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Abstract 

In this work, a theory is derived for the calculation and analysis of phase diagram of binary alloys composed of constituent 

elements having the same structure and any proportion. Analytical expression of phase diagram has been derived using the 

ratio of root mean square fluctuation in atomic positions on the equilibrium lattice positions and the nearest neighbour distance. 

The theory is based on Lindemann criterion so that the calculated phase diagram provides information on Lindemann melting 

temperatures and eutectic point of binary alloys. Numerical results for Cs1-xRbx, Cu1-xAux, Cu1-xNix and Cr1-xCsx are found to be 

in good and reasonable agreement with experiment. 

Keywords 

Phase Diagram, Lindemann Melting Temperature, Eutectic Point, Binary Alloys 

Received: June 7, 2016 / Accepted: June 19, 2016 / Published online: July 27, 2016 

@ 2016 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. 

http://creativecommons.org/licenses/by/4.0/ 

 

1. Introduction 

Melting of materials has great scientific and technological 

interest. The problem is to understand how to determine the 

temperature at which a solid melts, i.e., its melting 

temperature. The Lindemann criterion [1, 2] is based on the 

concept that the melting occurs when the ratio of the root 

mean square fluctuation (RMSF) in atomic positions on the 

equilibrium lattice positions and the nearest neighbour 

distance reaches a threshold value. Binary alloys having 

liquidus consisting of two branches in their phase diagram or 

melting curve are called eutectics [3] and the minimum 

solidification temperature is called the eutectic point [3]. The 

binary alloy phase diagrams have been experimentally 

studied [4]. Phenomenological theory of the phase diagrams 

of the binary eutectic systems [5] has developed to show 

qualitatively the temperature-concentration diagrams of 

eutectic mixtures using a Landau-type approach, which 

involves a coupling between the liquid-solid transition order-

parameters and a specific nonlinear dependence on 

concentration of the free-energy coefficients. Here the 

eutectic point is considered more generally as the minimum 

of the phase diagram or melting curve. 

Many efforts have been made to study the melting problems 

and some results can be seen bellow. The melting curves of 

materials in pressure-dependence have been investigated [6], 

where the research is focused mainly on individual crystals 

(Fe and Al). The Lindemann criterion and vortex lattice 



81 Nguyen Cong Toan et al.:  Theoretical Study of Phase Diagram, Lindemann Melting Temperature and  

Eutectic Point of Binary Alloys 

phase transition in type-II superconductors have been in 

detail discussed [7]. Here, they found that it is important to 

distinguish between slightly different versions of the 

Lindemann criterion depending on either quenched disorder-

induced and thermal fluctuations which act cooperatively or 

independently in destroying the lattice order. The distance 

fluctuation criterion for melting with comparison of square-

well and Morse potential models for cluster and 

homopolymers [8] has been discussed to analyze a 

mechanism leading to melting. A generalized set of 

Lindemann measures, based on the positional displacements 

of atoms from their locations in the corresponding 

mechanically stable inherent structures, has been studied in 

the neighborhood of the melting transition for a Lennard-

Jones type solid [9]. Here, the mechanism for the solid-liquid 

phase transition based on the Lindemann criterion has been 

studied using Monte-Carlo simulation. Unfortunately, a 

complete theory for the analytical calculation and analysis of 

the melting transition and phase diagram of materials, 

especially for alloys, is still not available. 

The purpose of this work is to derive a theory for the 

calculation and analysis of the phase diagram or melting curve 

of binary alloys composed of constituent elements having the 

same structure and any proportion. The development presented 

in Sect. 2 is derivation of the analytical expressions for the 

atomic mean square displacement (MSD), mean lattice energy, 

atomic mean square fluctuation (MSF), and then the ratio of 

the RMSF in atomic positions on the equilibrium lattice 

positions and the nearest neighbour distance, from which the 

phase diagram or melting curves of binary alloys has resulted. 

The theory is based on Lindemann idea regarding the melting 

[1, 2] so that the derived phase diagram provides information 

on the Lindemann melting temperatures of the binary alloys 

with respect to any proportion of the constituent elements and 

on their eutectic points. Numerical results (Sect. 3) for the 

binary alloys Cs1-xRbx, Cu1-xAux, Cu1-xNix and Cr1-xCsx are 

compared to experiment [4] which show good and reasonable 

agreement. 

2. Formalism 

The atomic oscillating amplitude is characterized by the 

MSD or Debye-Waller factor (DWF) [10-15] which has the 

form [10] 

q

q
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where K is the scattering vector which is equal to a 

reciprocal lattice vector, and  is the mean atomic vibration 

amplitude. 

If each binary alloy lattice cell contains p atoms, where on 

average s is the number of atoms of type 1 and (p-s) is the 

number of atoms of type 2 of a binary alloy, then the quantity 

 is given by 

.                            (2) 

The potential energy of an oscillator is equal to its kinetic 

energy, so that the mean energy of atom k vibrating with 

wave number q has the form 

.                                  (3) 

Using Eqs. (3), the mean energy of the crystal consisting of 

N lattice cells is given by 

,   (4) 

where M1, M2 are the masses of atoms of types 1 and 2, 

respectively. 

Using the relationship between 
 
and  [12], i.e. 

,                     (5) 

and Eqs. (3) and (4), the mean energy for the atomic 

vibration of the qth lattice mode has resulted as 

.               (6) 

The mean energy for this qth lattice mode with p atoms in a 

lattice cell calculated using the phonon energy with 
 
as the 

mean number of phonons has the form 

,                          (7) 

so that, using Eqs. (6) and (7) it has resulted as 
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From Eqs. (2) and (5) the mean atomic vibration amplitude 

for qth lattice mode is obtained 
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or DWF of Eq. (1) with all three polarizations is given by 

. (10) 

Transforming the sum over q into the corresponding integral, 

and applying this to the high temperature area ( ) due 

to the melting with  being the Debye temperature, the 

DWF has resulted from Eq. (10) as 

,             (11) 

which is linearly proportional to the temperature T as it was 

mentioned already [10, 13-15]. 

From Eq. (10) and using Eq. (1) for W, it is given by 

.            (12) 

The mean crystal lattice energy has been calculated as 

.          (13) 

Using this expression and Eqs. (4) and (7), the atomic MSF is 

derived in the form 

,                   (14) 

which by using Eq. (12), has resulted as 

.           (15) 

Here, in the binary alloy lattice cell n, the thermal vibration 

describing the atomic fluctuation function, denoted by number 

1 for the 1
st
 constituent element and by number 2 for the 2

nd
 

constituent element composing the binary alloy, is given by 

,       (16) 

,             (17) 

with 
 
being the lattice vibration frequency and q the wave 

number. 

Further, using W from Eq. (11) this expression has resulted 

as 

.           (18) 

Hence, at  the MSF in atomic positions about the 

equilibrium lattice positions is determined by Eq. (18) which 

is linearly proportional to the temperature T. 

Therefore, at a given temperature T the quantity R defined by the 

ratio of the RMSF in atomic positions on the equilibrium lattice 

positions and the nearest neighbour distance d is given by 

.               (19) 

This expression for R contains the parameters p and s which 

are different for different binary alloy structures and the 

parameter m concerning the atomic mass M1 of element 1 

and atomic mass M2 of element 2 composing the binary 

alloys. So that it represents the contribution of different 

binary alloys consisted of different pairs of elements having 

the same crystal structures. 

Based on the Lindemann criterion, the binary alloy will be 

melted when this ratio R of Eq. (19) reaches a threshold 

value Rm, then the Lindemann melting temperature  for a 

binary alloy using Eq. (19) is defined as 

,             (20) 

where 

.    (21) 

This expression for the Lindemann melting temperature can 

be applied to different binary alloys composed of different 

pairs of elements, with the atomic masses M1 and M2 having 

the same crystal structures defined by the parameters p and s. 

If x is denoted as proportion of the mass of the element 1 in 

the binary alloy, then it has the form 

.                 (22) 

From this equation the mean number of atoms of the element 

1 in each binary alloy lattice cell is obtained as 

.                        (23) 

It is considered that one element to be the host and another 
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constituent elements, the average of the parameter m with 

[[[[ ]]]] (((( ))))
( )

q

q q

n

W K s p s m
p NM s p s mω

    ++++    
    = + −= + −= + −= + −
    + −+ −+ −+ −    

∑∑∑∑
22

1

1

1 2

2

ℏ

D
T θ>>>>>>>>

D
θ

( )

B D

M s p s M K T
W

p M M k θ
+ −+ −+ −+ −        ====

2 2

2 1

2

1 2

3

2

ℏ

[[[[ ]]]]( )
q

q

p W
u

K s p s m
====

+ −+ −+ −+ −
∑∑∑∑

2
2

1 22

6

, ,

k kn k q knq

k n k n q

M U M UE ω
22

2ɺ= == == == =∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑

n q

n q

U m u
N

====∑ ∑∑ ∑∑ ∑∑ ∑
22 2

2 1

1

[[[[ ]]]]( )
n

n

p m W
U

N K s p s m
====

+ −+ −+ −+ −
∑∑∑∑

2 2
2

2 22

61

(((( ))))

(((( ))))

*

*

,
i i

n q q

q

i i

n q q

q

n n

n n

e e

e e

q.R q.R

1 1 1

q.R q.R

2 2 2

1
U u u

2

1
U u u

2

−−−−

−−−−

= += += += +

= += += += +

∑∑∑∑

∑∑∑∑

,q q

q qi t i t
e e

ω ω= == == == =1 1 2 2u u u u

q
ω

[[[[ ]]]]( )
n

n B D

pm T
U

N M s p s m k θ
====

+ −+ −+ −+ −∑∑∑∑
2 2

2

2 2

1

91 ℏ

DT θ>>>>>>>>

[[[[ ]]]]( ) B D

pm T
R

d M s p s m k θ
====

+ −+ −+ −+ −

2 2

2

1

91 ℏ

mT

( )
m

sM p s M
T

pm
χ

+ −+ −+ −+ −        ==== 2 1

9

,m B D

m n

n

R k d
R U

Nd

θχ = == == == = ∑∑∑∑
2 2 2

22

22 2

1

ℏ

(((( ))))
sM

x
sM p s M

====
+ −+ −+ −+ −

1

1 2

( )

px
s

m x x
====

− +− +− +− +1



83 Nguyen Cong Toan et al.:  Theoretical Study of Phase Diagram, Lindemann Melting Temperature and  

Eutectic Point of Binary Alloys 

respect to the atomic mass proportion of the constituent 

elements in the binary alloy is taken as 

.                 (24) 

This equation can be solved using the successive 

approximation. Substituting the zero-order term with s from 

Eq. (23), the 1
st
 order term equation is given by 

,      (25) 

which provides the following solution 

,             (26) 

replacing m in Eq. (20) for the calculation of Lindemann 

melting temperature. 

The threshold value Rm of the ratio of RMSF in atomic 

positions on the equilibrium lattice positions and the nearest 

neighbour distance at melting is contained in  which will 

be obtained by an averaging procedure. The average of  

can not be directly based on  and 
 
because it has the 

form of Eq. (21) containing , i.e., the second order of , 

while the other averages have been realized based on the first 

order of the displacement. That is why we have to perform 

the average for  and then obtain 

,            (27) 

containing  for the 1
st
 element and 

 
for the 2

nd
 element, 

for which we use the following limiting values 

, (28) 

containing Tm(1) and Tm(2) as melting temperatures of the 1
st
 or 

doping element and of the 2
nd

 or host element, respectively, 

which compose the binary alloy. 

Therefore, the melting temperature of binary alloys has been 

obtained from the calculated ratio of RMSF in atomic 

positions on the equilibrium lattice positions and nearest 

neighbour distance Eq. (19). 

The eutectic point is calculated using the condition for the 

minimum of the melting curve, i.e., 

.                                (29) 

Hence, one can determine the phase diagram or melting 

curves, from which the Lindemann melting temperatures of 

the binary alloys with respect to any proportions of their 

constituent elements, using Eq. (20) with Eqs. (22), (23), 

(26), (27), (28) and then their eutectic points using Eq. (29). 

The eutectic isotherm is the one for which T equals the 

eutectic melting temperature TE. 

3. Numerical Results and 
Discussions 

Now, the derived theory is applied to numerical calculations for 

binary alloys. Beside calculating the atomic number in an 

elementary cell of the binary alloy, the other input data are taken 

from Ref. 3. The numerical calculations using the derived theory 

are focused mainly on the phase diagram or melting curve 

giving the Lindemann melting temperatures with respect to any 

proportion of the constituent elements, and eutectic points of 

binary alloys. The eutectic isotherm is apparently T = TE. 

The phase diagrams or melting curves of binary alloys Cs1-xRbx 

(Fig. 1) and Cu1-xAux (Fig. 2) calculated using the present theory 

correspond with experiment [4] and belong to the types [5], 

where their eutectic points are lower than the melting 

temperature of the host elements Cs and Cu and of the doping 

elements Rb and Au, respectively. Here, the calculated results 

for Cs1-xRbx (Fig. 1) are found to be in reasonable agreement 

with experiment [4]. Figs. 3 and 4 illustrate the phase diagrams 

of Cu1-xNix and Cr1-xCsx, respectively, calculated using the 

present theory. Here, the calculated results for Cu1-xNix (Fig. 3) 

agree well with experiment [4] and belong to the types [5], 

where the eutectic temperature is equal to the melting 

temperature of the host element Cu, while the calculated results 

for Cr1-xCsx (Fig. 4) belong to the type [5], where the eutectic 

point is equal to the melting temperature of the doping element 

Cs. 

 
Fig. 1. Phase diagram and eutectic point of binary alloy Cs1-xRbx calculated 

using the present theory compared to experiment [4] and to the experimental 

melting temperatures of its constituent elements Cs and Rb [3]. 
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The calculated phase diagrams or melting curves represented 

in Figs. 1 and 2 provide Lindemann melting temperatures of 

the considered binary alloys which vary with respect to 

increasing proportions x of the doping elements Rb, Au, Ni 

and Cs, between the melting temperatures of the pure host 

elements, when the whole elementary cell is occupied by the 

host atoms, and the pure doping elements, when the whole 

elementary cell is occupied by the doping atoms. Figs. 1 and 

2 also illustrate the rate at which the atoms become more 

weakly bonded after Cu and Cs were mixed by the doping 

elements Rb and Au, respectively, because the melting 

temperature decreases up to the eutectic point, and more 

tightly bonded after the eutectic point because the melting 

temperature increases. Fig. 3 for Cu1-xNix shows the rate that 

the atoms become more tightly bonded after the host element 

Cu was doped by Ni because the melting temperature 

increases. Fig. 4 for Cr1-xCsx shows the rate that the atoms  

 
Fig. 2. Phase diagram and eutectic points of binary alloy Cu1-xAux calculated 

using the present theory compared to the experimental melting temperatures 

of its constituent elements Cu and Au [3]. 

 
Fig. 3. Phase diagram and eutectic points of binary alloy Cu1-xNix calculated 

using the present theory compared to experiment [4] and to the experimental 

melting temperatures of its constituent elements Cu and Ni [3]. 

become more weakly bonded after the host element Cr was 

doped by Cs, because its melting temperature decreases. 

 
Fig. 4. Phase diagram and eutectic points of binary alloy Cr1-xCsx calculated 

using the present theory and to the experimental melting temperatures of its 

constituent elements Cr and Cs [3]. 

The good agreement of the Lindemann melting temperatures 

of Cu1-xNix and Cs1-xRbx taken from the phase diagrams or 

melting curves of these binary alloys calculated using the 

present theory for different proportions x of Ni and Rb doped 

in Cu and Cs, respectively, to form these binary alloys, with 

experiment [4] is illustrated in Table 1. 

Table 1. Comparison to experiment [4] of Lindemann melting temperatures 

Tm (K) of Cu1-xNix and Cs1-xRbx, taken from the phase diagrams of these 

binary alloys calculated using the present theory with respect to different 

proportions x of Ni and Rb doped in the host elements Cu and Cs, 

respectively. 

x 0.10 0.30 0.50 0.70 0.90 

Tm (K), Cu1-xNix, Present 1396.0 1468.0 1538.0 1611.0 1687.0 

Tm (K), Cu1-xNix, Expt. [4] 1388.0 1461.0 1531.0 1605.0 1684.0 

Tm (K), Cs1-xRbx, Present 292.6 287.5 290.0 295.0 305.0 

Tm (K), Cs1-xRbx, Expt. [4] 291.4 286.0 287.4 293.5 304.0 

The eutectic melting temperatures TE (K) and their respective 

proportions xE of doping elements taken from the phase 

diagrams or melting curves of binary alloys Cs1-xRbx, Au1-

xCux, Cu1-xNix and Cr1-xCsx calculated using the present 

theory are presented in Table 2, where the results for Cs1-xRbx 

and Cu1-xNix are found to be in good agreement with 

experiment [4]. 

Table 2. Comparison to experiment [4] of the eutectic melting temperatures 

TE (K) and their respective proportions xE of doping elements taken from 

phase diagrams of binary alloys Cs1-xRbx, Cu1-xAux, Cu1-xNix and Cr1-xCsx 

calculated using the present theory. 

Alloys Cs1-xRbx Cu1-xAux Cu1-xNix Cr1-xCsx 

xE, Present 0.3212 0.748 0.0 1.0 

xE, Expt. [4] 0.3570  0.0  

TE (K), Present 288.0 917.5 1358.0 301.60 

TE (K), Expt. [4] 285.8  1356.0  
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Note that the melting temperatures taken from the phase 

diagrams or melting curves calculated using the present 

theory when the whole elementary cell is occupied either by 

the host element or by the doping element in the considered 

binary alloys presented in the above Figures agree well with 

the experimental melting temperatures [3] of these 

constituent elements. 

4. Conclusions 

In this work, a theory for the calculation and analysis of the 

phase diagrams or melting curves providing information on 

Lindemann melting temperatures and eutectic point of binary 

alloys has been derived based on the Lindemann criterion. 

The advantage of this theory is that it provides meting 

temperatures of binary alloys with respect to any proportion 

of their constituent elements. 

The calculated phase diagram or melting curve shows the 

rate that the atoms of binary alloys become either more 

tightly or more weakly bonded (the host element becomes 

either harder or softer) after the host element was mixed by 

the doping element to be a binary alloy. This property may be 

useful for technological applications. 

The good and reasonable agreement of the phase diagrams or 

melting curves of binary alloys Cu1-xNix and Cs1-xRbx 

calculated using the present theory, as well as of the 

Lindeman melting temperatures and eutectic points obtained 

from these phase diagrams with experiment illustrate the 

simplicity and efficiencies of the present theory in studying 

the melting temperatures of binary alloys. 
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