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Abstract 

This paper proposes a learning control system for modular robots with many degrees of freedom. The system is based on 

cooperative module training, from discovering common monitor rules for all the modules to their subsequent specification in 

accordance with semantic probabilistic inference approach. Using an interactive 3D-simulator, a series of successful 

experiments was conducted in teaching the models of snake-like and multiped robots. The results of experiments have shown 

that the proposed control system model is quite effective and can be used to control complex modular systems with many 

degrees of freedom. 
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1. Introduction 

Currently we can observe a new direction of robotics - 

“modular robotics” [1, 2] actively developing. The basic idea 

of this approach is construction of robots using many simple 

modules of similar functionality, which themselves have low 

mobility, but, connected to each other, are capable of forming 

complex mechanical systems with many degrees of freedom.  

These robots have a number of peculiar features that allow 

them to exceed conventional robots’ abilities. Firstly, it is 

possible to create different designs of the same module, 

allowing to solve various tasks using the same set of modules. 

It is much cheaper and more convenient than constructing a 

number of specialized robots for each specific task. Moreover, 

it is possible to create a transformer robot, independently 

changing its design depending on the tasks given and 

adapting to environmental conditions. Second, the modular 

structure and availability of a large number of degrees of 

freedom (hyper-redundancy) allows one to create fault-

tolerant robot models. Such robot’s individual modules’ 

failure is not critical to the operation of the entire system, and 

causes minimal performance degradation. Thirdly, production 

and use of such robots is economically advantageous and 

cost-effective because modules of the same type are simpler 

and cheaper to manufacture and repair. 

However, while modular robots provide several advantages 

associated with hyper-redundancy, they also pose a problem 

of being much more complex in control and maintaining. In 

particular, the current task is creating a locomotion control 

system for a predefined robot configuration. 

While for traditional robots the conventional approach to 

creating control systems is manual programming, for 

modular robots, this approach proves inefficient. Because of 

the large number of degrees of freedom it is extremely 

difficult for a developer to foresee and to program all the 

possible forms of movement and the situations where they 

need to be applied, and particularly - taking the ability to 

adapt in the event of individual modules’ failure or a sudden 

environment change into account. Therefore, development of 

control system automatic generation methods based on 
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different learning models is becoming a relevant task. 

However, the use of popular techniques, such as 

reinforcement learning, directly for hyper-redundant robots 

control systems generation is difficult because of the large 

number of degrees of freedom in such robots. Thus currently 

many developers generally prefer using the evolutionary 

method, in particular, genetic algorithms and genetic 

programming, as well as their combinations with 

conventional training methods [3-6]. 

But evolutionary methods application also has its drawbacks, 

the main ones are as follows: firstly, usually a significant 

time is required to carry out the calculations, as at each 

evolutionary step, every decision requires evaluating the 

locomotion method effectiveness. Secondly, using this 

method makes adapting to the real work conditions virtually 

impossible, because the method requires the availability of a 

population of robots. 

In this paper, we propose a learning control system using the 

logic-probabilistic approach to extracting knowledge for 

monitor rules generation from the system’s environment 

interaction experience. The specialty of the proposed 

approach is that the system first attempts to locate the 

monitor rules that are common for all the modules, and only 

then - the rules that are specific to each individual module. 

The effectiveness of the approach will be evaluated by the 

example of teaching the locomotion methods for the two 

typical representatives of simple hyper-redundant modular 

robots, snake-like and multiped robot. 

2. Simulator 

For conducting the experiments with the proposed control 

model an interactive 3D-simulator with graphical user 

interface (GUI) was developed. The main purpose of the 

program is to conduct experiments on controlling in a close 

to real world environment. The program has virtual 

environment visualization capabilities as well as the 

capability of recording experiments in a video file. Open 

Dynamic Library (ODE) [7] is used as the simulator’s 

physics engine, which allows one to simulate the dynamics of 

solid bodies with different joint types. The advantages of this 

library are speed, high integration stability, as well as built-in 

collision detection. Two models of robots were built in the 

said simulator: snake-like and multiped. 

 

Fig. 1. Snake-like robot model. 

Snake-like robot model is presented as a set of six identical 

rectangular blocks ("vertebrae") connected together by 

universal joints (Fig. 1). All joints are identical and have two 

angular motors ("muscles"), which provide joint rotation in 

the vertical and horizontal planes. The proposed design, 

despite its simplicity, provides sufficient model flexibility 

and allows simulating body positions specific to biological 

snakes. 

 

Fig. 2. Multiped robot model. 

The second model is a multiped robot presented in the form 

of six identical modules, connected to each other with stiff 

joints (Fig. 2). Each module has a pair of L-shaped legs on 

robot’s right and left sides, respectively. Thus, the robot has a 

total of twelve “leg” limbs. Each leg is connected to the 

module by a universal joint with two angular motors 

allowing a joint to rotate the foot in the horizontal and 

vertical planes. In general, the design of the robot reminds of 

biological centipedes and allows for transportation methods 

typical for this species. 

3. Control System 

This paper proposes using neural networks consisting of 

trainable logical neurons, each of which controls a separate 

module of the robot, for a modular robot control system.  

Logical neurons operate on a discrete time scale , , ,...t 0 1 2= . 

Each neuron contains a set of inputs ,...,
1 k

input input , taking 

real values, and one output output  taking values from a 

predetermined set { ,..., }
1 m
y y . At any time, t , the neuron 

inputs are supplied with information by assigning real values 

of the inputs ,...,
1 1 k k

input x input x= = , ,...,
1 k
x x ∈R . 

Neuron’s work results in an output signal output y= , 

{ ,..., }
1 m

y y y∈  taking one of possible values { ,..., }
1 m
y y . 

After all the neurons in the network provide an output signal, 

the reward comes from the external environment. Reward 

function is set based on the final objectives and provides an 

assessment of control quality. Control system task is 

detecting patterns of neuron functioning that would ensure 

getting the maximal reward. 

We propose to search for the multitude of the neuron work 
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governing patterns as logical laws with estimates, as follows: 

( ( ), ( ),..., ( ), ( ) )
1 m

i P i X i X i Y i r∀ → ,         (0) 

where ,..,i 1 n=  – neurons’ object indexes iterator variable. 

( )jX i ∈X  – predicates from a set of input predicates X , 

describing inputs j  for neurons 
i
N  ( ,.., )i 1 n= . E.g., in the 

simplest case, the data predicates can be defined as 

( ) ( ( ) )j k rX i input i x= = , where 
r
x  – constants from the 

range of input signals that may be defined, for example, by 

quantizing the possible value range of the respective neuron 

inputs. 

( )jY i ∈Y  – predicates from a set of output predicates Y , 

describing neuron outputs 
i
N  ,..,i 1 n=  looking as follows: 

( ) ( ( ) )j rY i output i y= = , where 
r
y  – constants from the 

output signals value set. 

( )P i ∈P  – predicates from a set of predicates P , looking as 

follows: ( )i j= , where ,..,j 1 n= , with the purpose of 

narrowing the scope of  the rules of the (0) type down to 

individual neurons. 

r  – reward, its maximization being the constant task of a 

neuron. 

These patterns predict that if a neuron gets input signals 
i
N , 

,..,i 1 n=  meeting the input predicates ( ),..., ( )
1 m
X i X i  from 

the rule premise, and an output signal sent by the neuron is 

specified in the output predicate ( )Y i , then the expectation 

of the reward will be equal to a value of r . 

We will also note that if a neuron jN  gets an input specific 

for only that neuron, we presume that the predicate ( )X i , 

describing this input, will take a value of zero (“0”) for all 

i j≠ , i.e. for all the other neurons. Similarly, if a neuron’s 

output jN  can take some value y , specific for only that 

neuron, then corresponding output predicate ( ( ) )output i y=  

will also take a value of zero (“0”) for all i j≠ . 

We will now explain the need for introducing a set of 

predicates P . In the case of rules (0) not containing 

predicates from P , they will look like  

( ( ),..., ( ), ( ) )
1 m

i X i X i Y i r∀ →  and will describe the patterns 

that are common to all neurons 
i
N , ,..,i 1 n= . Adding a 

predicate rule from P  to the premise automatically narrows 

the rule’s scope down to a particular neuron. Thus, rules 

containing predicates from P  describe patterns specific to 

particular neurons. It is also worth mentioning that narrowing 

down the rules’ (0) scope may can take place not only 

because of P  predicates, but also input and output predicates 

from X  and Y , describing specific inputs or particular 

neurons’ outputs. 

We propose using semantic probabilistic inference-based 

algorithm described in [8, 9] for finding patterns of the (0) 

type. This algorithm helps analyze the variety of neuron 

network statistical data (neurons’ inputs and outputs, as well 

as received reward) and extract all the statistically significant 

patterns of the (0) type.  

We will not be giving a description of the semantic 

probabilistic inference algorithm in this paper. A detailed 

description can be found in [8-11]. We will only note that 

the essence of the algorithm is successive rules clarification 

and adjustment, starting with one-unit rules, by adding new 

predicate rules to the premise and then checking the rules 

on belonging to probabilistic patterns. Essentially, a 

“directional” rule brute-forcing is realized, allowing to 

significantly reduce the search space. Search space 

reduction is achieved by using heuristics, which is - starting 

from the moment when the length of the rule’s premise 

reaches some predetermined value, or, the depth of the 

basic brute-forcing, only the rules that are probabilistic 

patterns are consequently clarified. 

The advantage of using the semantic probabilistic inference 

and rules of the (0) form is organizing the rule search in a 

way that rules common to all neurons will be detected in 

the first place, more complex rules, including specific rules 

for individual neurons, will only be detected after common 

ones. As a result, when encountering modular robot control 

tasks, if at least some of the modules have similar functions, 

which can be described by common rules, the proposed 

approach can significantly reduce the solution searching 

time. 

Neural network operates as follows: at each network cycle 

neuron inputs accept input signals. Then, successively for 

each neuron, a decision making procedure is started, during 

which rules that apply to the current neuron for current 

input signals are selected from the variety of rules 

describing the operation of the neurons. Then, a rule 

predicting maximal reward r  mathematical expectation is 

chosen from the selected ones. Then an output signal 

output y=  specified in the chosen rule is fed to the neuron 

output. On the network’s initial stage of operation, while 

the set of rules describing the neurons’ work is still empty 

or when there are no rules applicable to the current set of 

input signals, the output is determined randomly. After all 

neurons generate output signals, the reward is given from 

the external environment and training is conducted in the 

course of which new rules are discovered and current rules 

are adjusted in accordance with the offered pattern search 

algorithm. 
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4. Snake-Like Robot 
Locomotion Control System 

 

Fig. 3. Modular robot locomotion control system neural circuit scheme. 

In previous studies [12], we proposed a model of neural 

circuit for nematode C. Elegans locomotion control, which 

showed high efficiency in experimental undulating 

movement learning process. The circuit assumed that the 

nematode’s head acts as an oscillation source, based solely on 

feedback from stretch receptor. Then the signal is distributed 

over the nematode’s body with a certain time delay, 

providing the distinctive undulating movement. Since the 

snake-like robot proves similar to the nematode’s model, it 

was decided to use a similar neural circuit scheme to control 

the robot’s locomotion. 

Finally a neural circuit consisting of five neurons (Fig. 3) 

was selected. Each neuron 
i
N , ,...,i 1 5=  controls a single 

joint by applying activating signals to the angular motors 

placed in the said joint. Head neuron 
1
N  receives input 

information on the bending angle between the head and the 

subsequent segment. Also neuron receives a signal from its 

own output with a time delay t∆  via feedbacks. Other 

neurons 
i
N , ,...,i 2 5=  only receive a signal from the 

previous neuron’s 
i 1
N −  output with a time delay of t∆ . 

A multitude of input and output predicates for the neurons is 

specified by quantizing the range of possible values of the 

neuron’s respective inputs and outputs. The reward for the 

whole locomotion control neural circuit is determined by the 

speed that the robot will develop over a time interval of t∆ : 

higher speed means higher reward. 

A number of successful experiments were conducted using 

the 3D-simulator on learning of the proposed model for 

locomotion methods. The results of the experiments show 

that the control system manages to consistently learn an 

effective way of moving forward, based on undulating body 

movement in horizontal plane. This method of movement is 

most common among snakes, and is typical for some other 

animals, e.g. nematodes. Fig. 4 shows optimum movement 

sequences for forward motion found by the system during 

training. 

 

Fig. 4. Snake-like robot movement sequence for forward motion. 

5. Multiped Robot Locomotion 

System 

 

Fig. 5. Multiped robot locomotion control system neural circuit scheme. 

For controlling the multiped robot a neural circuit consisting 

of six neurons was selected - having one neuron for each 

module of the robot (Fig. 5). Each neuron 
i
N , ,...,i 1 6=  

controls the movement of it’s module’s left and right legs by 

applying activating signals to corresponding angular motors 

that rotate the limb in the joint. To simplify the task, the 

movements of the right and left legs of the robot were 

synchronized so that the motion of one foot is always the 

other leg’s counterphase. Eg., the forward movement of the 

left foot is always accompanied by the backward movement 

of the right foot. Thus, it is in fact enough for a neuron to 

only control one leg’s movement, because the second leg will 

be repeating the same movement, only in counterphase. 

The head neuron 
1
N  receives input information on the first 

module’s leg position. Other neurons 
i
N , ,...,i 2 6=  receive 

input information on previous module’s leg position. Leg 

position status is defined as horizontal and vertical planes’ 

limb joint bending angle. As in the previous task, a multitude 

of input and output predicates for the neurons is specified by 

quantizing the range of possible values of the neuron’s 

respective inputs and outputs. Analogically, the reward for 

the whole locomotion control neural circuit is determined by 

the speed that the robot will develop over a time interval of 

t∆ : higher speed means higher reward. 
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Fig. 6. Multiped robot movement sequence for forward motion. 

A number of successful experiments were conducted using 

the 3D-simulator on learning of the proposed multiped robot 

model for locomotion methods. The results of the 

experiments show that the control system successfully 

manages to discover and learn coordinated limb movement 

sequences ensuring effective forward motion. Fig. 6 shows 

an example of optimal movement sequences found by the 

system during training. 

6. Conclusions and Results 

In this paper we proposed an approach to learning control 

system for modular robots with many degrees of freedom. 

The system is based on cooperative module training, from 

discovering common monitor rules for all the modules to 

their subsequent specification in accordance with semantic 

probabilistic inference approach. The main advantages of the 

proposed approach are: (1) the ability of learning during real 

work based only on environment interaction experience, and 

(2) high learning speed achieved through the effective use of 

the modules' functional similarity properties and directional 

rule search algorithm. In addition to that, the proposed 

approach scales well with the number of modules increasing. 

In particular, the addition of new segments to the structure of 

snake-like and multiped robots in the experiments has little 

effect on learning efficiency, because it does not change the 

number of modules' common rules. However, it's worth 

noting that the effectiveness of this approach depends on the 

number of similar modules in the robot's design. With the 

similar modules' share decreasing in the robot's design the 

benefits from the common rules' usage are lost. From a 

practical point of view, results of experiments in teaching the 

models of snake-like and multiped robots have shown that 

the proposed approach is quite effective and can be used to 

control complex modular systems with many degrees of 

freedom.  
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