

American Journal of Mobile Systems, Applications and Services

Vol. 1, No.1, 2015, pp. 54-58

http://www.aiscience.org/journal/ajmsas

* Corresponding author

E-mail address: pengleisd@163.com (Lei Peng)

Construction of Trusted Computing Platform Based
on Android System

Hui Zhang, Defeng Sun, Yanli Xiao, Lei Peng*

College of Information Engineering, Taishan Medical University, Taian, China

Abstract

With the widespread use of Android mobile phones, the problems of security of phone become increasingly prominent. The Java

technology architecture for trusted computing is a trend to solve the above problems. Through the analysis of the current Java

platform trusted computing architecture and the security of Android operating system, the trusted platform architecture based on

Android and Java is proposed. The mobile trusted modules are implemented by combining the trusted chip and related software

such as protocol and algorithm, trusted chip API, computing library API, and computing function library. In this architecture, by

analyzing the feasibility of each module, the mobile platform to be verified is trusted.

Keywords

Trusted Computing, Android, Mobile Terminal, Mobile Trusted Module

Received: June 25, 2015 / Accepted: July 5, 2015 / Published online: July 22, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

With the widespread use of smart phones, the problems of

security of mobile phone become increasingly prominent.

Viruses that appear on the computer also appear in the mobile

phone. The information in the phone is mostly personal

privacy. Once stolen more dangerous. These make people

more and more worry about the safety of mobile phones.

Android is an open source system based on Linux kernel. The

openness and freedom played an important role for its

popularity and promotion, but also bring a security risk.

Because the source code of Android can easily be got, the

security risks can easily be found and exploited. In order to

prevent security problems for Android, it is necessary to

analyze and study the security system of Android. It need to

analysis of the internal security mechanism and the secure

communication between each module. Then find the security

risks of Android. Security risks refer to the defects and

deficiencies of the implementation in hardware, software and

protocols, and the system security policy. From analysis and

studies of the security of Android, it can be drawn that now the

problem of security is: rights abuse result in malicious

software is rampant, user's privacy is stolen and phone charges

are absorbed. However, there are seldom harms of virus and

attack for Android system itself. [1,2]

From the current software technology point of view, it is a

tendency through Java or similar software architecture to

achieve trusted computing technology. Today, almost every

mobile phone operating systems support JVM (Java Virtual

Machine). Users can run the same application on different

hardware platforms by Java. Traditional software runs directly

on the operating system. Thus first the trust of the operating

system is must be verified, then the running platform of

application software is considered to be verified trusted.

However the operating system verification involves

modifications of BootLoader, which is difficult for current

mobile terminals. Java applications are running on JVM. JVM

is verified to be trusted, and then the running environment of

the Java applications can be considered to be trusted. The

difficulty of verifying the trust of the platform is reduced. It

becomes possible to modify the current mobile terminal and

make it to be the trusted computing terminal. [3,4]

 American Journal of Mobile Systems, Applications and Services Vol. 1, No. 1, 2015, pp. 54-58 55

To solve these problems, in this paper proposed construction

of trusted computing platform based on Android system. The

trusted computing platform is based on MTM (Mobile Trusted

Modules). Without losing the advantages of Java, it can meet

the requirements of trusted computing, and can be

implemented in a mobile terminal. More critical is that this

platform can be constructed without changing the current

architecture, and make the mobile terminal to be partially

trusted computing platform. To build a trusted computing

platform based on Android allows most current mobile

terminal platform can become trusted platform.

2. Related Work

Debbali et al. [5] detailed analyzed the security of the

architecture of J2ME (Java 2 Micro Edition) CLDC

(Connected Limited Device Configuration) in Java mobile

terminal. Debbali et al. compared J2ME and J2SE (Java 2

Standard Edition) which is proved security architecture.

Respectively, from access control, security policy, storage,

protection and other aspects of the J2ME architecture they

carried out a detailed study, and had drawn the conclusion that

J2ME needs improvement in the aspects of access control and

memory protection. Meanwhile, Debbali et al. pointed out that

the security defect of the J2ME architecture can be

compensated by increasing security expansion modules, so

that to improve the security of J2ME. However, Debbali et al.

did not give a specific implementation. For the security of the

J2ME architecture, Dietrich [6] presented the trusted

computing architecture based on J2ME embedded devices.

Dietrich first proposed the trusted computing architecture

based on Java, and then give this architecture implementation

of each module, in order to confirm that this architecture can

be realized. According to Dietrich's conclusion, realization of

trusted computing in J2ME is feasible. However, Dietrich did

not implement the overall architecture. Further, since in this

architecture the local C program is used to complete the

trusted computing, including calculation and protocol etc.,

which involved all the functions and application programming

interfaces. However, due to security reasons, J2ME did not

give the references of local C program. Such architecture

encountered a technical bottleneck. Dietrich used the

JavaCard technology to solve this problem, but did not give a

specific implementation. Bichsel et al. [7] gave the

anonymous authentication implemented in the JavaCard.

However, the JavaCard technology will inevitably lead to

changes to the current mobile terminal architecture.

On the other hand, due to the presence of Java technology

cannot solve bottlenecks in the code execution speed. The

researchers of Java trusted computing are constantly

optimizing current certification programs to accelerate the

verification speed. Then that existing certification scheme can

be applied in Java. For this reason, according to DAA (Direct

Anonymous Attestation) [8] presented by Brickel, Camenisch

and Chen, and the standard proposed by international TCG

(Trusted Computing Group), Dietrich performed DAA

performance evaluation for different embedded devices

through the Java technology [9]. To accelerate the speed of

anonymous authentication, Wachsmann et al. [10] on the basis

of DAA proposed lightweight anonymous authentication

scheme further, and realized in Java. The speed of this scheme

is up to about 115ms, but a large number of calculations were

given to the C program to execute. However the C program

was unable to get transplants in J2ME architecture.

3. Trusted Computing of Java

Platform

Java platform proposed two architectures for PC and mobile

terminal, J2SE and J2ME architecture. J2SE architecture for

the PC terminal covers all operations on the terminal, that is,

developers can implement all control of the computer by J2SE.

Then from feasibility perspective, J2SE architecture can

achieve the requirements of trusted computing. In addition,

The J2SE architecture has been proven to be a safe

architecture [5]. However, J2SE is architecture for PC

terminal, not for embedded mobile terminals. In this regard,

Java platform proposed J2ME architecture for embedded

mobile terminal. J2ME can be considered as a subset of J2SE.

J2ME architecture allows executing Java code in a mobile

terminal without modifying the core code. However, for the

reasons of performance and security, J2ME architecture is

cropped part of J2SE function, which affects the construction

of trusted computing platform as follows:

(1) Without JNI (Java Native Interface). Due to the defect of

execution speed, Java language is not suit for apply to

calculation. To solve this problem, Java platform proposed

JNI technology that allows Java to perform C program.

Developers can place the calculation functions in the C

program. Java can directly call the functions to improve

the execution speed of the code. However, the J2ME

architecture does not support JNI technology. Thus a large

number of computing tasks during trusted computing

platform certification process must be directly

implemented in Java layer. According to Dietrich’s test [9],

the average time for DAA certification is about 20s in Java

layer, while it is 115ms by C program, Increased nearly

200 times.

(2) Do not allow users to customize an existing class.

Dynamic authentication protocol must be implemented by

custom class or by covering, removing, reconfiguring

existing class. However J2ME does not support custom

56 Hui Zhang et al.: Construction of Trusted Computing Platform Based on Android System

class. Developers must call API (Application Programing

Interface) provided by J2ME to implement limited

functions. Undoubtedly, these affect to transplant relevant

protocol of architecture the trusted computing to J2ME.

The architecture proposed by Dietrich partial solved the above

problems. Dietrich directly placed C program in the operating

system layer, and made SATA (Security and trust services API)

interact with the C program by SmartCard. At the same time,

the custom protocols are placed in MTM abstraction layer, and

are transplanted to the J2ME architecture. However, the

introduction of SmartCard will inevitably lead to changes in

the existing mobile terminal architecture. That is to say, the

mobile terminal must access SmartCard to achieve the above

architecture. The mobile terminal can only access via

miniUSB interface or TD SmartCard slot. For security reasons,

Operating system of mobile terminals strictly limited the

access devices for USB devices and TD card. Implementation

of MTM abstraction layer is not clear. On one hand, for the

reason of computing speed, MTM abstraction layer cannot

implement by Java, on the other hand, for the reason of

without JNI technology, it cannot implement by C program.

Therefore, although Kurt Dietrich’s architecture seems to be

realizable, but there are some difficulties in the

implementation.

In addition, Java, such simple and practical software

technology platform, does not provide MTM. The

applications running on the Java platform neither have the

correlation function call interface in TSS (Trusted Software

Stack), nor have a viable technical solution for interacting

with MTM [6]. This problem can be solved through software

extensions. Reference TCG (Trusted Computing Group)

standards on MTM and TSS, MTM and TSS can be achieved

through software or external hardware approach.

4. Security of Android System

The introduction of Android mobile operating system makes it

become a reality that completely using Java technology

achieves the running of applications in mobile terminal. In the

Android mobile operating system, the applications completely

run in the JVM namely Dalvik. The defect of Java code

execution speed low can be solved by Android NDK (Native

Development Kit) technical. Android operating system allows

many problems in current Java platform trusted computing

architecture can be resolved technically.

Android architecture contrast with J2SE and J2ME is shown

in Figure 1. As can be seen in Figure 1, the architecture

frameworks of Android and J2SE are very similar. Each

module in J2SE has a corresponding module in Android. In

addition, Android operating system has a user-defined class

loading module and a native application interface calling

module, which J2ME system does not have. Therefor Android

allows developers to customize classes and call the local C

program by NDK technology. [11] Thus the bottleneck of

trusted computing in J2ME can be broken in Android.

However, the reason why J2ME remove the two modules is

for security reasons.

Figure 1. J2ME, J2SE, and Android architecture comparison and analysis.

4.1. Security of Android Custom Class

In Android system, in addition to the definition of internal

classes, developers can cover, remove, or reconfigure all

classes. The system internal classes, which cannot be modified,

are defined by Android's C / C ++ layer. The classes, which

can be modified, are defined by Android's Java layer. With this,

on the basis of without destroying the hardware modules,

Android maximize allows users to modify the class. Consider

from the trusted computing platform, it does not aim to

destroy the hardware modules to modify the class. Therefore,

such structure meets the needs of the construction of trusted

computing platform.

4.2. Security of Android NDK

In the J2SE structure, The C program of JNI can complete any

operation on terminal. The introduction of JNI is bound to

introduce hardware platform security risks, and therefore does

not introduce JNI technology to J2ME. In the Android NDK

allows developers to execute local C program. However,

Android also restricts the local C program. Local C program

cannot directly operate the hardware, only to meet the

computing requirements. We try to transplant libUSB

technology makes Android operating system can call USB

devices locally, but without success. In the trusted computing

platform, the intention of introducing the C program is to

speed up code execution speed, not to operate the hardware.

Then under the premise of meet the safety conditions, Android

NDK can satisfy the requirements of trusted platform

architecture.

4.3. Security of Android External Module

Access

In Android 3.1 and above, the USB operation classes

 American Journal of Mobile Systems, Applications and Services Vol. 1, No. 1, 2015, pp. 54-58 57

(Android.hardwear.usb) are introduced. The developers are

allowed to operate USB devices. The USB operation classes

make it become possible to operate the mobile terminal

external devices in Java. However, for security reasons, there

are strict restrictions to access USB devices in Android. The

parameters ProductID and VentoriID of the USB devices must

be explicitly declared firstly in the application of operating

external USB devices. Before operating the USB devices,

authorization of allowing users operating the USB must be

achieved.

In summary, under the condition of meeting the security, the

custom class modules and the local function interface calling

modules, which the J2ME are not available, are introduce in

Android system. That makes it possible to build a trusted

computing platform in Android.

5. Trusted Platform Based on
Android

According to Android operating system security analysis, we

can build a trusted computing platform architecture based on

Android. Android trusted computing platform architecture are

shown in Figure 2. The platform consists of seven parts,

trusted computing applications, protocol and algorithm,

trusted chip API, computing library API, computing function

library, USB interface, and trusted chip.

Figure 2. Android trusted computing platform architecture.

Top of the architecture is the trusted computing applications.

They can call each library function provided by TSS and TPM

to provide users the trusted computing services. The protocol

and algorithm are developed by Java. They call the packages

trusted chip API and computing library API, and provide

protocol and algorithm support for the trusted computing

applications. The trusted chip API, which is the packaged Java

code, is the trusted chip application program interfaces. It

encapsulates the trusted chip-related functions, such as key

generation, key management, cryptographic algorithms, etc.,

for the user to call. The computing library API, which is

developed by Java and C, packages the native C program to

calculate the correlation function for users to call. The

computing function library use Android NDK technology

writing the consuming calculation functions to native

applications and provide the computing function to developers.

The trusted chips are external devices. They connected with

the mobile terminal via USB, and perform related operations

about trusted chip, through USB operating classes provided by

Android system.

5.1. Mobile Trusted Module

First question to be considered is how to achieve mobile

trusted module. TCG's standard does not give a specific

implementation method, but described the necessary

characteristics of MTM. The purpose is to enable designers to

achieve more flexibility for implementing MTM. Taking into

account the characteristics of current mobile terminals, the

approach of implementing trusted module by modifying the

hardware architecture is not feasible. It is a viable option to

implement MTM by current software library or trusted chip.

The first method is to implement MTM through pure software.

It is obvious that the advantages of this approach are to

implement the MTM without doing anything to the hardware,

and the higher portability and modifiability. The shortcoming

is that the trusted verification of MTM software module itself

is difficult. However, today's embedded processors provide a

safe zone, such as the ARM platform TrustZone. To store the

MTM software modules to the safe zone can guarantee the

MTM software modules not to be maliciously modified and

destructed, so ensure the safety of MTM. In addition, all

libraries are stored as dynamic-link library files (so files) in

Android system, so the trusted verification of software library

functions can be completed by checking the check value of the

so files. That approach is realizable. Another method is that

the MTM can be realized by the trusted chip. The trusted chip

is responsible for providing protection fields and hidden fields,

to protect itself from destruction and malicious modification,

while providing the necessary trusted authentication service to

upper layer. Android 3.1 or later edition already provides

support for USB-Host. Any mobile terminal with Android 3.1

or later edition can perform USB operation by host identity

through USB OTG (On-The-Go) mode. This makes the

external trusted chip MTM possible. On consider of the

trusted chip cannot meet the needs of trusted authentication

protocol, finally the MTM is achieved by the form of

combining the chip and software.

58 Hui Zhang et al.: Construction of Trusted Computing Platform Based on Android System

5.2. MTM Abstract Interface

The TCG's standard did not give a specific implementation for

how to call MTM. The MTM abstract interface layer proposed

by Kurt Dietrich [6] provides the service of packaging MTM

for TSS to call it. However, it did not give specific

implementation of the MTM abstract interface layer. Since the

computational complexity, MTM should be placed in the C

language layer, or placed in the trusted chip in order to

improve code execution speed. The computing library API is

packaged in the C language layer, and the trusted chip API is

packaged in trusted chip layer.

6. Conclusion

In this paper, proposed the trusted platform architecture based

on Android and Java, and analyzed the feasibility of each

module. In this framework, after verification the mobile

platform can be considered to be trusted. Further, the prior art

solutions to meet the technical requirements have been trusted

computing platform. Further, the existing technology can meet

the requirements of the trusted computing platform. As the

mobile terminal operating system, Android is constructed as

trusted computing platform by the way of adding external

TPM module and transplant trusted computing library. Now

the trusted chip API, the computing library API and the

computing function library have been implemented. In the

next step, based on this framework, design and assessment of

existing protocols, further propose embedded terminal

authentication and access protocol based on trusted platform.

References

[1] Bugiel S, Davi L, Dmitrienko A, et al. Poster: the quest for
security against privilege escalation attacks on
android[C]//Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 2011: 741-744.

[2] Enck W, Ongtang M, Mcdaniel P. Mitigating Android software
misuse before it happens[J]. 2008.

[3] Barrera D, Kayacik H G, van Oorschot P C, et al. A
methodology for empirical analysis of permission-based
security models and its application to android[C]//Proceedings
of the 17th ACM conference on Computer and
communications security. ACM, 2010: 73-84.

[4] Fuchs A P, Chaudhuri A, Foster J S. Scandroid: Automated
security certification of android applications[J]. Manuscript,
Univ. of Maryland, http://www. cs. umd.
edu/avik/projects/scandroidascaa, 2009, 2(3).

[5] Debbabi M, Saleh M, Talhi C, et al. Security Evaluation of
J2ME CLDC Embedded Java Platform[J]. Journal of Object
Technology, 2006, 5(2): 125-154.

[6] Dietrich K. An integrated architecture for trusted computing for
java enabled embedded devices[C]//Proceedings of the 2007
ACM workshop on Scalable trusted computing. ACM, 2007:
2-6.

[7] Bichsel P, Camenisch J, Groß T, et al. Anonymous credentials
on a standard java card[C]//Proceedings of the 16th ACM
conference on Computer and communications security. ACM,
2009: 600-610.

[8] Brickell E, Camenisch J, Chen L. Direct anonymous
attestation[C]//Proceedings of the 11th ACM conference on
Computer and communications security. ACM, 2004: 132-145.

[9] Dietrich K. Anonymous credentials for java enabled platforms:
a performance evaluation[M]//Trusted Systems. Springer
Berlin Heidelberg, 2010: 88-103.

[10] Wachsmann C, Chen L, Dietrich K, et al. Lightweight
anonymous authentication with TLS and DAA for embedded
mobile devices[M]//Information Security. Springer Berlin
Heidelberg, 2011: 84-98.

[11] Wering Liu, Jianwei Liu. Android OS trusted computing
platform architecture[J]. Wuhan University: natural science
edition, 2013, 59 (2): 159-164.

