent events close to zero to 

the less frequent events in a distance of ,... from 

the zero line. The scale for the distance from zero is given by 

, the standard deviation of the residual population. As the 

number of data points per resolution range becomes less for 

the low resolution range, the corresponding plot shows less 

frequently points in a distance from the zero line. To eliminate 

the dependency from the number of reflections per resolution 

range, the residuals are plotted against the ranking of 

resolution in Fig. 1 c. As expected for a data set without 

systematic errors, this plot shows a uniform distribution 

without discontinuities and without any trends to positive or 

negative values, with the overwhelming majority of data points 

in the limits given by . 

A very similar picture with respect to the residual plots is 

obtained for the case of overestimated large s.u.s (Fig. 1 e, f): 

The  plot appears only a bit compressed in the 

vertical direction. This is because the residuals gather closer 

around the zero line due to the overestimation of the large 

s.u.s. It has been observed earlier that the overestimation of 

large s.u. values is less harmful with respect to the statistical 
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independence of residuals (see 4.2.2 in Henn & Meindl 

2014b). This is confirmed here. 

In the case of underestimated large s.u. values, the 

 plot (Fig. 1 h) shows a characteristic shape 

with a fast decreasing envelop. Here, the frequency of so 

called “rare events” increases with decreasing resolution, 

which is in contrast to the cases of adequate, Fig. 1 b, and 

overestimated large s.u.s, Fig. 1 e. The term “rare event” 

refers to the expectation of events from a normal distribution, 

i.e. these need not be rare in real data sets. Rare events 

 appear in approximately 0.27% of all cases, rare 

events  in approximately 0.0063% of all cases and 

rare events with  in approximately 0.000057% of all 

cases, if a Gaussian Normal distribution applies. A list of rare 

events for the experimental data sets is given in Table 3 of 

the Appendix. Underestimation of s.u. values leads to an 

increased rate of rare events. 

 
Fig. 1. Effects of over- (second row, d, e, f, data set 31) and underestimation (third row, g, h, i, data set 30) of large s.u. values compared to adequate s.u. 

values (first row, a, b, c, data set 24) for artificial data sets: Normal probability plots (first column, a, d, g), plots of residuals vs. resolution  (b, e, h) 

and plots of residuals vs. ranking against resolution  (third column, c, f, i). 

 

Fig. 2. Distinctly curved npps indicate presence of systematic errors. The npps of data sets 5 (a), 6 (b) and 7 (c). 
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Table 3. Number of rare events (5-σ) and the respective number of reflections of data sets 1-24, 20 and 31. 

Data set 
Number of rare events |ζ |> 5/all 

events 
Data set 

Number of rare events |ζ | > 5/all 

events 
Data set 

Number of rare events |ζ | > 5/all 

events 

1 436/12803 11 3/7981 21 183/2409 

2 5/15247 12 0/3942 22 17/2409 

3 2898/28457 13 0/3942 23 183/2409 

4 5/3822 14 171/8630 24 1/14604 

5 17/5136 15 37/8630 30 543/14604 

6 15/5146 16 39/8630 31 0/14604 

7 6/3551 17 1032/2652   

8 0/8057 18 456/2652   

9 1/8070 19 448/2652   

10 5/7986 20 173/8015   

 

Rare events are actually observed in crystallographic 

applications so frequently that it was even suggested to 

adapt the probability density function to the frequent 

appearance of rare events (Hooftet al. 2009). We suggest 

that at least a part of rare events in many crystallographic 

applications including charge density studies is caused by 

incorrect s.u.s. It is inappropriate in these cases to adapt 

the probability density function to the resulting 

distribution. An adequate error model is needed in these 

cases. 

For an impression how plots of residuals vs. resolution 

appear in the case of systematic errors, those 

corresponding to Fig. 2 are depicted in Fig. 3 

These plots suggest that there is a distinct dependence of 

the residuals for a resolution range from zero to 

approximately 0.35 Å-1 followed by a discontinuity at 

approximately 0.35 Å-1 in all three cases. The 

discontinuity appears in form of a very sharp increase of 

the moving average. An additional discontinuity appears at 

approximately 0.95 Å-1 in the cases of data sets 5 (Fig. 3 

a, d) and 6 (Fig. 3 b, e) and at approximately 0.75 Å-1 for 

data set 7 (Fig. 3 c, f). Figure 3 f shows the large spread of 

residuals typical for underestimated large s.u. values for 

low resolution values.  

That the frequency of outliers increases with decreasing 

resolution instead of being independent from the 

resolution is observed for many experimental data sets (in 

which the resolution information was available), for more 

information see column C of Fig. 5 in the Appendix. It 

should be stressed again, however, that any discontinuity 

in plots of residuals vs. ranked resolution values indicates 

per definitionem an error, as in the case of absence of 

systematic errors these plots are featureless.  

 
Fig. 3. Residuals vs. (ranked) resolution for data sets 5 (a, d) (-14.56/5.69), 6 (b, e) (-14.45/6.25) and 7 (c, f) (-6.66/6.93). The values in brackets give the 

minimum and maximum residual for each data set. The black line indicates a moving average value over 50 consecutive data points. For clear visibility, the 
moving average was amplified by a factor 3. 
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More of these discontinuities are found for data sets 3 and 20 

at  Å-1. This discontinuity in the behaviour of 

the residuals is most likely caused by merging different 

resolution batches. The residuals between zero and 0.35 Å-

1seem to be organized so as to produce predominantly 

positive residuals in the beginning and negative residuals 

towards the end of this range. This pattern is repeatedly 

observed in different data sets (see Appendix).  

Data sets 15 and 16 each show a markedly downturn beyond 

approx. 1.2 Å-1, that lead to 37 (set 15) and 38 (set 16) outliers 

with  in a resolution range starting from 1.165 Å-1. 

Plots of residuals vs. ranked s.u. values are shown in Fig. 4 to 

give more evidence for the presence of underestimated 

(large) s.u.s. and to study their influence. The sorting is in 

ascending order, i.e. the weak s.u. values are found to the left 

of each plot and the strong s.u. values to the right. 

All three plots in Fig. 4 (a - c) show a slight tendency to get 

broader to the right. This is most clearly seen from Fig. 4 c. 

In plots Fig. 4 a and b, this tendency is obstructed by the 

appearance of many large residuals in the middle part of each 

plot with a tendency to negative residuals (this is more 

clearly seen for plots with a larger plot range in the direction 

of the ordinate, see for these plots Fig. 6 in the Appendix). 

The plots of observed vs. calculated intensities show 

systematically reduced strong observed intensities in Fig. 4 

(d - f). The (100-data points moving) average values for the 

residuals are negative for almost all reflections but those with 

the largest s.u. values, where the average becomes suddenly 

positive in all three cases. When many negative residuals are 

counterbalanced by a small number of positive residuals, the 

distribution of residual is dis-balanced, as each reflection, 

regardless of weak or strong, regardless of significant or 

insignificant should have the same probability to produce a 

positive or a negative residual. If this does not apply, the 

residuals are not identically and not independent 

distributed.7. Outliers in Plots of Observed VS.Calculated 

Intensities 

The concept of outliers is not easy to specify rigorously as 

large deviations are expected for data sets being only large 

enough. In the present context we take a soft attitude to the 

concept of outliers and apply this term to individual 

reflections that seem to scatter more distinctly than others. 

This of course remains a matter of subjectivity. Those 

outliers in plots of observed vs. calculated intensities, (Io, Ic) 

plots, reveal immediately individual reflections affected by 

systematic errors. The opposite of the above sentence is not 

true: the appearance of systematic errors, such as from 

distorted s.u. values need not be visible in (Io, Ic) plots. This 

is because the model may still predict the observed intensities 

accurately as measured by absolute deviations between (Io, 

Ic). If the s.u. values are underestimated, however, those 

predictions appear as outliers in npp and other analysis tools 

that rely on the relative accuracy of the s.u.s, but they need 

not appear as absolute outliers. The distorted s.u.s from Fig. 1 

for example do not lead to outliers in plots of observed vs. 

calculated intensities (data not shown). 

As was seen in the preceding paragraph, it is a characteristic 

effect of underestimated large s.u.s that these lead to an 

increase of rare events in the low-resolution part of the data 

as measured by the residuals. If this is the only source of 

systematic errors, it does obviously not lead to any absolute 

outliers. This is because the experimental intensities are still 

predicted accurately by the model, only by the exaggerated 

standards of the severely underestimated s.u.s these 

predictions appear as outliers. The appearance of rare events 

accompanied by a non-appearance of absolute outliers may 

therefore be taken as a characteristic of underestimated large 

s.u.s.  

The appearance of absolute outliers is rare in the 

experimental data sets, however, for example in sets 5, 6, and 

7, which are from the same publication (Mondal et al., 2012) 

the reflections (0,1,-1) and (-2,0,0) appear repeatedly as 

absolute and, with one exception, as relative outliers (for 

more information see Fig. 4 (d - f) and Table 1 in the 

Appendix).  

7. Summary 

All experimental data sets show the common feature of large 

slopes in the npps, none shows the opposite behaviour of 

slopes smaller than one. This is interpreted as an effect of 

underestimation of s.u. values in almost all data sets. This 

should be true for the data sets with statistical weights 

anyway but it seems to be true also for the data sets 

employing a weighting scheme. This assumption is also in 

accordance with most of the GoF values being larger than 

one, only those of data sets 8-11 are smaller than one. 

Despite their small GoF values, also these data sets show the 

characteristic deviations in the periphery of npps and relative 

large spreads of residuals in the lowest resolution shells. 

These exceptional data sets need to be analysed separately. 

It was discussed and exemplified with artificial data that the 

underestimation of the large s.u.s leads to an increase of rare 

events in the low resolution part of the data. The observation 

of frequent rare events is omnipresent in crystallographic 

applications. The underestimation of strong s.u.s is a simple 

explanation for this omnipresence. If no other sources of 

error are present, the underestimation of strong s.u. values is 

sin / 0.35θ λ ≈

5ς >
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characterized by a large slope >1 in the (periphery of the) 

normal probability plots, by a GoF > 1, the pronounced 

appearance of outliers , by a broadened low resolution 

end in plots of residuals vs. ranked resolution, and by the 

absence of absolute outliers in plots of observed vs. 

calculated intensities. These signs of underestimated large 

s.u. values are present in virtually all data sets but one. In 

some data sets additional signs of systematic errors appear, 

such as absolute outliers or markedly curved npps. Even in 

the high quality data sets 8-12, the deviations in the periphery 

of the normal probability plots are all such that larger slopes 

than one are produced and never in the opposite direction.  

The fact that underestimated large s.u.values lead to smaller, 

but unfortunately unrealistic R-values, and the fact that the 

s.u.s come too small from the integration routines and have to 

be corrected, supports the hypothesis that the correction of 

s.u. values approaches the adequate values from the 

underestimated side and that it is more likely that some 

strong s.u.s remain underestimated rather than overestimated. 

Underestimated large s.u.s are of course not the only source 

of systematic errors, as can be seen from the discontinuities 

(see e.g. data set 6 at approx. 0.35 Å-1 or data set 9 at approx. 

0.30 Å-1 in the Appendix) and slopes (see e.g. the resolution 

range starting from 1.00 Å-1 of data sets 15 and 16 in the 

Appendix) in resolution ranges of data in the -

plots. 

As a helpful complementary tool for the analysis of the 

residuals these were plotted against the ranking of resolution 

and of s.u. values, instead of against the resolution value or 

s.u. value only and instead of plots against binned values, 

which omit the important information about the spread of the 

data. Plots of individual residuals against ranked data lead to 

the same density of points in each region of the plot and 

therefore to plots that are much easier to interpret: they 

should appear in the same way for any resolution (intensity, 

s.u., etc.) range. Discontinuities in these plots are a sign of 

systematic errors and point towards data processing errors, 

e.g. from merging different resolution batches. These plots 

were helpful in identifying the two common sources of 

systematic errors in charge density studies: the 

underestimation of large s.u. values and data processing 

errors, that lead to discontinuities in these plots. We suggest 

that normal probability plots should be mandatory for each 

publication in the field of charge density studies. 

Appendix 

 
Fig.4. Residuals vs. ranked s.u.s (a - c) and plots of observed vs. calculated intensities (d - f}) for data sets 5 (a, d), 6 (b, e) and 7 (c, f). The black line indicates 

a moving average over 100 consecutive data points multiplied by 5 for clear visibility. 
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Fig. 5. Normal probability plots (column A), Io vs. Ic plots (column B), residuals (ζ) vs. sinθ/λ plots (column C) and probability density histograms (column 
D) with a Normal distribution ( 0=µ , 1=σ ) indicated by a red line and a Normal distribution with mean value and standard deviation from the residuals 

indicated by a blue line. The underestimated large s.u.s (data set 30) cannot be described adequately by a Gaussian, in contrast to the overestimated large s.u.s 
(data set 31). For the calculation of the npp, the residual vs. resolution plots and for the probability histograms the weights given in the literature were used. 
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Fig. 6. Residuals vs. ranking of s.u. values for data set 5, 6, and 7. 
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