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Abstract 

Since most chemical processes exhibit severe nonlinear and time-varying behavior, the control of such processes is challenging. 

In this paper, we propose data-driven constrained controller design method based on lazy learning for chemical processes. Using 

a lazy learning algorithm, a local valid linear model denoting the current state of system is automatically exacted for adjusting the 

PID controller parameters based on input/output data. This scheme can adjust the constrained PID parameters in an online 

manner even if the system has nonlinear properties. At same time, in order to solve the control input saturation problem, a 

dynamic anti-windup compensator is proposed for accommodating the reference. The simulation results on the dynamic model 

of Continuous Stirred Tank Reactor (CSTR) are provided to demonstrate the effectiveness of the proposed new control 

techniques. 
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1. Introduction 

With the development of control theory and technology, many 

scholars put forward the adaptive online adjustment strategy, 

such as: based on the optimization strategy parameters 

self-tuning [1-3], based on the generalized minimum variance 

parameter adjustment [4-6], etc. When using these advanced 

strategy, it requires to identify the current system conditions of 

the model, which has two kinds of online and offline. In actual 

application of these strategies are achieved good results. And 

in the face of a wide range, strong nonlinear, or jumping 

change system, if we adopt the rolling strategy, it tend to throw 

away the past data, relying only on the current some of the 

data obtained, can't let the system to establish a more accurate 

model, it is difficult to achieve good control effect. If the 

offline global model is set up, because the new point, often 

need to be trained, the offline model is set up again, big 

workload [7-9]. 

In order to overcome the above problem, we use the real-time 

algorithm adaptive, the nature of the K-VNN search strategy, 

accumulated data to find out from the system and the current 

point matching the data set, a local polynomial fitting method 

is adopted to establish the local model of the system. And the 

system is based on tracking error of the least performance 

index which is deduced with the PID control law in the form 

of structure, it is easy to realize the adaptive PID control for 

nonlinear systems. At same time, in order to satisfy the 

requirements for control constraints, a dynamic constraint unit 

and an anti-windup scheme are adopted. 

2. Data-Driven Modeling 

Method (Lazy Learning) 

Lazy learning algorithm based on "input to produce output of 

similitude" principle. It is generally the sample data memory 

in memory, and then according to the input point, find similar 
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data in the sample data, according to the sample data to get the 

input to the corresponding output [10-12]. Therefore, it is also 

called "Based on the study of Memory" (the MBL: 

Memory-based Learning). Describe the input data and sample 

data correlation criterion generally USES the distance 

function, which recently with the input point data has the 

higher correlation [12-13]. 

Considering an unknown nonlinear mapping : nf R R→ , we 

assumed that can get system observable input and output data 

( ){ }
1

,
N

i i i
X y

=
. And this set data has function relation: 

( )i iy f x ε= +  

Where: the independent variable nX R∈ , the dependent 

variable iy R∈ , zero mean i Rε ∈
 
and variance 

2σ  for the 

independent random distribution variables. The question is 

whether any vector 
qX

 
of the input space according to the 

existing data sets can create a mapping. It can pass the 

mapping and get the system corresponding estimate output 

ɵ
qy . This problem can be summed up in solving the following 

optimization problem. 

( )( )
( )

2

,

min ,
i i k

i i i

X Y

y f X wθ
∈Ω

−∑  

Where: kΩ  is the local space kX  of the nearest k  samples. 

( )f ⋅  describes the nonlinear mapping function of the input 

and output vector. iw
 
is weight, it is the local space within the 

sample data to the influence degree of the output vector. 

Effects on the system output of different sample data in local 

space are different. Intuitively, the closest to the input vector 

corresponding to the sample vector output can most reflect the 

current output. It is also the basic principle of lazy learning 

algorithm: analog input produces analog output. 

By using the principle of the above algorithm, we assume that 

the controlled system available can use NARX model to 

represent as follows: 

( ) ( ( 1)) ( )y t f t tφ ε= − +                           (1) 

Where: 

( 1) ( 1), , ( ), ( ), , ( )
T

y ut y t y t n u t p u t p nφ  − = − − − − − ⋯ ⋯
 
It 

is system state vector on t  moment. 

( ); , , 0y u y um m n n n n p= + >  is the system output, the system 

input order and the system delay. ( )y t , ( )u t , ( )tε
 
are the 

system output, the system input, the zero mean white noise.

( )f ⋅  is an unknown nonlinear function. 

The control input magnitude and rate constraints is 

redefined as 

min maxfu u u≤ ≤ min max
u u u≤ ≤ɺ ɺ ɺ                 (2) 

About the system (1) the physical description of the system is 

unknown, assuming that there are N sets of input and output 

data { }
1

( ), ( )
N

i
y i iφ

=
, at the current time t , system input 

information ( )tφ , the K-VNN search strategy is adopted, in 

the system of existing N sets of data to find the most similar 

data (K<< N), specific as follows: 

1, When cos ( ( ), ( )) 0i tβ φ φ < , we think ( )iφ  diverge from the 

current input ( )tφ , which is unfavorable for system modeling, 

so we should discard the data; 

2, Otherwise, the function of the index nuclear of ( )iφ  and 

( )tφ
 
and the angle cosine weighted sum is defined as 

( ) ( ) ( ) ( )( ( ), ( ))( , ) (1 ) cos ( , )d i tD i t e i tφ φφ φ α α β φ φ−= ⋅ + − ⋅   (3) 

Where: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) [ ]
2 2

2

cos ( , )

( , ) ( ) ( ) , 0,1

T i t
i t

i t

d i t i t

φ φ
β φ φ

φ φ

φ φ φ φ α


=

•
 = − ∈

 

By (3), the weighted selection criteria ( ) ( )( , )D i tφ φ
 
directly 

reflects ( )iφ
 
and ( )tφ  similarity. If the two vectors are the 

closer, d  is the more small, and cos β
 
is the greater, thereby 

( ) ( )( , )D i tφ φ
 
is bigger. So in the existing data information, 

(3) selects the largest k  set data values ( )D ⋅ , in descending 

order, constructed learning sets: 

( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( )
1 , 1 , , ,

1 , , .

y k y k

D t D k t

φ φ

φ φ φ φ> >

⋯

⋯

           (4) 

The information vector is linear regression, the system can get 

the local linear model of the current conditions. But at different 

working conditions, in accordance with the current point data 

( )tφ
 
may not be the same density. The data number used in 

modeling is also uncertain, namely: modeling neighborhood 

values are variable, in order to get the best linear model ɵθ , 

reduce the amount of calculation, set up neighborhood range 

[ ], ( )m M m Mk k k k k∈ <  in advance. When calculating the local 

model ɵ 1kθ +  of the neighboring 1k + , we directly use model 

values kθ
 
of the neighbor k  and the recursive least squares 

method. So can get the system model. 
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We get the model 
1k

θ +  
of the near k 1+ . At the same time,we 

can get a cross error value of the near k 1+ :  

( ) ɵ
( ) ɵ

1

11,

1

,   1, 2 , 1.
1

T
j kjloo

kk j j T

j k j

y j
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− Φ Φ
⋯  (6) 

Where: in k 1+  sets data, it represents local model ɵ 1

j

kθ
−

+  by 

removing the j th−  data. 1,

loo

k je +  
 is the error value between the 

actual value ( )y j
 
and the model ɵ 1

j

kθ
−

+ . In this way, we can get 

cross error { } 1

1, 1
, 1

k
loo

k j Mj
e k k

+

+ =
+ ≤ , mean square, and 1,

loo

k je +  of 

the neighbor k 1+  

( )
1

2

1,

1

1

1

( 1) .

k
loo

j k j

jloo

k

j

j

w e

E k

w

+

+
=

+

=

+ =
∑

∑
                       (7) 

Where: the weighted factor ( ) ( )( ),w D j tφ φ=
 
directly 

reflects the size of the cross error ( 1)looE k +  with each ( )jφ . 

The ( )jφ
 
is closer ( )tφ , its contribution is the greater, 

whereas the smaller. 

[ ]( 1) ( ), 1 , .loo loo

m M
E k E k k k k+ > + ∈               (8) 

From it, we think model variation and stop the regression 

calculation, then we can use the model 
k

θ
 
as the system 

optimal model of the current time. Otherwise, by using the 

recursive least squares algorithm model, we select new 

information vector from learning sets, and continue to 

iteration, until
M

k k= . So, we can judge the merits of the local 

model in time, get in line with the current moment system 

input and output relationship of the best local linear model. 

3. PID Parameter Tuning 
Principles 

In this paper, we propose adaptive constrained PID control 

based on lazy learning identification. Its structure is shown in 

Fig. 1. 

Define the new tracking error ( ) ( ) ( )
r m

e k y k y k ς= − − . Since 

the dynamic constraints in the close-loop SOFC control, an 

anti-windup compensator is designed to accommodate the 

reference trajectory ( )
r

y k . The compensation signal ς  is 

designed as following 

( )
( ) ( 1) ( ( ) ( ))

( )

m
c

y k
k k u k u k

u k
ς µς ∂

= − + −
∂

        (9) 

ς

u

dcy V=

ry cu

my

 

Fig. 1. Structure of adaptive constrained PID control based on lazy learning. 

where µ  is chosen in the unit circle. The PID parameters are 

modified on-line using of results of lazy learning 

identification. 

PID input is: 

( ) ( )
( )
( ) ( ) ( )

1

2

3

1

2 1 2

c

c

c

x e k e k

x e k

x e k e k e k

= − −


=
 = − − + −

 

Control algorithm is: 

( ) ( ) 1 2 3
1

c p c i c d c
u k u k K x K x K x= − + + +       (10) 

The input constraints (2), then adaptive constrained controller 

is described as 

( ){ }( ){ }min max min max( ) ( 1) ( ) ( 1) , , ,cu t Sat u k Sat u k u k Tu Tu u u= − + − − ɺ ɺ

where ( )Sat ⋅  function is defined as 

( , , )   

b a b

Sat a b c a b a c

c a c

≤
= < <
 ≥

 

The indicators of lazy learning algorithm are 

( ) ( )21

2
J k e k=                       (11) 

Adjusted , ,p i dK K K , we use the gradient descent method 
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Where:
 

m
y

u

∂
∂

 is Jacobian information of the controlled object. 

It is gotten by lazy learning method in Section 2. 

4. Simulation Results 

CSTR is an important unit of chemical process. It has strong 

nonlinear characteristics, and it is a typical nonlinear object in 

chemical system. Dynamic equations for the input and output 

are 

( ) ( )

( ) ( ) ( )

( )

0

0

d
exp / ,

d

d
exp /

d

              1 exp .

a

af a a

a

f

p

c pc

c cf

c p c c pc

C q
C C k C E RT

t V

H k CT q
T T E RT

t V C

C hA
Q T T

Q C Q C

ρ

ρ
ρ




= − − −


−∆
= − + −




  − + − −       

 (13) 

Here: the density 
a

C  of the product A  in the reactor, the 

reactants temperature T , the in and out of the material flow 

q , the coolant flow 
c

Q , the coolant inlet temperature 
cfT , the 

coolant outlet temperature 
c

T , the feed concentration 
afC , the 

feed temperature 
fT . By adjusting the size of the coolant flow, 

we can control the temperature T  in the reactor and the 

reactants concentration 
a

C . According to process 

requirements, we determine the process output 
a

C  and T . 

Where: the control variables 
c

Q , the external disturbance 

variables 
c

T , q
, afC . The physical parameters are shown in 

table 1. 

In the table, the static working point of CSTR corresponding 

steady-state value is 
0c

C , 
0

T , 
0a

C . In the static working point, 

when it changes 0
020±

 
of the coolant flow 

0
103.41  / min

c
Q L= , it will produce 2000 set samples. 

Input vector of the model is: 

( ) ( ) ( ) ( ) ( )1 1 , 2 , 1 , 2c ct T t T t Q t Q tφ − = − − − −    

The local model order is 2yn = ， 1
u

n = . Lazy learning 

parameter is 0.85α = , [ ]12,100k ∈ . Punishment of PID 

controller is 9.3Q = . (446.5 444.5 438.5)T → →
 
output 

variable change value is shown in Fig. 2. 

Fig. 2 shows that when the system working point move, lazy 

learning method selects the modeling data due to the nature of 

time and space adjacent to the change of the fast tracking 

system, so gain parameters of PID controller has better 

adaptive. In the whole tracking trajectory, PID control 

parameters are shown in Fig. 3. 

Table 1. Model parameters. 

Parameter Value 

q  100 L/min  

Tf  350 K  

V  100 L  

0k  10
7.2 10  L/min×  

H−∆  5
2 10  cal/mol×  

C ,p pcC  ( )1 cal/ g k⋅  

0T  440.2 K  

sT  0.1 min  

Caf  1.0 mol/L  

Tcf  350 K  

Ah  ( )5 1
7 10  cal/ min k

−× ⋅  

/E R  3
9.95 10  K×  

, cρ ρ  1000 g/L  

0cQ  103.41 L/min  

0Ca  0.0836 mol/L  

5. Conclusions 

We have carried out a systematic study on the data driven PID 

control of a CSTR in this paper. The lazy learning algorithm, a 

local valid linear model denoting the current state of system is 

automatically exacted for adjusting the PID controller 

parameters based on input/output data. A dynamic constraint 

unit with anti-windup scheme is adopted to keep saturation 

range as long as possible. This scheme can adjust the PID 

parameters in an online manner even if the system has 

nonlinear properties. Finally, simulation results are provided 

on CSTR to show the effective and advantages of the control 

strategy. 
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Fig. 2. The CSTR response curve. 

 

Fig. 3. The change curve of PID controller parameters. 
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