

American Journal of Mobile Systems, Applications and Services

Vol. 1, No. 3, 2015, pp. 174-181

http://www.aiscience.org/journal/ajmsas

* Corresponding author

E-mail address: dkehayas@teiath.gr (D. Kehagias)

Home Automation Based on an Android and a
Web Application Using Raspberry Pi

Dimitris Kehagias*, Dorian Nini

Department of Informatics, Technological Educational Institution of Athens, Athens, Greece

Abstract

The aim of this paper is to present the development of a flexible, low cost system to remote control of home appliances. The

control is accomplished either from an Android or a Web application. Both applications communicate with a common server,

which provides status data in real time, both to Browser and Android clients. The system is based on Raspberry Pi embedded

system.

Keywords

Home Automation, Raspberry Pi, Android, Web

Received: August 31, 2015 / Accepted: September 16, 2015 / Published online: October 16, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

The rapid development of technology, the continuous cost

reduction of electronic devices as well as their small size

leads increasingly to using them for the convenience of

everyday life of modern man. Specifically, the use of such

suitable devices in a home connected to a local network

creates a "Smart home".

A "Smart home" uses microcontrollers that automate the

monitoring of conditions of the house and change the

condition of other devices (Home automation). Specifically,

microcontrollers can measure parameters associated with a

living area such as temperature or humidity of a room or

outdoor in order to control and alter the status of other

devices, that is, microcontrollers can automatically enable or

disable an electronic device. Having the proper equipment, a

house enables the user to know at any moment the situation

on site and to control any device connected to the network.

This capability of the user to constantly monitor his house

first aims to facilitate his living and achieve the lowest

possible power consumption. This can be done either entirely

within the user's discretion, i.e. to manually alter the status of

the devices, or by setting specific threshold values that are

maintained by automatically controlling the desired devices.

Such a home may be accomplished by either ready embedded

systems or by using a platform that allows the connection of

other devices and components therein. One such platform is

the Raspberry pi [1] used in this work.

The purpose of this work is to develop an easily configured

and intuitive interface, yet powerful and reliable to provide

its user with full monitoring and controlling capabilities over

his home and home devices. This is achieved either from an

Android or a Web application. The challenge we faced was to

find a way in which the two applications will communicate

with a common server, which will provide status data in real

time not only in the Android application but also to the Web

application while in the meantime being able to control the

connected devices. In addition, we had to keep the web

technologies HTML, PHP and JavaScript without the need to

create a Java Applet.

We have addressed this challenge by using the WebSockets

[2], [3] communication protocol, which is designed to be

implemented in web browsers and web servers, but can be

used by any client/server application. But the real importance

175 Dimitris Kehagias and Dorian Nini: Home Automation Based on an Android and a Web Application Using Raspberry Pi

is that WebSockets provide a way to build scalable, real-time

web applications. So, with the help of the “Java Web Sockets

JSR-356”standard we implemented a WebSocket server,

which is able to serve simultaneously in real time both the

Web application and the Android one, controlling the

connected devices using the PI4J library. The appropriate

server, that is running our application, is Glassfish 4.1.

This paper is organized as follows: the following section

depicts a brief overview of the aspects “Internet of Things”,

“Home automation” and “Related work”. Section 3 exhibits

the issues we had to consider in designing the proposed

system. Next, the hardware and software implementation of

the system is presented. Then, we conclude in Section 5.

2. Smart Home

The popularity of remote intelligent home system has been

increasing greatly in recent years due to much higher

affordability and simplicity through internet connectivity.

The concept of "Internet of Things" is closely associated with

the commercialization of Domestic/Industrial automation.

2.1. Internet of Things (IoT)

IoTs can be described as connecting everyday objects like

smart phones, internet televisions, sensors and actuators to

the internet where the devices are intelligently linked

together to enable new forms of communication amongst

people and themselves [4].

A thing, in the Internet of Things, can be a person with a

heart monitor implant, a farm animal with a biochip

transponder, an automobile that has built-in sensors to alert

the driver when tire pressure is low - or any other natural or

man-made object that can be assigned an IP address and

provided with the ability to transfer data over a network. So

far, the Internet of Things has been most closely associated

with machine-to-machine (M2M) communication in

manufacturing and power, oil and gas utilities. Products built

with M2M communication capabilities are often referred to

as being smart [5]. Such smart devices are widely used in

home automation.

2.2. Home Automation

Home automation or Smart Homes can be described as

introduction of technology within the home environment to

provide convenience, comfort, security and energy efficiency

to its occupants. Adding intelligence to home environment

can provide increased quality of life. With the introduction of

the Internet of Things, the implementation of home

automation is getting more popular.

The components of a home automation system can be:

sensors (such as temperature, daylight, or motion detection

sensors), controllers (such as a dedicated automation

controller), activators (such as light switches and appliances)

and channels (wired or wireless).

For such a system it is required one or more “man to

machine” and/or M2M interfaces, so that the inhabitants of

the house to be able to interact with the system for

monitoring and control. This may consist of a dedicated

terminal or nowadays it may be an application that runs on a

smart phone or a tablet or even on one web page. The devices

can communicate via individual wiring or by connecting

them all to a wired network, or wirelessly, using one or more

protocols. So we can use a central controller as well as we

can individual handling each device at home.

This field has many applications. As a security element it can

be oriented toward personal security or material objects. As

an energy efficiency element, light intensity sensors can be

used to keep the light level within a range controlling shutters

to reduce the power consumption. Combining light sensors

with presence sensors lights in bedroom can be turned off

when not required significantly reducing the power

consumption. As a comfort element a reasonable temperature

can be maintained in different rooms with changing outdoor

conditions [6].

Communication protocols are one of the most serious issues

for home automation due to the fact that the devices installed

in the house do not support common protocols making the

communication between them hard to implement. Thus, we

should ensure that there is compatibility between smart

devices we choose. The most common protocols that support

wireless communication are the Z-Wave and ZigBee [7].

2.3. Related Work

The idea of home automation using the Raspberry Pi

platform has been around almost since it launched in 2012.

First concepts for home automation based on the

aforementioned platform were a little crude, but nonetheless

they opened the road to the creation of new technologies and

richer APIs.

Plethora of approaches exists that use the Raspberry Pi as a

base for home automation. During our research and

comparison of different works related to the subject, we

found out that some aspects that were considered very

important for us were missing such as ability to control

devices both from a Web frontend and Android app,

independence from other frameworks, a monolithic approach,

real-time data and others.

Soundhar Ganesh et al. [8] proposed a system that operates

with a built in display as a central control panel and different

sensors and relays perform the desired operations. The

 American Journal of Mobile Systems, Applications and Services Vol. 1, No. 3, 2015, pp. 174-181 176

remote operation of the devices is achieved by reading the

title of an e-mail. Numerous other schemes have been

proposed but only with a single control point, either it being a

Web frontend [9], or either an Android application [10], [11],

[12]. We propose a system that gives the user more freedom.

We created two remote applications, a Web frontend and an

Android application. In case the user doesn't have an Android

device he can still use the Web frontend in any HTML5

compliant browser. The challenging issue was to make the

system communicate at the same time to the Android and

Web frontend, since they use different technologies. We used

WebSockets technology. WebSockets not only allow us to

have real-time data communication (it's basically a TCP/IP

connection) but can also communicate with different

programming languages as long as they have an

implementation for it like Lua, NodeJS, Python, Java,

Javascript and others. The aspect of WebSockets also allows

for expansion of our implementation through add-ons that

can be created using one of the aforementioned languages.

Other architectures rely on the use of frameworks [13]. Albeit

our application is not as complete as IBM's Bluemix for

example, we wanted to have a “from scratch” solution to our

problems. This ideology also avoids being depended from

other companies where you might have to pay for loyalties.

Furthermore we are using Android and WebSockets. This is

fairly new and not many implementations exist using this

kind of technology. This was possible with the use of the

Tyrus 1.10 implementation of the Java JSR-356 specification.

Although we are not the first to use WebSockets for this kind

of projects, we can say that the strongest point of our

proposal is the combination and integration of as many

features as possible to a home automation system. Also the

use of WebSockets in combination with the Android is quite

a new option for making real time communications between

Web, Android, Java and any other language that has an

implementation for WebSockets.

3. System Overview

The architecture of the proposed system is illustrated in

Figure 1. As stated before, our objective was to develop an

easily configured and intuitive interface, yet powerful and

reliable to provide its user with full monitoring and

controlling skills over his home and the devices within. This

system is composed, essentially, by three main components:

Web-Frontend, Android application and the hardware

component that hosts the main server. The main server links

the individual applications (Web-Frontend and Android) with

Raspberry Pi and checks the GPIO ports, while providing, in

real time, operational status data to two applications.

3.1. Designing Issues

The challenge we faced from the outset was to find a way in

which the two applications will communicate with a common

server, which will provide status data in real time not only in

the Android application but also to Web application. In

addition, we had to keep the web technologies HTML, PHP

and JavaScript without the need to create a Java Applet.

Figure 1. System’s architecture.

177 Dimitris Kehagias and Dorian Nini: Home Automation Based on an Android and a Web Application Using Raspberry Pi

The problem arises from the fact that we have 2 applications

based on completely different technologies. One technology

should be implemented in PHP-HMTL5, and the other with

Android-Java. The communication of each individual

application with the main server is done without any

particular problem:

a) The Web part will simply have some PHP Scripts which

would call Python scripts, which in turn would control the

state of the GPIO ports. The Web application would get

the status data with a Long Poll Ajax request, but not in

real time.

b) The Android part would contact a Java TCP/IP server (the

same that informs him about the data) and thus controlled

the GPIO. A Java TCP/IP server would inform the

Android application for any change of state in real time.

We can see some of the problems that arise:

� We need to separately address each communication.

� We need to ask the server with Long Poll Ajax requests,

consuming unnecessary data.

� It is not achieved 100% real-time updating of data. If for

example an Ajax request has 5’’ data application time, then

data updated every 5’’ rather than when the updating is

really possible.

� Running conflict: What happens when the Android

application instructed to open a device and the Web

application has not yet seen the change of status?

� Possible overload of Apache, and consequently the

Raspberry (because of limited capacity), by Ajax requests.

3.2. Our Approach

We faced the above issues by using WebSockets. The

WebSockets is a protocol which provides full-duplex

communication over a single TCP connection. It is relatively

new technology that became a proposed IETF (Internet

Engineering Task Force) specification In December 2011 [3].

Technically, WebSockets allow a long-held single TCP socket

connection to be established between the client and the

server, removing the need to poll the server and allowing

messages to be sent back and forth while keeping the

connection open. But the real importance is that WebSockets

provide a way to build scalable, real-time web applications.

Using the Java Web Sockets JSR-356 standard we managed

to implement a WebSocket server that is able to serve

simultaneously the Web and the Android application (Figure

1), without the need of having two different servers or

methods to control GPIOs. Communication is very simple

and follows the rules of WebSockets dictating the use of text

messages. Text messages in our case are in the form of

JSON. After we managed to create a central point of

communication between applications/devices, we had to give

the ability to the server to control the connected devices. This

was achieved by using the library PI4J.

4. System Implementation

This section describes the hardware and software

implementation of the system.

4.1. Hardware Implementation

The core of the home automation system consists of

Raspberry-pi Model B+ board. Figure 2 shows the

integration of electronic components into the Raspberry-pi.

The electronic components that we have used are:

Raspberry Pi Model B+, power supply for Raspberry Pi, T-

Cobbler Plus-Breakout Board, DC/DC YwRobot Power MB

V2 power supply, 830 Tie Points MB102 Breadboard,

SainSmart 8 Channel DC 5V Relay Module for Arduino

Raspberry Pi, One Android 4.1 smartphone, a wireless router

for smartphone-server (Raspberry Pi) connection.

Figure 2. Hardware implementation.

4.2. Software Implementation

The software that we developed/used in this work concerns

the Web and Android applications, as well as the main server.

As operating system we chose Raspbian which is based upon

the Debian Wheezy Linux operating system and has been

optimized for use with Raspberry Pi.

4.2.1. Web Application

For the development of the Web application, as regards the

client’s part, HTML5 and JavaScript technologies were used.

On the server side, we have the PHP pages that read static

data from JSON files. Data that inform about the GPIO ports

that are in use or the devices connected to each room. For the

implementation of the Web application we used the Adobe

 American Journal of Mobile Systems, Applications and Services Vol. 1, No. 3, 2015, pp. 174-181 178

Dreamweaver CS6.

The Web application allows control of remote devices via a

website. This website has 3 main interfaces:

� Login Form (Figure 3). The Login interface is a simple

php script which in turn is connected to a SQLITE

database. Upon successful entry of a user, comes up the

room selection screen (Figure 4).

� Screen for selecting a room (Figure 4). On this screen a

user selects a room of interest. Rooms are stored in a

JSON file. The JSON file contains the name of a room, its

description and its type (i.e. if it is living room, bedroom,

etc.). For each room there is a JSON object.

� View of a room and the corresponding connected devices

(Figure5). This screen shows the name of a selected room,

its description and all connected devices that belong to this

room, grouped on a board. For each device on the board

there is a representative icon (according to the type of the

device), its name, its type, its description, and finally a

status button that indicates the status of the device (open

or close) and two operational buttons (ON, OFF). All this

information, for each device, is stored in JSON files.

At first all the status buttons are disabled and are coloured

gray. This indicates that the status of each device has not yet

been received from the server. Once the server obtains status

data, the indicator lights will change colour and the

corresponding status buttons will be activated. If for example

a device is opened, then the corresponding status button will

turn green and its operational OFF button will be activated.

On the other hand, if a device is closed, then the

corresponding status button will turn red and its operational

ON button will be activated. The information about the status

of each device is transferred, in real time, from a Java Script

associated with the server.

Figure 3. Login screenshot.

Figure 4.Room selection screenshot.

Figure 5. Selected room screenshot.

179 Dimitris Kehagias and Dorian Nini: Home Automation Based on an Android and a Web Application Using Raspberry Pi

4.2.2. Android Application

Although for control via mobile phone could be used its

embedded browser, we decided to develop a separate

application because we wanted to show:

� The Flexibility of WebSockets

� The convenience that provides a standalone application

without having to rely on a browser

This application is able to run on any Android device with a

minimum OS version of 4.1(currently covering around 80%

of Android devices) and have an internet connection either

WiFi or from a mobile provider. In order to be able to use the

same server, the one that serves the Web application, we had

to find a suitable library for WebSockets that could function

on Android environment as well. Although the existing Java

implementation works fine, its use in Android environment is

somewhat difficult. The most suitable library for this purpose

is Tyrus 1.10 [14]. Tyrus is actually an API, which

implements the JavaJSR-356 with methods that make its use

particularly easy. Just because Tyrus is an implementation of

the JSR-356, communication between the mobile application

and the server was from the beginning without any problem.

The mobile application runs on Android 4.4.4 and for

development we used the Android Studio 1.1.0. [15]

The Android application works with the same logic as the

Web application and provides the user with four activities

(Android Activities) that lead him to the management of the

desired device. The user has as final activity the “Operate

Device” (Figure 9) which provides information on a device,

and a button for control it.

The route throw the application is diagrammatically: main

screen (Figure 6) >Screen for selecting a room (Figure 7) >

Screen for selecting a device(Figure 8) > Control screen

(Figure 9). The transition from one activity to another is

accomplished by calling an intent. The intent contains

additional information, in the form of a JSON, suitable for

any activity. All four activities include the same function

through which they are connected to the WebSocket server.

This function transfers the necessary data.

4.2.3. Main Server

As already mentioned for the implementation of the server

we used the Java WebSockets JSR-356 standard.

Once a connection to the server has been established the

client sends an opening handshake to the server. The

WebSocket client's handshake is an HTTP upgrade request.

Assuming the handshake succeeds the TCP socket underlying

the HTTP upgrade request remains open and both client and

server can start communication.

The client asks the server a protocol upgrade by sending a

key in the Sec-WebSocket-Key header which is base64

encoded. For the server to form a response, it will take this

and append the magic string 258EAFA5-E914-47DA-95CA-

C5AB0DC85B11 to it, and then calculate the SHA-1 hash of

this string. Then it will encode that hash value to base64, and

that will be the sec-WebSocket-Accept header in the server’s

response. Once the connection is established between the two

parties, a full duplex communication can begin.

Figure 6. Start.

Figure 7. Rooms list.

 American Journal of Mobile Systems, Applications and Services Vol. 1, No. 3, 2015, pp. 174-181 180

Figure 8. Device selection.

Figure 9. Device control.

The server of this work is implemented with two classes:

“DeviceWebSocketServer.java” and

“DeviceSessionHandler.java”. The first class includes the

basic four main methods of communication using the Java

WebSocket annotations @onClose, @onOpen, @onErrorand

@onMessage. It also includes the @Inject method, whereby

the second class is introduced. The second class includes all

functions that take place during the client-server

communication.

Control of the connected devices on GPIO ports of Raspberry

Pi platform achieved through PI4J library [16]. Features of

this library include: export & unexport GPIO pins, configure

GPIO pin direction, configure GPIO pin edge detection,

control/write GPIO pin states, pulse GPIO pin state, read

GPIO pin states, listen for GPIO pin state changes (interrupt-

based; not polling), automatically set GPIO states on

program termination (GPIO shutdown), triggers for

automation based on pin state changes, send & receive data

via RS232 serial communication, I2C communication, SPI

communication, extensible GPIO Provider interface to add

GPIO capacity via expansion boards, access system

information and network information from the Raspberry Pi,

wrapper classes for direct access to WiringPi Library from

Java.

The application runs on GlassFish 4.1 server. For the whole

development phase was used the environment NetbNetbeans

IDE 8.0.1.

5. Conclusions

In this paper we have proposed and implemented a low cost

system that will ensure the intelligent control of a house upon

user authentication. We accomplished this through the

utilization of low cost devices and the development of two

user friendly interfaces for a Web and an Android

application.

A WebSocket server, running on a Raspberry Pi card, is able

to serve simultaneously in real time both the Web application

and the Android one, controlling the connected devices.

References

[1] http://www.raspberrypi.org/.

[2] Jaosn Lengstorf, Phil Leggetter, Book: “Realtime Web Apps
with HTML5 WebSocket, PHP, and jQuery”, 2013.

[3] http://tools.ietf.org/html/rfc6455.

[4] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy,
"Smart objects as building blocks for the internet of things,"
Internet Computing, IEEE, vol. 14, pp. 44-51, 2010.

[5] http://whatis.techtarget.com/definition/Internet-of-Things.

[6] Daniel Castellano, Jose Maria Canas, “Home automation
system with web interface in the JdeRobot framework”, XV
Workshop of physical agents, June 2014, Leon Spain.

[7] http://en.wikipedia.org/wiki/Home_automation.

[8] Soundhar Ganesh, Venkatash, Vidhyasagar, Maragatharaj,
“Raspberry Pi Based Interactive Home Automation System
through Internet of Things”, International Journal for
Research in Applied Science & Engineering Technology
(IJRASET), Vol: 3, Issue 3, March - 2015, pp: 809-814.

181 Dimitris Kehagias and Dorian Nini: Home Automation Based on an Android and a Web Application Using Raspberry Pi

[9] Bharath Lohray, “Home automatation using Raspberry
Pi”,http://www.linuxjournal.com/content/home-automation-
raspberry-pi?page=0,2.

[10] Dr. S. Kanaga Suba Raja, C. Viswatnathan, Dr. D. Sivakumar,
M. Vivekanandan, “Secured Smart Home Energy System
(SSHEMS) Using Raspberry Pi”, Journal of Theoretical and
Applied Information Technology, 10 th August 2014. Vol: 66
No.1, pp: 305-314.

[11] P Bhaskar Rao, S. K. Uma, “Raspberry P I Home Automation
with Wireless Sensors Using Smart Phone”, International
Journal of Computer Science and Mobile Computing, Vol.4
Issue.5, May- 2015, pp. 797-803.

[12] Syed Anwaarullah, S. V. Altaf, “RTOS based Home
Automation System using Android”, International Journal of
Advanced Trends in Computer Science and Engineering, Vol:
2 No.1, 2013, pp: 480 – 484.

[13] DIY Hacking, “IOT Based Raspberry Pi Home Automation
using IBM Bluemix”, http://diyhacking.com/raspberry-pi-
home-automation-ibm-bluemix/.

[14] https://tyrus.java.net/documentation/1.10/user-guide.html.

[15] http://developer.android.com.

[16] http://pi4j.com/.

