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Abstract 

This work focuses mainly on the proposing closed-form solutions for the elastic fields in a power-law graded polar orthotropic 

hyperbolically tapered disk under separate inner/outer pressures, and centrifugal forces due to the rotation at a constant angular 

speed based on the present unified formulation. These formulas are capable of exact determination of the elastic behaviour of 

continuously hyperbolically tapered disks made of a single isotropic material, or made of a single polar orthotropic material, or 

made of a nonhomogeneous material formed by functionally power-law graded two isotropic materials, or a nonhomogeneous 

material formed by functionally power-law graded two orthotropic materials. Due to their multipurpose use, the present 

formulas may be directly employed in the material tailoring problems of hyperbolic disks. Three boundary conditions are 

studied: a disk with traction-free surfaces, a disk mounted on a circular rigid shaft having a traction-free outer surface, and a 

disk mounted on a circular rigid shaft having a rigid casing at the outer surface. The fibers are assumed to be reinforced along 

either radial (RR) or circumferential (CR) directions. After validating the present analytical solutions with both analytical and 

numerical results in the open literature, a comprehensive dimensionless parametric study is conducted to inspect of the effects 

of fiber orientations, profile parameters, inhomogeneity indexes, and boundary conditions under both pressure and centrifugal 

forces. It is chiefly revealed that the response of the disk having either CR-aligned or RR-aligned fibers may differ regarding to 

the mechanical loads. Some numerical results are presented in tabular forms. 
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1. Introduction 

Rotating disks have been used commonly as turbine rotors, 

compressors, flywheels, disk brakes, gears, computer disk 

drives, and etc. They may be manufactured by either 

conventional or advanced isotropic and anisotropic materials 

with the purpose of withstanding much higher critical/burst 

speeds. 

References [1-24] all focused on the derivation of closed-

form solutions of stress and displacements in a rotating disk 

made of ordinary anisotropic materials. Among these, 

Murthy and Sherbourne [2], Reddy and Srinath [3], 

Gurushankar [7], Zenkour and Allam [18], and Eraslan et al. 

[23] studied variable-thickness orthotropic disks. 

Advanced materials may have non-homogeneous material 

properties exhibiting either isotropic or anisotropic 

behaviour. From those, low-cost functionally graded (FG) 

metal-ceramic materials are in the class of nonhomogeneous 

isotropic advanced materials. Based on a chosen material 
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grading rule, material properties vary continuously along one 

or more certain directions in FG metal-ceramics. 

A simple power material grading rule [25-32], or an 

exponential grading rule [33, 38] were used to get closed-

form solutions to the disks made of FG isotropic materials. 

From those, Horgan and Chan [25] and Nejad et al. [36] 

considered uniform disks subjected to the internal and 

external pressures while Yıldırım [31] studied pressure loads 

for hyperbolic disks. The others [26-30, 32-35, 37-38] 

studied with disks under just rotation. 

Some of studies related to the elastic analysis of variable 

thickness disks were focused on the disks made of isotropic 

and homogeneous materials [35, 39-42]. Vivio and Vullo [43-

44] just considered the density variation along the radial 

coordinate of the variable-thickness disk. 

Here some studies which are in the scope of the present 

study: Apatay and Eraslan [45], and Eraslan and Akış [46] 

worked on the elastic analysis of parabolically-varying 

thickness disks made of FG-isotropic materials. By dividing 

the variable-thickness disk into sub-domains with uniform 

thickness, Bayat et al. [28] proposed a semi-analytical elastic 

solution for axisymmetric rotating hollow parabolic and 

hyperbolic disks. On the basis of a semi-exact method of 

Liao’s homotopy analysis, Hassani et al. [47] studied elastic 

behaviour of rotating FG- isotropic hyperbolic rotating disks 

under different boundary conditions. Yıldırım’s [30] 

formulation of the exact elastic response of a power-law 

graded hyperbolic rotating disk encompassed both 

continuously variations of elasticity modulus and material 

density including continuously variation of the thickness of 

the disk except variation of Poisson’s ratios. Contrary to the 

literature all effects affecting the elastic behaviour of the disk 

with varying thickness such as internal and external pressures 

including rotation at a constant angular velocity were all 

studied under four physical boundary conditions and 

presented in compact forms in Yıldırım’s study [30]. 

Yıldırım [31] further conducted a parametric study for 

hyperbolic thickness disks subjected to the pressure loads. 

Based on the both complementary functions and transfer 

matrix methods, Yıldırım and Kacar [48] introduced a 

versatile computer package program for the elastic analysis 

of FG-isotropic thick-walled annular structures, namely 

disks, cylinders, and spheres. Gang [32] analytically studied 

the stress analysis of a simple-power law graded hyperbolic 

rotating disk under stress-free conditions for four convergent 

disk profiles and negative inhomogeneity indexes. Recently, 

Yıldırım [49] also presented a comprehensive parametric 

study for a power-law graded hyperbolic rotating disk. 

In quest of searching more advanced materials, scholars have 

begun to apply anisotropic materials, which exhibit different 

behaviours in tension, compression, and bending, as FG 

material constituents to form both anisotropic and 

inhomogeneous structures. As may be easily guessed, this 

types of materials are in the class of nonhomogeneous 

anisotropic advanced materials. 

There are, unfortunately, a limited number of works on FG disks 

composed of anisotropic materials in the open literature [50-58]. 

Among these, Durodola and Attia [50] studied deformation and 

stresses in rotating hollow uniform disks made from FG 

orthotropic materials. Chen et al. [51] offered a 3-D analytical 

solution for a uniform rotating disk made of exponentially FG 

materials with transverse isotropy. Nie et al. [52] focused on the 

tailoring of elastic moduli in the radial direction to design a 

fiber-reinforced orthotropic linear elastic rotating disk with 

constant radial or hoop stress or constant in-plane shear stress. 

For a solid disk made of an orthotropic material, Nie et al.[52] 

gave explicit expressions for the required variations of the elastic 

moduli with the radius to attain a given state of stress. For a 

rotating annular CR-disk composed of a fiber-reinforced 

composite, the required radial variation of the volume fraction of 

fibers was calculated numerically and exhibited graphically by 

Nie et al. [52]. Kansal and Parvez [53] conducted a stress 

analysis on orthotropic graded rotating annular disks subjected 

to parabolic temperature distributions. Lubarda [54] analytically 

and numerically studied the elastic response of a uniformly 

pressurized cylindrically anisotropic hollow uniform thin 

rotating disks by using both the finite difference method and a 

Fredholm integral equation. Fredholm integral equation was also 

employed by Peng and Li [55] to consider FG hollow polar-

orthotropic rotating disk under free-free and fixed-free boundary 

conditions. Kacar and Yıldırım [56] offered analytical formulas 

for the displacement and stress determination in power-law 

graded polar orthotropic uniform rotating disks under three 

boundary conditions. After deriving a confluent hypergeometric 

differential equation, Essa and Argeso [57] developed analytical 

solutions for the analysis of elastic polar orthotropic FG annular 

free-free and fixed-free disks rotating with constant angular 

velocity to study the effects of the anisotropy degree on the 

elastic fields. Essa and Argeso [57] considered a disk profile 

function as a product of a constant parameter, an exponential 

function of radial coordinate, r , and a power function of r  

similar to the variation of the other elastic properties. It is worth 

noting that Essa and Argeso [57] considered only centrifugal 

force effects on the elastic behaviour of non-uniform disks with 

radially aligned (RR) fibers. Based on the finite difference 

method and Voigt mixture grading rule with powers, Zheng et al. 

[58] numerically studied displacement and stress fields in a 

fiber-matrix FG variable thickness circumferentially aligned 

(CR) disk mounted on a rotating shaft and subjected to an 

angular deceleration. This study [58] revealed that disk 

deceleration has no effect on the radial and hoop stresses except 
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the shear stress. 

As seen from the open literature that FG polar orthotropic 

disks subjected to the pressure loads are considered only by 

Lubarda [54] under the uniform disk assumption. Moreover 

there are just two studies conducted by References Essa and 

Argeso [57] and Zheng et al. [58] on the variable-thickness 

FG polar orthotropic rotating disks, and two studies 

conducted by Lubarda [54] and Zheng et al. [58] on the 

variable-thickness FG polar orthotropic rotating disks with 

circumferentially aligned fibers (CR) (Figure 1). This was a 

motivation of the author. 

 
Figure 1. CR and RR disks, respectively. 

As far as the author knows, the differential advantages of the 

present work over the available literature are, now, may be 

outlined as follows: i) Closed form formulas are presented 

only for FG polar orthotropic hyperbolic disks based on the 

Cauchi-Euler differential equation solution method. These 

formulas do, therefore, not contain any extra terms, ii) 

Present formulation may answer to various linear elastic 

axisymmetric disk problems under both pressure and 

centrifugal forces. Present closed-form formulas are, 

therefore, versatile. Disks made of many kind of materials 

such as a single isotropic and homogeneous material, a single 

polar orthotropic material, a power-law graded non-

homogeneous-isotropic material, and a power-law graded 

nonhomogeneous polar orthotropic material may be studied 

without labouring, iii) The present formulas also originally 

include mounted-cased rotating disks as an additional 

boundary condition along with free-free and fixed-free 

surfaces, iv) Analytical formulas are originally developed for 

the elastic behaviour of traction free hyperbolic disks 

subjected to both the internal and external pressures in the 

present study, v) The present study also includes a 

comprehensive parametric study to inspect the effects of the 

gradient parameters which control the radial variation of the 

material properties, disk profile parameters which control the 

variation of the thickness along the radial coordinate, 

boundary conditions, loading types, and more originally the 

radially aligned (RR) and circumferentially aligned (CR) 

fiber orientations (Figure 1), vi) During the validation 

process, some of the test examples are also broadened to get 

an accurate common idea for such disks, vi) Some numerical 

results of fresh examples are also presented to serve as 

benchmark solutions to the scholars. 

2. Formulation and Solution 

By assuming axisymmetric small deformations, the strain-

displacement relations in polar coordinates, ( , )r θ ,  are 

reduced to 

( ) ( )
( ) ,         ( )r r
r

du r u r
r r

dr r
θε ε= =                  (1) 

where ( )r rε  and ( )rθε  are the radial and circumferential 

strains, while ( )ru r  is the radial displacement along the 

radial direction, r . The compatibility equation reads 

( ( )) ( ) 0r

d
r r r

dr
θε ε− =                        (2) 

For linear elastic polar orthotropic materials, the constitutive 

equations describing relations between stresses and strains 

under plane stress assumption for thin plates are defined by 

Hooke’s law as 
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where ( )rE r  and ( )E rθ  are Young’s moduli along the radial 

and circumferential directions, respectively. The radial and 

hoop stresses are denoted by ( )r rσ  and ( )rθσ  in the above 

equations. This equation is for the disks with radially aligned 

fibers (RR-disks) in which the material principal axes are 

defined by 1 ,r= 2 ,θ= 3 z= . For the alignments in 

circumferential directions (CR-disks), 2 ,r= 1 ,θ= 3 z= is to 

be considered (Figure 1). Poisson’s ratios are not independent 

from each other, they should obey Maxwell relation, 

( ) ( )r r rE r E rθ θ θν ν= . It may be noted that the ratio of ( )E rθ  

to ( )rE r  defines the anisotropy/polar degree of the disk 

anisotropic material. 

Equation of equilibrium in the radial direction under the 

centrifugal forces with a constant angular velocity, ω , is 

( ) 21
( ) ( ) ( ) ( )

( ) r

d
rh r r r r r

h r dr
θσ σ ρ ω− = −            (5) 

where the material density and disk profile function are 

represented by ( )rρ and ( )h r , respectively. Equilibrium 

equation may be written as follows by making use of Eqs. 

(1), (3) and (4) 
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 (6) 

This is a second order differential equation called Navier 

equation with variable coefficients. It governs the elasto-

static behaviour of non-uniform disks made of any arbitrarily 

continuously graded polar orthotropic materials. The non-

uniform disk may be in any form of various disk profiles as 

long as the plain stress assumption for thin plates is 

preserved. 

 
Figure 2. Variation of elastic properties for ( / ) 0.2=a b . 

By employing some special types of continuous functions, it is 

possible to get analytical solutions to the problem as stated in 

Introduction. A simple power rule is one of the well-known 

one, which is frequently used to get Navier equation with 

constant coefficients. In the present study, elasticity moduli, 

thickness and material density variations are all assumed to 

obey a simple power law as in Eqs. (7) and (8) (Figures 2-3). 

1)()( β
b

r
ErE b
rr = , 1)()( β

θθ
b

r
ErE b=                 (7) 

1)()( βρρ
b

r
r b= , 3( ) ( )o

r
h r h

b

β=                   (8) 

where a  and b are the radii of the inner and outer surfaces 

of the disk, respectively; 1β  and 2β  are the inhomogeneity 

parameters while 3β  is the disk profile parameter whose sign 

and value controls the profile shape of the disk (Figure 3); oh  

is the reference thickness. As being a superscript in Eqs. (7) 

and 8, b  represents the corresponding material property at 

the outer surface. 

 
Figure 3. Disk profiles. 
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Figure 3 shows the general appearance of both the divergent 

3( 0)β >  and convergent 3( 0)β <  profile types of the disk. 

3 0β =  overlaps the uniform disk profiles. 3 1β =  gives a 

linear profile. 

The nonlinear terms either 1β  or 2β  in Eqs. (7) and (8) may 

behave as shown in Figure 2 regarding to their signs and 

values. Positive inhomogeneity indexes suggest an increase 

in the property from the inner surface to the outer. A 

relatively sharp increase may be observed for higher values 

of the index. A positive index also means much reinforced 

outer surface than the inner. For negative inhomogeneity 

indexes, the inner surface become much more considerable 

stiff than the outer. It is worth noting that those 

increases/decreases directly depend on the aspect ratio 

( / )a b . Since the disks have the highest aspect ratios 

compared to the cylinders and spheres, higher negative 

inhomogeneity indexes may present implausible solutions. 

Due to this reason, some investigations have considered just 

the local application of the simple power rule for disk type 

structures. In FG polar orthotropic disk problems, Voigt rule 

of the power of volume fractions of the constituents is indeed 

more plausible material rule to be applied in such analyses 

[55, 58]. However, it is almost impossible to get analytical 

solutions without making further assumptions to the problem 

with it. In such cases, employment of some numerical 

solution techniques which present reliable solutions becomes 

compulsory for even for the simplest problem. Despite those, 

the urgent necessity of some simple closed-form solutions 

has given a motivation to the present study. The present study 

is, therefore, expected to be able to meet some demands of 

the related industry and academics, and to get an idea about 

the main problem. 

Convergent and divergent disk profiles considered in the 

present study are illustrated in Figure 4 for ( / ) 0.2a b =  and 

oh a=  to make visible the differences between the profiles. 

It may be noted that only 3β  has a contribution to the 

governing equation. Hence the chosen of oh  becomes 

optional. The final geometry of the disk may, hence, be 

modified by using different oh  values. 

 
Figure 4. Convergent and divergent disk profiles considered for 

0.2= =oh a
 

3( 1, 0.75, 0.5, 0.25,0,0.25,0.5,0.75,1)= − − − −β .
 

Plugging of nonlinear continuous functions in Eqs. (7) and 

(8) into Navier equation in Eq. (6) results in Eq. (9). 

1 2 2
2

1 1 3 1 32
2 2

( )( ) (1 ) ( ) ( )
( )

b
r r

r
o
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r

du r d u r bu r
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− +

+ + + − + + + = − 
 

                           (9) 

In Eq. (9),  �� stands for the anisotropy/polar degree of the 

disk material [24]. 

1
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o
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C

r

b

θ θ

β θ θ θ
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= = −
−

                     (10) 

12
1 2

11

( )

( ) r r

C r

C r
θ θλ ν λ ν= = =                         (11) 

22
2

11

( )( )

( ) ( )
r

r r

E rC r

C r E r

θ θ

θ

νλ
ν

= = =                        (12) 

In the present study both the homogeneous and particular 

solutions to the governing equation in Eq. (9) are obtained by 

using Cauchy-Euler Technique under the considered 

boundary conditions since Eq. (9) has now constants 

coefficients. It may be also noted that due to the nature of the 

chosen grading and profile functions, both 1λ  and 2λ  remain 

constant along the radial coordinate. 
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2.1. Analytical Solution under Pressure 

Loads 

Let ap be the internal pressure, and bp  be the external 

pressure. If Navier equation in Eq. (9) is solved with 0ω =  

under boundary conditions defined at the inner and outer 

surfaces, ( )r aa pσ =  and ( )r bb pσ = , the homogeneous 

solutions are obtained as follows 

1 3
1

1 2 12( 2 )
2

1 2
11

1 2 1 3

2( ) ( )

2
( )( )

r

B B r C r
r

B B r
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− − − −  +
 
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 + 
  − + +  

   (13) 
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where 
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If the above constants in Eqs. (16), (17) and (18) are plugged 

into Eq. (13) the radial stress variation is obtained in an 

explicit form such as 

1 3 1 3
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1
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2.2. Analytical Solution under Centrifugal 
Forces 

The elastic fields due to the centrifugal force with a constant 

circular velocity is found by solving Eq. (9) in a 

nonhomogeneous form as follows 
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where 
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3 2 2 3

1 2 3 1 3 1 2
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(3 )

b

oC

ω ρ
β β β β

β β β λ β λ λ

Ω =
− − − + + 
 + + + − − + 

      (23) 

After plugging the boundary conditions given in Table 1, 

integration constants in solutions (20), (21) and (22) are 

determined explicitly as shown in Table 2. 

Table 1. Boundary conditions for centrifugal loads. 

 r a=  r b=  

Free-Free ( ) 0=r aσ  ( ) 0=r bσ  

Fixed-Free ( ) 0=ru a  ( ) 0=r bσ  

Fixed-Guided ( ) 0=ru a  ( ) 0=ru b  

3. Validation of the Results 

In this section, four test examples for both uniform and 

hyperbolic rotating disks are to be studied to verify the 

analytical solutions developed in the present study. It is worth 

noting that all these test problems are related to the 

centrifugal forces. In each sub-section, the existing scope of 

the test examples has been originally broadened to include 

pressure loads and hyperbolic profiles. 
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Dimensionless quantities in the disk subjected to the 

centrifugal forces are defined as in Eq. (24). Dimensionless 

quantities used for the pressure loads are explained in the 

related figure and tables. 

2 2
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r
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r
r
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2 2

( )
( )

o

r
r

b

θ
θ

σσ
ρ ω

= ,
2 3

( )
( ) o r
r

o

E u r
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bρ ω
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Table 2. Integration constants in solutions (20), (21), and (22). 
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3.1. Test Example I: Polar Orthotropic 

Uniform Disk 

Yıldırım [24] studied analytically and numerically the elastic 

behaviour of uniform ordinary polar orthotropic rotating 

disks under various boundary conditions. The 

complementary functions method (CFM) was employed in 

the numerical study. By using the same gradation rule in Eqs. 

(7) and (8), anisotropy effects were investigated by either 

physically anisotropic (Table 3) or hypothetically anisotropic 

materials in a detailed manner in that study. The necessary 

data for this test example is: 2a cm= , 5b cm= , o bρ ρ= , 

b
oE Eθ= , and 1 2 3 0β β β= = = . Table 4 shows the 

comparison of some numerical results under rotation. The 

perfect conformity of the present analytical and the literature 

numerical results for the rotating uniform disks made of five 

different physical orthotropic materials is observed from 

Table 4 ( 0)bp = . The additional results for the extension of 

the test example to the uniform polar orthotropic stress-free 

disks under internal pressure are also included in the same 

table together with Table 5. 

Table 3. Material properties considered in Test Example I. 

Material ��(�	
) ��(GPa) 
 (
��

��
) ��� 

MAT-1 2.2 2.2 1220 0.3 

MAT-2 28.6 8.27 1800 0.26 

MAT-3 181. 10.3 1600 0.28 

MAT-4 21.8 26.95 2030 0.15 

MAT-5 12.0 20.0 1600 0.21 

As seen from Tables 4-5, MAT-3 offers the smallest maximum 

hoop stress under the internal pressure and under the rotation 

with fixed-free and fixed-guided boundaries, while MAT-4 

seems to have the best hoop stress under stress-free rotation. 

Effects of the disk profile on the elastic fields in the disk made 

of MAT-3 under internal pressure is illustrated in Figure 5. 

Table 4. Comparison of the present results with the literature for the test 
example I. 

 ( )aθσ  (Due to Rotation) 

 Free-Free Fixed-Free Fixed-Guided 

Numerical-CFM [24] 

MAT-1 0.853000 0.1522351 0.063000 

MAT-2 0.849296 0.0509403 0.016852 

MAT-3 0.851131 0.0120589 0.003651 

MAT-4 0.815113 0.0926972 0.038137 

MAT-5 0.823848 0.1510878 0.069357 

Present (Analytical) 

MAT-1 0.853 0.152235 0.063 

MAT-2 0.849296 0.0509403 0.016852 

MAT-3 0.851131 0.0120589 0.003651 

MAT-4 0.815113 0.0926972 0.038137 

MAT-5 0.823848 0.151088 0.069357 

Expanded present results to the inner pressure 

 ( ) /ru a b  (0.7) /r apσ  ( ) / aa pθσ  

MAT-1 0.305628 -0.198251 1.38095 

MAT-2 0.060627 -0.214995 1.17828 

MAT-3 0.043674 -0.220939 1.10868 

MAT-4 0.024202 -0.193125 1.44515 

MAT-5 0.038169 -0.184289 1.55847 
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Table 5. Broadening of example I to the convergent hyperbolic RR-disks under internal pressure 3( 0.75)= −β . 

/r b  /ru b  /r apσ  apθσ /  

MAT-1 (Polycarbonate) 

0.4 0.391764 -1. 1.8547 

0.6 0.297652 -0.381632 0.976902 

0.8 0.253943 -0.132827 0.658495 

1. 0.232702 0. 0.511944 

MAT-2 (GFRP (E-Glass/Epoxy)) 

0.4 0.0815545 -1. 1.61096 

0.6 0.0746446 -0.413212 0.997786 

0.8 0.0712435 -0.148253 0.725333 

1. 0.0695977 0. 0.575573 

MAT-3 (CFRP (T300/N5208)) 

0.4 0.0600208 -1. 1.5296 

0.6 0.0588995 -0.424107 1.00435 

0.8 0.0583287 -0.15364 0.748534 

1. 0.0580444 0. 0.597857 

MAT-4 (A Glass Fiber/Epoxy Prepreg) 

0.4 0.030868 -1. 1.89431 

0.6 0.023225 -0.376652 0.973338 

0.8 0.019954 -0.130422 0.648017 

1. 0.018629 0. 0.502052 

MAT-5 (An injection molded Nylon 6 composite containing 40wt% short glass fiber) 

0.4 0.047713 -1. 2.03562 

0.6 0.032579 -0.35924 0.960242 

0.8 0.026170 -0.122076 0.61152 

1. 0.023390 0. 0.467783 

 
Figure 5 implies that the maximum hoop stresses are at the 

inner surface for all disk profiles under pressure. The 

distribution of the radial displacement is almost uniform for 

all profile parameters. The divergent disk profiles seem to be 

better than the convergent ones for the radial displacement 

and hoop stresses. That is the thicker thickness at the outer 

surface is preferable for the pressure loads acting on the inner 

surface of an orthotropic hyperbolic disk. 

Broadening of example I to the free-free and fixed-free 

hyperbolic rotating RR disks made of MAT-3 is shown in 

Figure 6. This figure reveals that convergent disk profiles 

should be preferred under rotation for both free-free and 

fixed-free boundary conditions. Apart from this, fixed-free 

boundary condition offers the smallest radial displacement 

and hoop stresses for all disk profiles. The smallest 

maximum radial stresses are observed in free-free hyperbolic 

disks subjected to the centrifugal forces. 

Table 6. Broadening of example II to the FG-isotropic hyperbolic disks under internal and external pressures. 

/r b  3 0.5β =  3 0β =  3 0.5β = −  

/ru b  

0.2 5.60162 6.22324 7.00161 

0.4 0.136982 0.241776 0.412894 

0.6 0.017527 0.061365 0.14131 

0.8 0.005488 0.038893 0.100693 

1. 0.003169 0.033547 0.089753 

/r apσ  

0.2 -1. -1. -1. 

0.4 -0.38420 -0.53298 -0.73631 

0.6 -0.21858 -0.35445 -0.57518 

0.8 -0.14416 -0.23119 -0.38817 

1. -0.1 -0.1 -0.1 

/ apθσ  

0.2 -0.12075 -0.10086 -0.07595 

0.4 -0.04513 -0.03611 -0.00949 

0.6 -0.02015 0.052722 0.193724 

0.8 0.001711 0.249255 0.708424 

1. 0.033380 0.640938 1.76506 
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Figure 5. Broadening of example I to the hyperbolic RR disks made of CFRP and subjected to the internal pressure. 

 
Figure 6. Broadening of example I to the hyperbolic rotating RR disks made of CFRP (T300/N5208) material. 
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Figure 7. Broadening of example II to the hyperbolic pressurized FG metal-

ceramic disks for 1 2 5= =β β . 

3.2. Test Example II: FG-Isotropic 

Hyperbolic Disk (Metal-Ceramic 

Composition) 

Here Yıldırım’s [49] study for a power-law graded isotropic 

and nonhomogeneous hyperbolic rotating disk is to be 

considered. The material grading rule is the same with the 

present study and / 0.2a b = . In this section 1 λ ν= , 2 1λ = , 

( ) ( ) ( )rE r E r E rθ= =  and r rθ θν ν ν= =  for isotropic 

materials. Due to perfect overlapping the present and 

Yıldırım’s [49] results under rotation, they are not to be 

repeated here. Instead of this, this example [49] is to be 

extended to the pressure loads ( / 10)a bp p = for 1 2 5β β= =
as seen in Figure 7 and Table 6. 

For 1 2 5β β= = , from Figure 7 and Table 6, the maximum 

hoop stress due to internal and external pressures is either at 

the outer surface or at the inner surface. If divergent profiles 

are considered, it is at the inner surface. However it was at 

the inner surface in the first test example of orthotropic 

convergent/divergent hyperbolic disks when 1 2 0β β= =
(Figure 5). The distribution of the radial displacement is not 

almost uniform anymore as in the previous example. 

Divergent profiles seems to be still better to get smaller radial 

displacements and circumferential stresses. 

3.3. Test Example III: FG-Polar Orthotropic 

Uniform Disk 

Peng and Li’s [55] benchmark example is now considered to 

validate the present results. Material and geometric properties 

are: / 0.4a b = , 31600 /b kg mρ = , 12 b
rE GPa= , 

20 bE GPaθ = , 0.35rθν = . Peng and Li [55] used o bρ ρ= , 

and b
oE Eθ=  in their results for RR-disks in the case of 

1 2 1,0,1,2β β β= = = −  and 3 0β = . 

For uniform disks subjected to the centrifugal forces, the 

present results are validated by Figure 8 and Table 7. An 

excellent accordance between the analytical solutions is 

observed in Table 7. Table 7 also comprises the spreading of 

the third example for the remaining two boundary conditions 

and CR-disks for 2β = . As observed from Table 7, free-free 

CR-disks have higher elastic fields than RR-disks. 

As to fixed-free and fixed-fixed CR-disks, from Table 7, they 

have smaller radial displacements, higher radial stresses, and 

smaller hoop stresses than RR-disks. 

As in the previous examples, this test example is also originally 

studied under internal pressure (Table 8, Figure 9). It is observed 

from both Table 8 and Figure 9 that negative inhomogeneity 

indexes offer smaller radial displacements and higher hoop 

stresses than the positive ones. Maximum radial displacements 

are at the inner surface for both CR and RR disks. 
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Figure 8. Validation the present formulas (Example III). 

Table 7. Comparison of the results for the third example under rotation ( 1 2 2= = =β β β ). 

/r b  ru  rσ  θσ  

Free-Free (RR) – Present Analytical 
0.4 0.479373 0. 0.191749 
0.6 0.451231 0.0576996 0.290933 
0.8 0.448301 0.065374 0.381522 
1. 0.43026 0. 0.43026 
Free-Free (RR) – Analytical [55] 
0.4 0.4794 0. 0.1917 
0.6 0.4512 0.0577 0.2909 
0.8 0.4483 0.0654 0.3815 
1. 0.4303 0. 0.4303 
Free-Free (CR) – Present Analytical 
0.4 0.492324 0. 0.19693 
0.6 0.465472 0.0590431 0.291682 
0.8 0.453201 0.0656418 0.376346 
1. 0.438184 0. 0.438184 
Fixed-Free (RR) – Present Analytical 
0.4 0. 0.194701 0.0681452 
0.6 0.204037 0.148604 0.174434 
0.8 0.263855 0.102479 0.246952 
1. 0.266661 0. 0.266661 
Fixed-Free (CR) – Present Analytical 
0.4 0. 0.3077 0.0646171 
0.6 0.115702 0.212841 0.114118 
0.8 0.148613 0.130124 0.146217 
1. 0.152021 0. 0.152021 
Fixed-Fixed (RR) – Present Analytical 
0.4 0. 0.0495967 0.0173589 
0.6 0.0443272 0.01974 0.0335053 
0.8 0.0376673 -0.0405807 0.0159306 
1. 0. -0.170072 -0.059525 
Fixed-Fixed (CR) – Present Analytical 
0.4 0. 0.0533737 0.0112085 
0.6 0.0170416 0.0175686 0.0139143 
0.8 0.0142096 -0.0469636 0.0015053 
1. 0. -0.175021 -0.0367543 

 
After 2β ≥ , the location the maximum hoop stress is shifted 

from the inner surface towards the outer surface. While 

2β =  seems to be an appropriate inhomogeneity index for 

the hoop stresses due to almost uniform radial distribution for 
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RR-disk, 1β =  presents the best almost uniform hoop stress 

distribution for CR- disk. 

 
Figure 9. The third example with the inner pressure. 

Table 8. The present results for a uniform disk subjected to an internal 
pressure (Example III). 

/r b  /ru b  /r apσ  / apθσ  

 1= −β  

Free-Free (RR) 

0.4 0.0204737 -1. 2.20921 

0.6 0.0141824 -0.247836 0.70117 

0.8 0.0114452 -0.0650443 0.334898 

1. 0.0102351 0. 0.204702 

Free-Free (CR) 

0.4 0.0280987 -1. 1.8974 

0.6 0.0234702 -0.275001 0.72459 

0.8 0.0211359 -0.0751989 0.380506 

1. 0.019919 0. 0.239028 

 0=β  

Free-Free (RR) 

0.4 0.0381694 -1. 1.55847 

0.6 0.0247498 -0.319332 0.713229 

0.8 0.0195726 -0.0987575 0.454749 

1. 0.0174604 0. 0.349209 

Free-Free (CR) 

0.4 0.0492914 -1. 1.26874 

0.6 0.0398387 -0.351199 0.723023 

0.8 0.0355737 -0.112671 0.509944 

1. 0.0334947 0. 0.401936 

 1=β  

Free-Free (RR) 

0.4 0.0691275 -1. 1.03255 

0.6 0.0407784 -0.394493 0.677495 

0.8 0.0314331 -0.141357 0.579188 

1. 0.027965 0. 0.5593 

Free-Free (CR) 

0.4 0.0825141 -1. 0.78017 

0.6 0.063403 -0.428544 0.670841 

0.8 0.0560008 -0.158533 0.638718 

1. 0.0526739 0. 0.632087 

3.4. Test Example IV: FG- Polar Orthotropic 

Uniform and Hyperbolic Disks 

In this section Essa and Argeso’s [57] test examples are 

considered for uniform and hyperbolic rotating RR disks 

made of FG polar orthotropic materials. Essa and Argeso 

[57] have used a simple power law variation as follows 

(Figure 10): 1( ) ( / ) ,a
rE r E r a β= 2( ) ( / ) ,ar r a βρ ρ=

3( ) ( / )oh r h r a
β= . After modifying their data for the present 

study, the common properties of both examples are to be:

/ 0.4a b = , 0.82.5bρ −= , 1 1β = − , 2 0.8β = − , 0.3b
rE = ,

0.4bEθ = , 0.25rθν = . 

Dimensional results are presented in Figure 11 and Table 9. 

Again, a perfect overlapping is observed between the 

solutions. 
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Figure 10. Material property variation for the test example IV. 

Table 9. Validation the present formulas for FG polar orthotropic uniform 
and hyperbolic rotating RR-disks with the literature. 

Present and [55]* and [57] 

UNIFORM 3( 0,   1.14613)= =β ω  

/r b  ru  rσ  θσ  

0.4 0.399997 0. 0.999993 

0.5 0.380673 0.111664 0.646299 

0.6 0.378991 0.132946 0.465416 

0.7 0.384672 0.118134 0.353396 

0.8 0.390988 0.086431 0.273178 

0.9 0.392792 0.045812 0.209242 

1. 0.385717 0. 0.154287 
Present and [57] 

HYPERBOLIC 3( 0.756471,   2.38140)= − =β ω  

/r b  ru  rσ  θσ  

0.4 0. 1.20829 0.402764 

0.5 0.147699 1.0281 0.579018 

0.6 0.292261 0.854158 0.609453 

0.7 0.424721 0.66711 0.569081 

0.8 0.532603 0.462423 0.487018 

0.9 0.601218 0.239753 0.376816 

1. 0.614277 0 0.245711 

*computed and presented by Essa and Argeso [57] 

 
Figure 11. Validation of the radial displacement for example IV. 

4. Results and Discussion 

Effects of the variation of the profile parameter on the elastic 

fields i) in FG polar orthotropic hyperbolic disks, ii) in only 

polar orthotropic hyperbolic disks are studied in the first two 

sub-sections below in a detailed manner. Finally, effects of 

the variation of the gradation parameter on the elastic fields 

in FG polar orthotropic hyperbolic disks is also investigated. 

Results observed from the fresh examples are discussed in 

each related sub-sections. 

4.1. Effects of the Variation of the Profile 

Parameter on the Elastic Fields in FG 
Polar Orthotropic Hyperbolic Disks 

In this section effects of the variation of the disk profile 

parameter on the elastic fields are originally investigated for 

FG polar orthotropic hyperbolic RR and CR disks having 

either convergent 3( 0)β <  or divergent 3( 0)β >  profiles 

under both separate centrifugal and pressure loads and 

different boundary conditions for 1 2 1.5β β β= = =  and 

1.5β = − . Results are presented in Figures 12-13 and Tables 

10-12. From those figures and tables, the followings may be 

observed: 

a) For both positive and negative inhomogeneity indexes, all 

hyperbolic profiles having CR-alignment have smaller 

radial displacements under fixed-free and fixed-fixed 

boundary conditions. This is true for the free-free CR-

disks subjected to centrifugal forces having negative 

inhomogeneity indexes. 

b) For free-free, fixed-free and fixed-fixed surfaces and 

under rotation, convergent profiles offer much smaller 

radial displacements than the divergent ones for all 

inhomogeneity indexes. This situation is reversed if the 

disk is subjected to the pressure loads. 

c) For fixed-fixed/rotation, the hoop stresses are all in 

tension-compression. For free-free/pressure, this situation 

is observed in divergent profiles with 1.5β =  (Figure 13). 

d) The maximum hoop stress is at the outer surface of free-

free/rotation disks for positive inhomogeneity indexes 

while it is at the inner surface for negative inhomogeneity 

indexes. 

e) The maximum hoop stress is at the outer surface of fixed-

free/rotation disks for positive inhomogeneity indexes 

while it is at the vicinity of the inner surface for negative 

inhomogeneity indexes (Figure 13). 

f) If the circumferential stresses in free-free hyperbolic disks 

are considered (Figure 13), divergent profiles seem to be 

more proper under pressure loads while convergent 

profiles exhibit better response to the centrifugal forces. 
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Apart from those, CR-disks seem to be more appropriate 

for pressure loads while RR-disks are proper for 

centrifugal loads. 

g) CR-disks subjected to rotation are preferable for both 

fixed-fixed and fixed-free boundary conditions under all 

inhomogeneity indexes. 

h) Divergent disk profiles are better with positive 

inhomogeneity indexes while convergent ones are well 

with negative inhomogeneity indexes for the hoop 

stresses in fixed-fixed hyperbolic disks. 

i) For convergent fixed-free disks subjected to rotation with 

constant circular speed, both the radial and hoop stresses 

are much smaller than the divergent ones for all 

inhomogeneity indexes (Figure 13). 

j) Contrary to the hoop stress variations in fixed-free and 

fixed-fixed hyperbolic disks, CR-alignment offer much 

higher radial stresses for all inhomogeneity indexes. 

 
Figure 12. Variation of the radial displacements with profile parameters in RR and CR disks for 1.5, 1.5β = − . 

4.2. Effects of the Variation of the Profile 

Parameter on the Elastic Fields in Polar 
Orthotropic Hyperbolic Disks 

The formulas developed in the present study may be directly 

used for the hyperbolic disks made of a single orthotropic 

material by just taking 1 2 0β β= = . Results are presented in 

Figures 14-15 and Tables 13-14 for hyperbolic disks 

subjected to the either internal/external pressures or 

centrifugal forces. 

Figure 14 implies that divergent profiles are preferable to 

convergent ones for the disks under pressure. From Table 13 

it is revealed that CR-alignments are better than RR-ones 

under pressure. 

Table 14 indicates that RR-convergent disks are the best for 

the rotation under stress-free boundary conditions. However, 

from Figure 15 and Table 14, divergent profiles of free-free 

RR-disk are the best for pressure loads. Table 14 implies that 

RR-convergent fixed-free polar orthotropic hyperbolic disks 

are superior to the other types under rotation. 

From Figure 15, again, RR-convergent hyperbolic disks are 

preferable to the RR-divergent ones under fixed-guided 

boundary conditions. 
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Figure 13. Variation of the stresses with profile parameters in RR and CR disks for 1.5, 1.5β = − . 
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Figure 14. Variation of the elastic fields in a CR-hyperbolic disk made of a 

single polar orthotropic material under pressure. 

4.3. Effects of the Variation of the 

Gradation Parameter on the Elastic 

Fields in FG Polar Orthotropic 
Hyperbolic Disks 

As a final example, variation of the equivalent stress, in Eq. 

(25), with the inhomogeneity index is aimed to be studied 

under only centrifugal force effects. Results are presented in 

Figures 16-17. Figure 16 shows the variation of the elastic 

fields with the gradation parameter in convergent RR 

hyperbolic rotating disks under fixed-free and free-free 

boundary conditions. 

Variation of the equivalent stresses with the gradation 

parameter for convergent RR and CR hyperbolic rotating disks 

under three boundary conditions is illustrated in Figure 17. 

2 2
eq r r θ θσ σ σ σ σ= − +                             (25) 

Figure 17 indicates that positive inhomogeneity indexes are 

preferable for both CR and RR convergent hyperbolic disks 

under rotation. CR disks exhibit higher equivalent stresses 

than RR-ones. It seems possible to achieve the best 

inhomogeneity index for a given geometry, loading and 

boundary conditions in the material tailoring. For instance, 

from Figure 17, 1β = is to be a good choice to get almost 

uniform stress distributed along the radial coordinate under 

free-free condition. 

5. Conclusions 

A unified formulation is carried out by presuming a state of 

axisymmetric plane stress and small deformations for the 

elastic analysis of convergent/divergent hyperbolic thin disks 

subjected to both internal/external pressure and centrifugal 

forces under free-free, fixed-free, and fixed-fixed boundary 

conditions. The disk material is assumed to be functionally 

graded polar orthotropic material whose fibers aligned totally 

either in the radial or circumferential directions. A polar 

orthotropic material without FG, a functionally graded 

isotropic material which is composed of metal and ceramic 

pairs, and finally an isotropic and homogeneous conventional 

material may all be studied by the same closed-form formulas 

developed and presented in this study. It is also possible to 

consider concentric disk assembles via these formulas. 

Comprehensive investigations conducted in the present study 

give very useful clues to the engineers: 

a) For both positive and negative inhomogeneity indexes, all 

hyperbolic FG polar orthotropic fixed-free and fixed-fixed 

CR-disks have smaller radial displacements under rotation. 

This is true for the free-free CR-disks subjected to 

centrifugal forces having negative inhomogeneity indexes. 

b) For all boundary conditions and inhomogeneity indexes, 

and under centrifugal forces, convergent FG polar 

orthotropic disks offer much smaller radial displacements 

than the divergent ones. This situation is reversed if the 

disk is subjected to the pressure loads. 

c) The maximum hoop stress in FG polar orthotropic 

traction-free disks under rotation is at the outer surface for 

positive inhomogeneity indexes while it is at the inner 

surface for negative inhomogeneity indexes. 

d) The maximum hoop stress is at the outer surface of fixed-
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free/rotation disks for positive inhomogeneity indexes 

while it is at the vicinity of the inner surface for negative 

inhomogeneity indexes. 

e) For free-free boundary conditions, CR-disks made of a FG 

polar orthotropic material seem to be appropriate for pressure 

loads while RR-disks are proper for centrifugal loads. 

f) Divergent profiles of FG polar orthotropic disks seem to 

have more proper circumferential stress under pressure 

loads while convergent profiles exhibit better 

circumferential stress response to the centrifugal forces. 

g) CR-disks made of a FG polar orthotropic material and 

subjected to rotation are preferable for both fixed-fixed 

and fixed-free boundary conditions under all 

inhomogeneity indexes. 

h) For convergent fixed-free FG polar orthotropic disks 

under rotation, both the radial and hoop stresses are 

smaller than the divergent ones for all inhomogeneity 

indexes. 

i) Contrary to the hoop stress variations in fixed-free and 

fixed-fixed hyperbolic FG polar orthotropic disks under 

rotation, CR-alignment offer much higher radial stresses 

for all inhomogeneity indexes. 

j) Divergent profiles are preferable to convergent ones for 

the polar orthotropic disks under pressure. CR-alignments 

are better than RR-ones under pressure. 

k) RR-convergent disks are the best for the rotation of polar 

orthotropic disks under stress-free boundary conditions. 

However, divergent profiles of free-free RR-disk are the 

best for pressure loads. 

l) RR-convergent fixed-free polar orthotropic hyperbolic 

disks are superior to the other types under rotation. 

m) Positive inhomogeneity indexes are preferable for both 

CR and RR convergent FG polar orthotropic hyperbolic 

disks under rotation. CR disks exhibit higher equivalent 

stresses than RR-ones. 

Table 10. The present results for a hyperbolic disk subjected to centrifugal forces for 1 2 1.5β β= = . 

/r b  ru  rσ  θσ  ru  rσ  θσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

Free-Free (RR) 
0.2 0.38339 0. 0.171457 0.208435 0. 0.0932149 
0.4 0.381144 0.0825583 0.269952 0.22116 0.0680363 0.163687 
0.6 0.410732 0.104484 0.354722 0.26511 0.10443 0.241904 
0.8 0.421172 0.0820887 0.405438 0.292281 0.0915753 0.293475 
1. 0.406552 0. 0.406552 0.28982 0. 0.28982 

/r b  ru  rσ  θσ  ru  rσ  θσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

Free-Free (CR) 
0.2 0.453085 0. 0.202626 0.263237 0. 0.117723 
0.4 0.426497 0.0936299 0.289403 0.254251 0.082508 0.178129 
0.6 0.424368 0.112129 0.352261 0.265233 0.118388 0.23031 
0.8 0.418752 0.0845734 0.392304 0.271033 0.0984527 0.263094 
1. 0.405956 0. 0.405956 0.266212 0. 0.266212 
Fixed-Free (RR) 
0.2 0. 0.23946 0.0838109 0. 0.0737319 0.0258062 
0.4 0.305519 0.135453 0.240636 0.147407 0.099095 0.127912 
0.6 0.373315 0.123367 0.332347 0.220417 0.120246 0.21282 
0.8 0.393515 0.0884893 0.382942 0.257589 0.0983641 0.264822 
1. 0.382041 0. 0.382041 0.258934 0. 0.258934 
Fixed-Free (CR) 
0.2 0. 0.634464 0.133237 0. 0.158741 0.0333356 
0.4 0.27787 0.257969 0.229914 0.108308 0.166503 0.103465 
0.6 0.321442 0.174695 0.285674 0.151422 0.16501 0.151943 
0.8 0.329495 0.106329 0.317039 0.170208 0.119138 0.177257 
1. 0.322124 0. 0.322124 0.171352 0. 0.171352 
Fixed-Fixed (RR) 
0.2 0. 0.0501133 0.0175396 0. 0.0267574 0.00936507 
0.4 0.06017 0.0216759 0.0456414 0.0495861 0.0286552 0.0413903 
0.6 0.0621763 -0.0033169 0.0470006 0.0621441 0.00979676 0.0515655 
0.8 0.0423046 -0.0622319 0.0160572 0.0471936 -0.0600303 0.0212006 
1. 0. -0.177149 -0.0620021 0. -0.211994 -0.0741979 
Fixed-Fixed (CR) 
0.2 0. 0.0620087 0.0130218 0. 0.0355593 0.00746746 
0.4 0.0256375 0.0180439 0.0200038 0.0225922 0.0290023 0.020379 
0.6 0.0250689 -0.0136436 0.0165531 0.0264682 -0.00029059 0.0204412 
0.8 0.016375 -0.0741971 -0.00093517 0.0190623 -0.0772639 0.000824389 
1. 0. -0.18506 -0.0388627 0. -0.228594 -0.0480048 



18 Vebil Yıldırım:  Unified Exact Solutions to the Hyperbolically Tapered Pressurized/Rotating Disks  
Made of Nonhomogeneous Isotropic/Orthotropic Materials 

Table 11. The present results for a hyperbolic disk subjected to centrifugal forces for 1 2 1.5= = −β β . 

/r b  ru  rσ  θσ  ru  rσ  θσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

Free-Free (RR) 
0.2 0.094261 0. 5.26935 0.0429442 0. 2.40065 
0.4 0.107816 0.722143 1.3182 0.051807 0.438215 0.665338 
0.6 0.150526 0.420729 0.687054 0.0848594 0.329861 0.419765 
0.8 0.185629 0.182254 0.388069 0.119291 0.17113 0.268289 
1. 0.192386 0. 0.192386 0.130792 0. 0.130792 
Free-Free (CR) 
0.2 0.11909 0. 6.65731 0.0505046 0. 2.82329 
0.4 0.118871 0.895013 1.36265 0.0518455 0.528195 0.623264 
0.6 0.134381 0.488507 0.58449 0.0649005 0.378364 0.312196 
0.8 0.147074 0.200496 0.299031 0.0786172 0.187584 0.176731 
1. 0.148573 0. 0.148573 0.0831356 0. 0.083136 
Fixed-Free (RR) 
0.2 0. 2.40391 0.841367 0. 0.703703 0.246296 
0.4 0.061803 0.912745 0.930205 0.0271157 0.507542 0.4456 
0.6 0.119107 0.458 0.587429 0.0667739 0.345961 0.360544 
0.8 0.160391 0.19048 0.346859 0.104407 0.175304 0.243747 
1. 0.16983 0. 0.16983 0.117445 0. 0.117445 
Fixed-Free (CR) 
0.2 0. 4.0921 0.859341 0. 0.97809 0.205399 
0.4 0.0363873 1.31565 0.63587 0.0135406 0.651832 0.270694 
0.6 0.065964 0.579606 0.35827 0.0320575 0.410409 0.201147 
0.8 0.0855798 0.221424 0.196001 0.0488009 0.196281 0.126471 
1. 0.0906329 0. 0.0906329 0.0550073 0. 0.055007 
Fixed-Fixed (RR) 
0.2 0. 1.43944 0.503805 0. 0.583116 0.204091 
0.4 0.0336839 0.441821 0.487506 0.0204403 0.349923 0.324466 
0.6 0.0540791 0.112018 0.233139 0.0423993 0.150092 0.20458 
0.8 0.0480896 -0.0913073 0.0520515 0.0451544 -0.0540899 0.05995 
1. 0. -0.241079 -0.0843776 0. -0.259465 -0.09081 
Fixed-Fixed (CR) 
0.2 0. 1.93461 0.406268 0. 0.740211 0.155444 
0.4 0.0156845 0.495142 0.258976 0.00925626 0.401921 0.175875 
0.6 0.0235907 0.0868721 0.102842 0.0182717 0.145911 0.096166 
0.8 0.0198757 -0.12552 0.0083622 0.0185957 -0.0798251 0.015722 
1. 0. -0.265242 -0.0557008 0. -0.285628 -0.05998 

Table 12. The present results for a hyperbolic disk subjected to internal/external pressures for 1 2 1.5,  1.5= = −β β  ( / 10)=a bp p . 

/r b  /ru b  /r apσ  / apθσ  /ru b  /r apσ  / apθσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

1 2 1.5= =β β  

Free-Free (RR) 
0.2 0.0714965 -1. 0.289484 0.138214 -1. 0.886227 
0.4 0.00717797 -0.26151 -0.00073368 0.0465988 -0.445131 0.433637 
0.6 -0.00180413 -0.141941 -0.0776287 0.0259035 -0.261857 0.309645 
0.8 -0.00475526 -0.108954 -0.123198 0.0180423 -0.16475 0.265089 
1. -0.00621209 -0.1 -0.159242 0.0143738 -0.1 0.252477 
Free-Free (CR) 
0.2 0.0411017 -1. 0.0105746 0.130743 -1. 0.491643 
0.4 0.0021247 -0.308544 -0.0486689 0.0693615 -0.560769 0.408656 
0.6 -0.00400879 -0.16988 -0.0729371 0.0519716 -0.35018 0.409547 
0.8 -0.00600296 -0.121233 -0.0898893 0.0445673 -0.209202 0.434414 
1. -0.00690051 -0.1 -0.103806 0.0408683 -0.1 0.46942 

1 2 1.5= = −β β  

Free-Free (RR) 
0.2 0.00117623 -1. 0.965063 0.00290949 -1. 2.90291 
0.4 0. -0.242908 -0.0868015 0.0015442 -0.154686 0.25106 
0.6 -0.00095663 -0.152816 -0.122097 0.000755598 -0.0973045 0.020136 
0.8 -0.00201421 -0.118939 -0.112002 -0.00013337 -0.0940659 -0.03758 
1. -0.00324082 -0.1 -0.0998165 -0.00135894 -0.1 -0.06218 
Free-Free (CR) 
0.2 0.000452531 -1. 0.0935673 0.00394463 -1. 2.43614 
0.4 -0.00033700 -0.328524 -0.108954 0.00286678 -0.203375 0.29725 
0.6 -0.0010713 -0.189922 -0.085985 0.00216297 -0.122636 0.067326 
0.8 -0.00183061 -0.131757 -0.0660444 0.00144753 -0.104818 0.008333 
1. -0.00262732 -0.1 -0.0525279 0.000592081 -0.1 -0.01390 
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Table 13. The elastic fields in a polar orthotropic hyperbolic disk subjected to internal/external pressures 1 2( 0,     / 10)= = =a bp pβ β . 

/r b  /ru b  /r apσ  / apθσ  /ru b  /r apσ  / apθσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

Free-Free (RR) 
0.2 0.00951039 -1. 0.601039 0.0211356 -1. 1.76356 
0.4 0.001058 -0.243376 -0.0322819 0.00973399 -0.265654 0.393721 
0.6 -0.0016937 -0.143157 -0.106562 0.00569615 -0.14438 0.139339 
0.8 -0.00337936 -0.113077 -0.124061 0.00332975 -0.110034 0.0447317 
1. -0.00469782 -0.1 -0.128956 0.0015353 -0.1 -0.0042940 
Free-Free (CR) 
0.2 0.0049135 -1. 0.0848101 0.0251418 -1. 1.29851 
0.4 -0.00040061 -0.312134 -0.0775664 0.0167633 -0.347848 0.429851 
0.6 -0.00243081 -0.178059 -0.0860086 0.0131127 -0.1936 0.221599 
0.8 -0.003628 -0.126548 -0.080995 0.0109181 -0.131533 0.13615 
1. -0.00447595 -0.1 -0.0747114 0.00938474 -0.1 0.0916169 

 
Figure 15. Variation of the elastic fields with the profile parameters in RR polar orthotropic hyperbolic disk. 
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Figure 16. Variation of the elastic fields with the gradation parameter in convergent RR hyperbolic rotating disks under fixed-free and free-free boundary 

conditions. 

Table 14. The elastic fields in a polar orthotropic hyperbolic disk subjected to centrifugal forces. 

/r b  ru  rσ  θσ  ru  rσ  θσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

Free-Free (RR) 
0.2 0.208435 0. 1.04217 0.094261 0. 0.471305 
0.4 0.22116 0.268937 0.647029 0.107816 0.182689 0.333481 
0.6 0.26511 0.224698 0.520495 0.150526 0.195537 0.319314 
0.8 0.292281 0.12798 0.410144 0.185629 0.13041 0.277679 
1. 0.28982 0. 0.28982 0.192386 0. 0.192386 
Free-Free (CR) 
0.2 0.263237 0. 1.31619 0.11909 0. 0.595448 
0.4 0.254251 0.326142 0.704116 0.118871 0.226422 0.344726 
0.6 0.265233 0.254731 0.495548 0.134381 0.227037 0.271646 
0.8 0.271033 0.137592 0.367685 0.147074 0.143463 0.213969 
1. 0.266212 0. 0.266212 0.148573 0. 0.148573 
Fixed-Free (RR) 
0.2 0. 0.824348 0.288522 0. 0.215012 0.0752542 
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/r b  ru  rσ  θσ  ru  rσ  θσ  

 3 0.75β = (Divergent) 3 0.75β = −  (Convergent) 

0.4 0.147407 0.391707 0.505616 0.061803 0.230908 0.235325 
0.6 0.220417 0.258729 0.457917 0.119107 0.212859 0.273012 
0.8 0.257589 0.137468 0.3701 0.160391 0.136297 0.248192 
1. 0.258934 0. 0.258934 0.16983 0. 0.16983 
Fixed-Free (CR) 
0.2 0. 1.77478 0.372703 0. 0.366008 0.0768618 
0.4 0.108308 0.65816 0.408983 0.0363873 0.332836 0.160864 
0.6 0.151422 0.355045 0.32693 0.065964 0.269377 0.166509 
0.8 0.170208 0.1665 0.247725 0.0855798 0.158438 0.140247 
1. 0.171352 0. 0.171352 0.0906329 0. 0.0906329 
Fixed-Fixed (RR) 
0.2 0. 0.299156 0.104705 0. 0.128748 0.0450617 
0.4 0.0495861 0.11327 0.16361 0.0336839 0.111773 0.12333 
0.6 0.0621441 0.0210793 0.110951 0.0540791 0.0520611 0.108353 
0.8 0.0471936 -0.0838949 0.0296287 0.0480896 -0.0653342 0.037245 
1. 0. -0.211994 -0.0741979 0. -0.241079 -0.0843776 
Fixed-Fixed (CR) 
0.2 0. 0.397566 0.0834888 0. 0.173037 0.0363377 
0.4 0.0225922 0.114642 0.0805552 0.0156845 0.125262 0.0655163 
0.6 0.0264682 -0.0006253 0.0439824 0.0235907 0.0403745 0.0477964 
0.8 0.0190623 -0.10798 0.00115212 0.0198757 -0.0898149 0.0059835 
1. 0. -0.228594 -0.0480048 0. -0.265242 -0.0557008 

 

Figure 17. Variation of the equivalent stresses with the gradation parameter for convergent RR and CR hyperbolic rotating disks under three boundary 
conditions. 
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