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Abstract 

In this paper, a fuzzy modeling technique is used for the selection of end milling parameters for a required surface roughness 
(Ra) with maximum material removal rate (MRR). Spindle speed (N), feed rate (fr) and depth of cut (d) are the inputs and 
outputs are MRR and SR. Three different levels of each input parameter were used to curry out the experimental work under 
dry conditions. Optimal sets of parameters were identified using artificial neural network (ANN) for prediction followed by 
genetic algorithm (GA) multi-objective for optimization. Fuzzy logic model (FLM) was then used to develop a fuzzy rule base 
in the form of IF-THEN rules for the selection of cutting parameters. The performance of the developed model was evaluated 
through a validation test. The results show that the average errors of the FLM are 2.463% and 6.08% for Ra and MRR 
respectively, which is less than 10%. 
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1. Introduction 

Determination of optimal machining parameters is a 
continuous engineering task in order to achieve the desired 
product quality with high productivity at low cost [1]. 

Quality and productivity are two important but conflicting 
criteria in any machining operation. The improvement of one 
factor is not possible without the worsening of the other one 
[2]. Indeed, an increase in productivity results in reduction of 
machining time which may results in quality loss. On the 
contrary, an improvement in quality results in reduction in 
machining time thereby, reducing productivity. Therefore, it 
is essential to optimize quality and productivity 
simultaneously by selecting the most appropriate (optimal) 
machining settings [3]. In this perspective, this work 
considers surface roughness (SR) and material removal rate 
(MRR) as the machining process responses to be optimized. 

Surface roughness and material removal rate are two 
important aspects in machining because these two factors 
greatly influence the process performances [3]. 

Surface roughness (SR) is a measure of the technological 
quality of a product and a factor that greatly influences 
manufacturing cost [4], [5]. 

Material removal rate (MRR) indicates the processing time of 
the workpiece and greatly influences the production rate and 
cost [3]. 

Both the surface roughness and material removal rate greatly 
vary with the change of cutting process parameters, namely 
feed, depth of cut, and cutting speed. Feed and depth of cut 
have upper limitations related to the maximal mechanical 
load that can be applied on the tool, thereby defining a 
mechanical barrier. Cutting speed has an upper limitation 
related to the maximal thermal load that the tool can 
withstand, thereby defining a thermal barrier. Therefore, the 
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selected cutting tool sets limitations on cutting parameters for 
a certain workpiece material [3], [6]. 

The selection of the cutting parameters in a machining operation 
is a key step to achieve high efficiency and productivity. In 
practice, the machining parameters are usually selected based on 
the machine tool operators or/and part programmer’s judgment 
and experience, machining handbooks or trial-and-error method. 
These methods are not accurate enough and in many cases, 
production systems run under inefficient operating conditions 
[6-8]. Therefore, proper selection of process parameters is an 
essential issue for manufacturing industries in order to improve 
cutting efficiency, process at low cost and produce high-quality 
products [9]. 

Multi-objective approach which consider simultaneously 
surface roughness and material removal rate as process 
responses have been reported in milling parameters 
optimization. A non-exhaustive list is given below. 

[10] used Taguchi method to optimize the process parameter 
in the milling process for AISI steel. L9 orthogonal design 
was selected to form the experimental design for response 
parameters. The experiments were conducted by using ball 
end mill cutter. Process parameters were varied to study their 
effect on material removal rate and surface roughness. 
Collected results were analyzed by the main effect plot and 
interaction plot. Finally, process parameters were optimized 
to achieve the maximum MRR and minimum Ra. The 
confirmation test reveals a good agreement between 
prediction and experimental results. 

The research work presented by [11] determines the setting 
of process parameters of focused ion beam (FIB) micro-
milling for achieving a specific combination of MRR and 
surface roughness on cemented carbide. The experiment has 
been conducted according to the L16 orthogonal array of 
Taguchi technique. Beam current, extraction voltage, angle of 
beam incidence, dwell time and percentage overlap between 
beam diameters have been considered as process variables. 
Multi-objective optimization for material removal rate and 
surface roughness has been carried out using genetic 
algorithm toolbox of matlab. The percentage errors between 
experimental and empirical values have been found to be less 
than 10% for both MRR and surface roughness. 

In their work, [12] defined an approach to determine the best 
cutting parameters leading to minimum surface roughness and 
maximum material removal rate by using various milling 
machine parameters such as spindle speed, feed rate, and depth 
of cut. Machining operations were conducted on Al (2024-T4) 
plates using a CNC End milling and the response 
characteristics were studied. In this experimentation the L9 
orthogonal array was selected based on the DOF. ANOVA has 
been performed and compared with Taguchi method. The 

optimization process and methodology were found to have the 
potential to be applied for cutting parameters optimization 
problems during actual industrial machining process. 

Another work conducted by [13] presented an approach for 
determination of the best cutting parameters leading to 
minimum surface roughness and maximum Material 
Removal Rate in machining Cast Iron on Machining Centre. 
The machining parameters selected are spindle speed, feed 
and depth of cut. Experiments were conducted at four levels 
of machining parameters. Surface roughness was measured 
by using talysurf and material removal rate is calculated. A 
neural network was generated to predict the surface 
roughness values. The network created is exported to the 
multi objective genetic algorithm program written in 
MATLAB software. The results reveal a good agreement 
between experimental and predicted values. 

[3] proposed application of Principal Component analysis 
(PCA) coupled with Taguchi method to solve multi-attribute 
optimization of CNC end milling operation. The 
experimental work sought to evaluate the optimal result for 
selection of spindle speed (S), feed rate (f) and depth of cut 
(d) in order to achieve good surface roughness (Ra value) and 
high material removal rate (MRR) during the CNC end 
milling process. The test workpieces are made of Aluminum 
of size 95 mm x 75 mm x 10mm rectangular plate. Different 
plates of same dimension and material are used for each 
experimental run. The experimental work was carried out 
based on Taguchi’s L9 Orthogonal Array (OA) design. From 
the study and analyses, the proposed method has been found 
efficient for solving multi-attribute decision making problem 
i.e., for multi-objective product as well as process 
optimization; for continuous quality improvement. 

Although these systems can accurately determine the optimal 
cutting parameters for a desired surface roughness, they do 
not provide a quick and easy means for the selection of the 
cutting parameters on the production floor environment. So, 
it is necessary to move the optimization research to the 
implementation of a tool that will assist manufacturing 
engineers in the selection of the cutting parameters. 

In this work, it is proposed to apply fuzzy logic (FL) technique 
to develop an automated manufacturing support system for the 
selection of end milling parameters for a given surface 
roughness assuring at the same time a maximal material 
removal rate (MRR). Artificial neural network (ANN) will be 
used to predict the process responses based on the process 
parameters (spindle speed, feed rate and depth of cut). 
Optimization of the machining parameters will be achieved 
with genetic algorithm (GA). Finally, an FL inference system 
will be used as a decision making mechanism to assist the user 
in the selection of the best process parameters. The system will 
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estimate the optimal machining parameters, namely, spindle 
speed, feed rate and depth of cut for a given surface roughness 
with maximal material removal rate. 

This paper is organized as follow: Section 2 presents the 
experimental procedure and provides the results obtained 
from the experiment. In section 3, the model development 
procedure and the optimization method are described. Also 
the prediction and the optimization results are analyzed. 
Conclusion is drawn in section 4. 

2. Experimental Procedure 

In this study, a series of end milling operations was 
conducted on a vertical CNC milling machine (VICTORTEC 
VNC M5200 HSP) under dry conditions. Three cutting 
parameters, namely, spindle speed (N), feed rate (fr), and 
depth of cut (d), each with three levels were used as 
controllable factors. The cutting parameters are presented in 
Table 1. 

Table 1. Cutting parameters and levels. 

Parameters Level 1 Level 2 Level 3 

Spindle speed N (rpm) 6000 6500 7000 
Feed rate fr (mm/min) 100 200 300 
Depth of cut d (mm) 3 3.5 4 

Twenty seven (27) end milling operations were performed to 
take on all possible combinations of cutting parameters. For 
the purpose of this study, finishing operation was considered. 
Therefore, single pass, linear cuts were executed with a 
cutting length l = 5 mm. The radial depth of cut, also called 
width of cut, w = 0.1 mm. 

The workpiece is a prismatic part of 120x90x20 mm. Two 
slots have been previously machined in order to allow the 
cutting tool to access the cutting zone. 

The workpiece material used for the experiments is a low 
carbon SS 400 steel, most frequently used material during 
design of mechanical mechanism/parts. In JIS (Japanese 
Industrial Standard), “SS” stands for Structural Steel and 400 
grade which is similar to AISI 1018. Typical carbon steel 
material, SS 400 has most economic value for structure parts 
and is excelling in welding and machinability and can be 
subjected to various heat treatments. The material 
composition is following: carbon (C), not controlled; silicon 
(Si), not controlled; manganese (Mn), not controlled; 
phosporus (P), ≤ 0.05%; sulphur (S), ≤ 0.05%. 

The milling cutter used is a solid four flutes cobalt-bearing 
high speed steel HSS Co8 type M42 end mill (hardness = 62-
64 HRC) having diameter of 6 mm with Titanium Aluminum 
Nitride (TiAlN) coating. M42 is a molybdenum-series high-
speed steel alloy with an additional 8% cobalt, widely used in 
metal manufacturing industries because of its superior hot 

hardness, higher strength and wear resistance as compared to 
more conventional high-speed steels. TiAlN forms a hard 
aluminum oxide layer in hot (>800°C), dry machining 
applications. This further reflects the heat back into the chip 
and away from the tool and workpiece. The tool material 
composition is following: carbon (C) 1.08%, chromium (Cr) 
3.75%, molybdenum (Mo) 9.6%, tungsten (W) 1.6%, 
vanadium (V) 1.15%, cobalt (Co) 8.25%. 

The roughness average, Ra, was measured off-line using a 
two dimensional stylus profilometer (Kosaka L SE 3500 K). 
The measurement was performed for a cutoff length of 0.25 
mm, a sampling length equal to cutoff × 5 = 1.25 mm, and a 
speed of 0.2 mm/s. Five measurements were taken on each 
machined surface and the average value was calculated. 

MRR is determined using the following expression: 

MRR = d × w × f × z × N                      (1) 

where f is the feed per tooth (mm), N is the spindle speed 
(rpm), w is the width of cut (mm), and z is the number of 
flutes on the tool. 

The machining data are presented in Table 2. 

Table 2. Machining data. 

No N (rpm) fr (mm/min) d (mm) Ra (µm) MRR (mm3/min) 

1 6000 100 3 0.548 29.52 
2 6000 100 3.5 0.584 34.44 
3 6000 100 4 0.586 39.36 
4 6000 200 3 0.622 59.76 
5 6000 200 3.5 0.624 62.72 
6 6000 200 4 0.65 79.68 
7 6000 300 3 0.67 89.28 
8 6000 300 3.5 0.68 104.16 
9 6000 300 4 0.73 119.04 
10 6500 100 3 0.534 29.64 
11 6500 100 3.5 0.582 34.58 
12 6500 100 4 0.608 39.52 
13 6500 200 3 0.546 59.98 
14 6500 200 3.5 0.596 69.979 
15 6500 200 4 0.644 79.976 
16 6500 300 3 0.58 89.7 
17 6500 300 3.5 0.654 104.65 
18 6500 300 4 0.7 119.6 
19 7000 100 3 0.474 29.98 
20 7000 100 3.5 0.5 34.98 
21 7000 100 4 0.606 39.98 
22 7000 200 3 0.522 59.99 
23 7000 200 3.5 0.558 69.99 
24 7000 200 4 0.64 79.99 
25 7000 300 3 0.56 89.88 
26 7000 300 3.5 0.594 104.86 
27 7000 300 4 0.658 119.84 

3. Analytical Procedure 

3.1. Development of the ANN-Based 
Prediction Model 

The development of the successful model of ANN principally 
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depends on the process of trial and error with some factors to 
consider [15]. In this study, the Matlab ANN toolbox will be 
used for the development of the ANN model. Based on the 
ANN toolbox of Matlab software, the influencing factors are 
the network algorithm, the transfer function, the training 
function, the learning function, and the performance function. 
In addition, the following other factors that can influence the 
effectiveness of the model are also considered: the network 
structure, the number of training data, the number of testing 
data, and the data normalization [14-15]. 

By limiting the trial-and-error process with one hidden layer, 
several networks were designed and tested. The Levenberg-
Marquadt (LM) algorithm was used for training the 
algorithm. Hyperbolic tangent sigmoid transfer function 
(tansig) and linear (purelin) transfer functions have been used 
for the activation function in the hidden and the output layers 
respectively. The following network structures have been 
designed and tested: 3-3-1, 3-6-1 and 3-7-1. 

The network of structure 3-7-1 was found to be the most 
suitable for the present study as it had the lowest mean 
square error of 2.11248e-21. The regression coefficient (R) 
was found to be 9.99999e-1, which is close to 1, thus, 
indicating a strong correlation between the experimental 
outputs and network outputs. The ANN prediction results are 
shown in table 3. 

Table 3. ANN prediction. 

No 
N 

(rpm) 
fr (mm/min) d (mm) 

Exp Ra 

(µm) 

ANN 

Pred. 
Error 

1 6000 100 3 0.548 0.548 -1.95E-11 
2 6000 100 3.5 0.584 0.584 -2.17E-11 
3 6000 100 4 0.586 0.589 -0.00344 
4 6000 200 3 0.622 0.566 0.056023 
5 6000 200 3.5 0.624 0.624 -4.03E-12 
6 6000 200 4 0.65 0.65 -1.55E-11 
7 6000 300 3 0.67 0.67 5.43E-11 
8 6000 300 3.5 0.68 0.68 -2.26E-12 
9 6000 300 4 0.73 0.73 4.31E-11 
10 6500 100 3 0.534 0.534 -5.49E-11 
11 6500 100 3.5 0.582 0.582 2.51E-11 
12 6500 100 4 0.608 0.622 -0.01436 
13 6500 200 3 0.546 0.546 -3.15E-11 
14 6500 200 3.5 0.596 0.596 -2.61E-13 
15 6500 200 4 0.644 0.644 -8.23E-12 
16 6500 300 3 0.58 0.664 -0.0837 
17 6500 300 3.5 0.654 0.654 4.18E-13 
18 6500 300 4 0.7 0.7 1.73E-11 
19 7000 100 3 0.474 0.474 -4.01E-11 
20 7000 100 3.5 0.5 0.5 -1.43E-10 
21 7000 100 4 0.606 0.606 7.14E-11 
22 7000 200 3 0.522 0.485 0.03713 
23 7000 200 3.5 0.558 0.558 -9.32E-12 
24 7000 200 4 0.64 0.64 4.55E-11 
25 7000 300 3 0.56 0.646 -0.08635 
26 7000 300 3.5 0.594 0.632 -0.03766 
27 7000 300 4 0.658 0.646 0.012178 

3.2. GA-Based Optimization 

The performance of GA is dependent on the optimal setting 
of population size (or initial population, Ps), crossover 
probability (Pc) and mutation probability (Pm) [11]. For this 
study, the initial population size has been set to 20. The 
pareto fraction, which is a fraction of population size has 
been set to 0.35. For the crossover ratio, 1.0 has been taken. 
The crossover function has been set for intermediate. The 
limit of the number of iterations has been set to 1000 to 
prevent the premature termination of GA before getting the 
set of optimal solutions. 

The two conflicting objectives are minimization of surface 
roughness and maximization of MRR. The regression 
analysis for surface roughness and MRR was performed 
using Excel 2013 software. The regression equations are 
following: 

Ra = 0.555452362 - 5.05235E-05×N + 0.000545406×fr + 

0.077191972×d                                (2) 

MRR = -70.15344444 + 0.34945×fr +19.91733333×d  (3) 

where d is the depth of cut (mm), fr is the feed rate 
(mm/min), N is the spindle speed (rpm), MRR is the material 
removal rate (mm3/min), and Ra is the roughness average 
(µm). 

The multiple coefficient of determination, R2, is 84% and 
98% for surface roughness and MRR respectively, indicating 
that the multiple regression equation fit the sample data. The 
small value of the significance factor, 2.42341E-09 and 
8.13148E-23 for Ra and MRR respectively, indicates that the 
multiple regression equations have good overall significance. 

Programming has been performed using the inbuilt 
MATLAB functions of genetic algorithm for the multi-
objective optimization. The input parameters have been 
provided with the limits shown in table 1. Equations (2) and 
(3) have been utilized for multi-objective optimization. 

Multi-objective problems have not a unique solution. It is the 
finding of the optimal process parameters to achieve the 
desired level of response [12]. The set of optimal results 
generated by GA for this study is given in table 4. The 
number of iterations simulated by MATLAB is 194. 

Table 4. Optimization results. 

No N (rpm) fr mm/min) 
d 

(mm) 

Ra 

(µm) 

MRR 

(mm3/min) 

1 6808.997 100.099 3.001 0.498 24.589 

2 6781.368 159.276 3.106 0.539 47.362 

3 6521.717 214.741 3.353 0.642 86.444 

4 6477.678 258.675 3.837 0.665 96.672 

5 6400.248 287.919 3.789 0.682 105.929 

6 6385.74 300 4 0.705 114.351 
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3.3. Development of the Fuzzy Inference 

System 

The development of the fuzzy model involves three main 
stages: fuzzification (formation of membership function), 
definition of the expert rules, and selecting defuzzification 
method [16]. 

In the fuzzification process, the ranges of input and output 
values from the optimized data set which are crisp values are 
divided into several groups of fuzzy subsets and linguistic 
terms assigned to them [16]. A fuzzy membership function is 
then assigned to each fuzzy subset. A membership function 
(MF) is a curve that maps elements in a set to their 
membership value (or degree of membership) between 0 and 
1. There are numerous types of membership functions: 
triangles, trapezoids, bell curves, Gaussian, and sigmoidal 
functions. In selecting the membership functions trial and 
error methods are usually exercised [16-18]. Triangular MF 
have been used to map input and output elements in this 
work. The linguistic terms used are VS (very smooth), S 
(smooth), M (medium), MR (medium rough), R (rough), VL 
(very low), L (low), MH (medium high), H (high), and VH 
(very high). 

Fuzzy rules define the relationship between inputs and 
outputs by a linguistic statement in the form of if-then. The 
if-part, also referred to as the antecedent describes a 
condition and the then-part, also referred to as the 
consequent, a conclusion that can be drawn when the 
condition holds. The set of rules constitutes the fuzzy rule 
base of the system. The number of rules is determined by the 
partition of the fuzzy inputs [18]. The complete list of rules is 
displayed in Table 5. 

Table 5. List of rules. 

Rule no. 
Antecedents Consequents 

Ra MRR N fr D 

1 VS VL VH VL VL 
2 S L H L L 
3 M M MH M M 
4 MR MH M MH H 
5 R H L H MH 
6 VR VH VL VH VH 

A fuzzy inference or reasoning mechanism is required to 
allow mapping a given input to an output, using fuzzy logic. 
There are four fuzzy reasoning methods to obtain the 
inference result from a system: Mamdani’s strategy, Larsen’s 
strategy, Tsukamoto’s strategy, and Takagi and Sugeno’s 
strategy. These methods vary in ways of determining outputs 
[19, 20]. In this work, Mamdani mechanism which is based 
on MAX-MIN operator inferring has been used. 

The output response of the fuzzy process can be view only in 
fuzzy values. Crisp values need to be extracted from the 
fuzzy output sets. Defuzzification refers to the method in 

which a crisp value is extracted from a fuzzy set as a 
representative value. There are several defuzzification 
techniques; however, only five are practical: the center-of-
area (COA), center-of-gravity (COG), height defuzzification 
(HD), center-of-largest-area (COLA), mean-of-maximum 
(MOM). Although the choice is somewhat subjective, the 
center of area (COA) method (also referred to as the center-
of-gravity or centroid method) is the most commonly used 
defuzzification technique as it is very accurate. It is based on 
the computation of the position of divisive axis between the 
left and right half area under the curve of the membership 
function [16, 17, 19, 20]. 

Using fuzzy logic toolbox of Matlab software, the estimated 
parameters of the fuzzy system are presented in Table 6, 
Table 7 and Table 8 for spindle speed, feed rate and depth of 
cut respectively. The error between the estimated and the 
optimal values is obtained by the following equation: 

Error = 
������� 	��
�� 
�������� 	��
�

������� 	��
�
 × 100      (4) 

Table 6. Estimated spindle speed of the fuzzy system. 

No Ra MRR Opt. N Est. N Error (%) 

1 0.498 24.589 6808.997 6800 0.13213 
2 0.539 47.362 6781.368 6700 1.1998 
3 0.642 86.444 6521.717 6590 -1.047 
4 0.665 96.672 6477.678 6470 0.11853 
5 0.682 105.929 6400.248 6420 -0.3086 
6 0.705 114.351 6385.74 6390 -0.0667 
Average error (%) 0.0047 

Opt. N = optimal spindle speed, Est. N = estimated spindle speed. 

Table 7. Estimated feed rate of the fuzzy system. 

No Ra MRR Opt. fr Est. fr Error (%) 

1 0.498 24.589 100.099 119 -18.882 
2 0.539 47.362 159.276 158 0.80113 
3 0.642 86.444 214.741 211 1.7421 
4 0.665 96.672 258.675 254 1.80729 
5 0.682 105.929 287.919 282 2.05579 
6 0.705 114.351 300 295 1.66667 
Average error (%) -1.8016 

Opt. fr = optimal feed rate, Est. fr = estimated feed rate. 

Table 8. Estimated depth of cut of the fuzzy system. 

No Ra MRR Opt. d Est. d Error (%) 

1 0.498 24.589 3.001 3.03 -0.966 
2 0.539 47.362 3.106 3.15 -1.417 
3 0.642 86.444 3.353 3.42 -1.998 
4 0.665 96.672 3.837 3.88 -1.121 
5 0.682 105.929 3.789 3.66 3.4046 
6 0.705 114.351 4 3.95 1.25 
Average error (%) -0.141 

Opt. d = optimal depth of cut, Est. d = estimated depth of cut. 

3.4. Results and Analysis 

Experimental investigations were carried out to validate the 
prediction of the fuzzy system for N, fr and d. The estimated 
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parameters of the fuzzy system were fed to the CNC milling 
machine and end milling operations were conducted. The 
validation values of surface roughness and material removal 
rate were compared to the optimal values. The percentage 
error between the validation values and the optimal value 
was estimated based on equation (4) and displayed in Table 9 
and Table 10 for surface roughness and material removal rate 
respectively. 

Table 9. Comparison between optimal and validation values of surface 
roughness. 

No 
Estimated parameters 

Opt. Ra Val. Ra 
Error 

(%) N fr d 

1 6800 119 3.03 0.498 0.51 -2.41 
2 6700 158 3.15 0.539 0.535 0.742 
3 6590 211 3.42 0.642 0.6 6.542 
4 6470 254 3.88 0.665 0.635 4.511 
5 6420 282 3.66 0.682 0.651 4.545 
6 6390 295 3.95 0.705 0.699 0.85 
Average error (%) 2.463 

Opt. Ra = optimal surface roughness, Val. Ra = validation surface roughness. 

Table 10. Comparison between optimal and validation values of material 
removal rate. 

No 
Estimated parameters Opt. 

MRR 

Val. 

MRR 

Error 

(%) N fr d 

1 6800 119 3.03 24.589 36.057 -46.639 
2 6700 158 3.15 47.362 49.77 -5.084 
3 6590 211 3.42 86.444 72.162 16.521 
4 6470 254 3.88 96.672 98.552 -1.945 
5 6420 282 3.66 105.929 103.212 2.565 
6 6390 295 3.95 114.351 116.525 -1.901 
Average error (%) -6.08 

Opt. MRR = optimal material removal rate, Val. MRR = validation material 
removal rate. 

Plots of optimal and validation values of surface roughness 
and material removal rate are provided on Figures 1 and 2 
respectively. 

 

Figure 1. Plot of optimal and validation surface roughness. 

It can be observed from figures 1 and 2 that the overall 
validation data are closer with the optimal data generated by 
GA multi-objective optimization process. The average errors 
between the optimal and estimated values are 2.463% and 
6.08% for surface roughness and material removal rate 

respectively, due to errors in machining, measurement and 
modeling. 

 
Figure 2. Plot of optimal and validation material removal rate. 

4. Conclusion 

This work attempts to develop a fuzzy logic-based system for 
end milling parameters selection in the production floor 
environment. The experimentation was carried out under dry 
conditions using SS400 steel for the workpiece and HSS Co8 
as tool material. Three cutting parameters, namely spindle 
speed (N), feed rate (fr) and depth of cut (d) were considered 
in this work. The optimal sets of parameters are identified 
using artificial neural network followed by genetic algorithm. 
Fuzzy rules are then generated for the selection of end 
milling parameters for the required surface roughness. 

The validation experiment shows a closed relationship 
between validation and optimal data since the average error 
of the system is 2.463% for surface roughness and 6.08% for 
material removal, which is less than 10%. 

By investigating more cutting tool and workpiece material 
combinations, one may build a database for a variety of cases 
in order to design an expert system which provides assistance 
to operators in selecting machining parameters for a given 
surface roughness. Such a system helps to save production 
time and facilitates increased automation of manufacturing 
processes. 
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