

International Journal of Automation, Control and

Intelligent Systems

Vol. 1, No. 1, 2015, pp. 1-8

http://www.publicscienceframework.org/journal/ijacis

* Corresponding author

E-mail address: sivser@mail.ru

Polygonization Method for Functionally Defined
Objects

Sergey I. Vyatkin*

Synthesizing Visualization Systems Laboratory at Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences,

Novosibirsk, Russian Federation

Abstract

Obtaining a triangular mesh from a set of cells intersecting the surface with perturbation functions is considered in this paper.

The seamless rendering is discussed. The free forms based on the analytical perturbation functions are presented. A method for

polygonization freeform surfaces is proposed.

Keywords

Seamless Rendering, Polygonization, Perturbation Functions, Octree, Polygonizer

Received: April 6, 2015 / Accepted: April 13, 2015 / Published online: April 20, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

Several representations of geometric objects are currently

used in computer graphics. Each of the objects, according to

its properties, is used in different fields, beginning from 3-D

simulation and CAD systems up to real-time visualization

systems.

The functional representation describes most accurately the

object geometry and has the smallest size of the required data.

Procedures of functional representation demonstrate compact

and flexible representation of surfaces and objects that are

the results of logical operations on volumes. Its disadvantage

is complicated geometrical processing and visualization in

real-time.

There are seven kernels: Gaussian function [1, 2 and 3],

Inverse function, Inverse squared function and Soft objects [4,

5], Metaballs [6], W-shaped quartic polynomial and Cauchy

function [7, 8].

Tessellation or polygonization is the generation of polygonal

approximation of a function-based surface. Why need

tessellation functionally defined objects? Conventional

graphics environment are optimized for polygon display and

manipulation. Many geometric calculations (such as finite

element analysis) are performed on polygonal models.

Navigable nature of polygons (list of vertices, edges, faces)

supports non-graphical operations such as placing an object

on a surface. Systems of rapid prototyping operate with

polygonal models.

However, there are difficulties in achieving this task. The

generation of polygons from function-based form (for

example, implicit form) is less straightforward than from

parametric form. Quadric surfaces can be converted to the

parametric form; it is difficult to do so for higher order

functions.

In general, polygonization software or a polygonizer must

evaluate the function in sample points and employ some

numerical procedure to locate polygon vertices. There are

several algorithms known as tessellation, polygonization,

triangulation, tiling and meshing [9, 10].

This paper a method of tessellation of functionally defined

2 Sergey I. Vyatkin: Polygonization Method for Functionally Defined Objects

objects with any desired precision is proposed. Octree local

object space subdivision for search of points of a surface was

used. As a result program calculates all points of a surface

without holes [11].

Organization

The paper is organized as follows. Section 2 gives a brief

survey of the work related to polygonization of implicit

surfaces. Section 3.1 describes free forms based on

perturbation functions. Section 3.2 provides the overview of

approach to computation of the voxel-surface intersection.
The octree algorithm that performs efficient retrieval of

volume elements (voxels) involved in surface points finding.

Linking surface points into polygons is described in Section

3.3. Hard edges described in this paper are given in Section

3.4. The export of resulting mesh and examples of results are

considered in Section 4. Summary and future work is

discussed in Section 5.

2. Previous Works

2.1. Grids and Cells

A polygonizer uses a spatial partitioning a 3D volume

divided into semi disjoint (adjacent but non-overlapping)

cells that completely enclose the function-based surface, in

particular, implicit surface [12]. Each cell intersected by the

implicit surface (a transverse cell) is polygonized:

intersections of the cell edges with the surface are connected

to form a set of polygons. A fixed resolution (or uniform

space) means that the cells are fixed in size. An adaptive

resolution means that the cell size is locally proportional to

the size of surface detail. The accuracy of fixed resolution

methods depends on the size of the cell: large cells remove

detail and small cells yield a lot of polygons. Large cell size

is used to produce low-resolution polygons in real-time for

rendering on graphics processors with near real-time design

interaction. Small cell size is used for quality visualization

with direct rendering methods such as ray tracing.

2.2. Classes of Polygonizers

There are two classes of polygonizers, depending on the

input data. Discrete data available at cell corners (voxel data

sets). Space partitioned by exhaustive enumeration [13].

Continuous data is the function can be evaluated at arbitrary

point in space. Space partitioned by subdivision or by

numerical continuation. Discrete data can be represented in

the continuous form with the trilinear (or other) interpolation.

For discrete data the function behavior between the cell

corners must be approximated (linear interpolation in the

edge). For continuous data, a function value in any point can

be determined with given accuracy.

2.3. Spatial Partitioning Schemes

A spatial partitioning divides space into semi-disjoint cells

that collectively enclose the surface; the interior of the object

is not enclosed. The cells may then polygonized. Subdivision

is the recursive division of space into subvolumes that fully

enclosed the surface. There are the following types of trees:

octree [14, 15 and 16], bintree [17], KD-tree [18].

A set of cubes of different size can fill space without gaps or

overlaps. A cube may be subdivided into similarly shaped

and oriented polyhedra (eight subcubes). A specially shaped

tetrahedron, known as the Kuhn complex, may be subdivided

into similar subshapes: eight subsimplices, four at the corners

and four internal to the original one.

A class of incremental polygonization techniques usually

divided into predictor-corrector and piecewise-linear methods

[19, 20 and 21]. Predictor-corrector methods apply directly to

the surface creating polygons by joining an initial surface

point with additional points [22]. Generation of new points:

predicted position - displacement along the tangent plane;

corrected position with Newton iteration. Works well for

contours but problematic for surfaces (contour points are

ordered). Piecewise-linear methods begin with a single

transverse seed cell. Enclose the surface incrementally by

semi disjoint cells. A seed cell center (seed point) can be

located by a random search within a slowly increasing radius

of some starting point. New cells are the neighbors sharing

the transverse faces. The process iterates until the entire

surface is enclosed. To prevent cycling, the processed cell

locations must be stored. An implicit surface can consist of

several disjoint components. Continuation produces only a

single surface component for one seed cell. To polygonize all

components, appropriate seed cells have to be selected

(automatically or by a user). Simplicial continuation employs

not cubes but n-dimensional simplices and consists of a

single simplex and rules to compute adjacent simplices.

Finally, the implicit surface is surrounded by tetrahedra

(volumetric triangulation), for example, by Kuhn simplices.

A polygonization method for non-manifold is surfaces was

introduced in [23].

2.4. Cell Polygonization

Cell polygonization generates a set of polygons for the

surface patch inside a single transversal cell. This procedure

consists of the following steps. Detected a cell edge which

intersects the surface (different function signs in the

endpoints). Such edge is assumed to contain a single

intersection. Compute an intersection point (surface vertex).

Connect surface vertices to form polygons. Surface vertex

computation consists from linear interpolation and binary

subdivision. Surface vertices connection consists of the

 International Journal of Automation, Control and Intelligent Systems Vol. 1, No. 1, 2015, pp. 1-8 3

following steps. Algorithm starts with a transversal edge,

looks for the next transversal edge in the face and stops when

the polygon is complete. Table for tetrahedra is as follows.

From a four-bit number abcd such that bit a is set to 1, if the

function is positive in vertex a. The sixteen cases are

obtained. Table for cubic cells ("Marching Cubes") is as

follows [13]. The configuration of the set of polygons for a

cubic cell depends on the number of cell corners with

positive function values. For eight corners, there are two

hundred fifty six possible configurations. Only fifteen

configurations have to be stored. Others are equivalent to

them due to symmetry and rotations.

2.5. Ambiguities

Ambiguity occurs for certain configurations at the cell level.

Alternate surface vertex connection for a cell face. There are

ambiguous corner configurations for a cube. Surface vertices

must be connected consistently along shared faces. Holes

appear in the method [13]. Disambiguation strategies are

topology inference, preferred polarity, and cell

decomposition. Topology inference determines vertex

connectivity using different schemes: face center sampling

[4], approximated function gradients [24]. Preferred polarity

ensures that the polygon separates cell corners of a certain

sign [25]. Cell decomposition subdivides a cell into

tetrahedra to resolve the ambiguity [25].

Particle-based techniques were proposed in [26].

3. Method Description

3.1. Basics

A functionally defined object is completely defined by means

of the real-valued describing function of three variables (x1,

x2, x3) in the form of F(X) ≥ 0, then the objects are treated as

closed subsets of the Euclidean space
3E , defined by the

describing function F(X) ≥ 0, where F is the continuous real-

valued function and X= (x1, x2, x3) is the point in
3E , defined

by the coordinate variables. Here F(X) > 0 defines points

inside the object, F(X) = 0 defines points on the boundary,

and F(X) < 0 defines points that lie outside and do not belong

to the object.

This is the basis for tessellation.

It is possible to describe complex geometry forms by

specifying surface deviation function (of second order) in

addition to surface basic function of second order [27].

Generally a function F(x,y,z) specifies surface of second

order that is quadric (see Fig. 1):

,0

),,(

4434241423

1312

2

33

2

22

2

11

≥+++++
++++=

AzAyAxAyzA

xzAxyAzAyAxAzyxF
 (1)

where x, y and z are spatial variables.

Figure 1. Surface of second order

The free form is a composition of the base surface and the

perturbation functions

∑
=

+=′
N

i

ii zyxRfzyxFzyxF
1

),,(),,(),,((2)

where fi is the form-factor; the perturbation function R(x, y, z)

is found as follows

3(, ,), (, ,) 0
(, ,)

0, (, ,) 0
i

i

i iQ x y z if Q x y z
R x y z

if Q x y z

 ≥=
<

 (3)

Herein, Q(x, y, z) is the perturbing quadric.

Since max[Q + R] ≤max[Q] + max[R], for estimating the

maximum Q on some interval we have to calculate the

maximum perturbation function on the same interval. The

obtained surfaces are smooth (see Fig. 2), and creation of

complex surface forms requires few perturbation functions.

Figure 2. The free form based on quadric (synthesized by means of the three

analytical perturbation functions)

4 Sergey I. Vyatkin: Polygonization Method for Functionally Defined Objects

3.2. Surface Points Building

When intended for triangulation no perspective normalization

is used thus the scene is located in local cube space. Points

are building by recursive subdivision of local space. At every

step program subdivides local space into eight parts and stop

when achieved maximum level of octree. For every part of

volume can say whether this part belongs to object or is

outside of object. If part of space is outside of the object

program stops subdivision and skip this part. Thus program

continue to subdivide space where object is located. Just like

after subdividing stage when algorithm ends we have a buffer,

some elements of which empty while others contain object

subdivision results.

Octal subdivision coefficients of function-based surfaces are

divided into four. And the coefficients XYZ are divided into

two. This reduces the size of the cube (4).

A A/4,

B B/4,

C C/4,

D D/4,

E E/4,

F F/4,

G G/2 i*A/2 j*D/4 k*E/4,

H H/2 i*D/4 j*B/2 k*F/4,

I I/2 i*E/4 j*F/4 k*C/2,

K K i*G/4 j*H/4 k*I/4,

′ =
′ =
′ =
′ =
′ =
′ =
′ = + + +
′ = + + +

′ = + + +
′ = + + +

 (4)

Then made the shift to vector (+/- 0.5, +/- 0.5, +/- 0.5), i.e. in

one of the eight subcubes. The necessary resolution defined

by the user. The calculation of points is carried out for one

angle surface this is sufficient for the lack of artifacts, since

no holes are formed in the resulting search locations octree

subdivision of local space object. And, hence, no need to

adjust the local curvature.

Figure 3. The cloud of points

As result we got cloud of points, which consists of surface

(Fig. 3).

3.3. Linking of Surface Points into Four-

Sided Polygons

Every surface point belongs to the vertical and horizontal

cross-section. The current task is to find point’s neighbors in

cross-section. In figure 4 neighbors of surface point B are

surface points A and C.

We search neighbors in horizontal and vertical cross-sections.

Figure 4. Vertical cross-section of ellipsoid. Black points are interior points,

red points are surface

Algorithm of finding neighbors for point in vertical cross-

section (for horizontal cross-section algorithm is analogous)

is presented below.

For selected point P we build initial vector of movement

from empty voxel near P on the ray to surface point P (dY, dZ)

(See Fig. 5).

Figure 5. Initial vectors for surface points; surface points are black points;

interior points are gray points

At each step we look up the cells around in the following

order: right, front, left, back relatively to vector (See Fig. 6).

Figure 6. Looking up for cells

We select the first cell which is not empty namely Q. Then

we reconstruct vector dY=Q.Y-P.Y; dZ=Q.Z-P.Z.

 International Journal of Automation, Control and Intelligent Systems Vol. 1, No. 1, 2015, pp. 1-8 5

Now we move to the Q point and have current vector equals

(dY, dZ).

So we move to the border of cross-section.

If Q point is surface point – we stop, because the neighbor is

found.

If Q is interior cell – we continue looking up the cells (Q)

If we look up cells in the right, front, left, back order then we

move by the border contour of vertical cross-section counter-

clockwise. If we look cells in opposite order: left, front, right,

back, we move by the border clockwise.

So for each point P we could find Up-Neighbor (moving

clockwise) and Down-Neighbor (moving counter-clockwise).

For horizontal cross-section we have cross-sections in XZ

plane and vector has coordinates (dX, dZ). Initial enter vector

we find the same way as described above (dX=0, dZ= -1 or

1). If we move by horizontal cross-section border clockwise

we find Left-Neighbor, if counter-clockwise – we find Right-

Neighbor.

For linking surface points into 4-sided polygons we move

from surface point A down in A’s vertical cross-section to

A’s Down-Neighbor B; then from B in B’s horizontal cross-

section to it’s Right-Neighbor C; then from C in C’s vertical

cross-section to it’s Up-Neighbor D; then from D in D’s

horizontal cross-section to it’s Left-Neighbor P; if P is A we

enclose 4-sided polygon ABCD.

Figure 7. Linking of surface points A, B, C, D into 4-sided polygon ABCD

We do this for every surface point.

We produce two faces by A->B->C and C->D->B. Their

normal orientation can be either inward or outward; so please

note that currently you need to see meshes as double-sided

object to see all faces independently their orientation.

The time of linking is O(N), where N is amount of builder

surface points.

The result is a first grid quadrangles, and after the division of

quadrangles - a grid of triangles (See Fig. 8).

Figure 8. A grid of triangles

3.4. “Hard” Edges

On “hard edges”, which belong two faces with wide angle

(over 45 degree) between normals, relaxation of the edge

after the insertion in the face of centroid (mass center,

crossing the medians) can bring about the loss of the form

(see Figure 10- is the mesh of cone.). So for “hard edge” PQ

instead of relaxation of the edge is done partition:

1) Criterion of partition: if s(P) is a desired average length of

the edges in the point P, s(Q) is a desired average length of

the edges in the point Q, that values of lengths of the edges,

which we want to reach, is conducted test:

If (2.0)||PQ|| > [s(P)+s(Q)]/2 that is the edge too long, is

conducted partition

2) If the edge must be split on criterion in 1, the point S,

splitting the edge has coordinates

S=(s(P)Q+s(Q)P)/(s(P)+s(Q))

That is to say S splits an edge on the center only then, when

s(P)=s(Q). If s(P) is not s(Q), the point S splits an edge PQ

pro rata weights.

3) After partitioning of the edge each face is divided on two

faces (see Figure 9).

Figure 9. There is tight of holes on sides of cone

6 Sergey I. Vyatkin: Polygonization Method for Functionally Defined Objects

Figure 10. The triangle mesh of the cone with artifacts

Figure 11. The triangle mesh of the cone without artifacts

4. Export of Resulting Mesh

Export mesh in ASE format was used. ASE format is text

format (ASCII) and there are many converters from ASE

format to other format 3DS, OBJ, X etc. In order to see

exported model correctly please check double-sided property

for the model, because some faces can be oriented inward.

You can export object in ASE format from VXDemo by

standard File->SaveAs dialog (Fig. 12).

Figure 12. VxDemo export

Select .ase from the drop-down list of available extensions

and enter name of file to export to (Fig. 13).

Figure 13. Export object in ASE format

Figure 14. Function-Based object: Perturbation Functions Amount=83

 International Journal of Automation, Control and Intelligent Systems Vol. 1, No. 1, 2015, pp. 1-8 7

Figure 15. Polygonal object: Faces Amount=136306 Vertices

Amount=68418

Figure 16. Model of teapot: Faces Amount=317188 Vertices

Amount=158613 Perturbation Functions Amount=13

Figures 14, 15 and 16 show the result of tessellation.

For analyzing how close the function-based surface the

polygonal mesh were used two error metrics. The metrics

measure deviations of the vertices from the function-based

surface and deviations of mesh normal from the normal of

the function-based surface.

Estimation of two error metrics and uniformity is considered:

tessellation of perturbation functions directly - uniformity;

criteria – vertex deviation, normal deviation, uniformity.

5. Summary

Octree subdivision mesh extraction method based on

recursion is proposed. A cell containing the model is

subdivided into eight smaller cells, which are examined

whether they contain the surface or not. The process repeats,

until the minimum cell size is reached. All the leaf cells

containing the surface are polygonized. Unlike the predictor-

corrector methods, this algorithm does not need an initial

point to begin the polygonization with. It detects the surface

automatically without holes.

Proposed algorithm of surface points building works faster

than step-by-step algorithm. Step-by-step calculations look

every cell of space to define whether object is inside or

outside the cell, but proposed algorithm can skip big amount

of empty cells at once. During the surface triangulation, a

mesh is calculated from a multitude of points. This mesh may

have holes. The main stages of the many known method are:

hole identification, hole triangulation, mesh refinement, and

mesh fairing.

There are several areas for future work. The performance of

algorithms can be further improved by investigating more

optimizations.

References

[1] J. F. Blinn. A generation of algebraic surface drawing. ACM
Transactions on Graphics, 1(3): 235-256, July 1982

[2] Bloomenthal J., Shoemake K., “Convolution surfaces”,
SIGGRAPH’91, Computer Graphics, vol.25, No.4, 1991, pp.
251-256.

[3] Bloomenthal J. Modeling the mighty maple. Computer
Graphics, 19(3): 305-311, July 1985.

[4] Wyvill G., McPheeters C., Wyvill B. Data structure for soft
objects. The Visual Computer, Vol. 2, No. 4, 1986, pp. 227-
234.

[5] G. Sealy, G. Wyvill. Smoothing of three dimensional models
by convolution. In Computer Graphics International’96, June
1996, pp. 184-190.

[6] Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and
K. Omura. Object modeling by distribution function and a
method of image generation. The Transactions of the Institute
of Electronics and Communication Engineers of Japan, J68-
D(4): 718-725, 1985.

[7] A. Sherstuyk. Fast ray tracing of implicit surfaces. In Implicit
Surfaces’98, pp. 145-153, June 1998.

[8] McCormack J., Sherstyuk A. Creating and rendering
convolution surfaces, Computing Graphics Forum, vol. 17,
No.2, 1998, pp. 113-120.

[9] Ning P., Bloomental J. An evaluation of implicit surface tilers.
IEEE Computer Graphics and Applications, Vol. 13, No. 6,
1993, pp. 33-41.

[10] Bloomental J. et al. Introduction to implicit surfaces (Eds.),
Morgan Kaufmann Publishers, 1997, 332 pp.

[11] P. Liepa. “Filling Holes in Meshes”// Proc.
Eurographics/ACM SIGGRAPH Symp. Geometry Processing,
2003, pp. 200-205.

[12] J. Bloomenthal. An Implicit Surface Polygonizer. Graphics
gems IV, Academic Press Professional, Inc. San Diego, CA,
USA 1994, pp. 324-349.

8 Sergey I. Vyatkin: Polygonization Method for Functionally Defined Objects

[13] Lorensen W., Cline H. Marching Cubes: a high resolution 3D
surfaces construction algorithm. SIGGRAPH'87, Computer
graphics, Vol. 21, No. 4, 1987, pp. 163-169.

[14] G.M. Hunter and K. Steiglitz. Operations on Images Using
Quad Trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1(2):145–153, 1979.

[15] C.L. Jackins and S.L Tanimoto. Oct-trees and their use in
representing three dimensional objects. Computer Graphics
and Image Processing, 14(3):249–270, 1980.

[16] I. Gargantini and H.H. Atkinson. Ray Tracing an Octree:
Numerical Evaluation of the First Interaction. Computer
Graphics Forum, 12(4):199–210, 1993.

[17] J. L. Bentley. Multidimensional binary search trees used for
associative search. Communications of ACM, 18(9):509-516,
1975.

[18] A. W. Moore. An introductory tutorial on kd-trees Extract
from Andrew Moores PhD Thesis: Efficient Memory-based
Learning for Robot Control. PhD Thesis; Technical Report No
209. Computer Laboratory. University of Cambridge. 1991.

[19] T.Karkanis, A.J.Stewart, Curvature dependent triangulation of
implicit surfaces, IEEE Computer Graphics Application 2,
2001, pp. 60-69.

[20] E. Hartmann, A marching method for the triangulation of
surfaces, The Visual Computer, Springer, 14:3, 1998, pp. 95-
108.

[21] E. Galin, S. Akkouche, Incremental polygonization of implicit
surfaces, Graphic Models and Image Processing, 62, 2000, pp.
19-39.

[22] S. Akkouche, E. Galin, Adaptive implicit surface
polygonization using Marching Triangles, Computer Graphics
Forum. 20:2. 2001. pp. 67-80.

[23] J. Bloomenthal and K. Ferguson. Polygonization of Non-
Manifold implicit surfaces. In Robert Cook, editor,
SIGGRAPH '95 Conference Proceedings, Annual Conference
Series, pp. 309-316. ACM SIGGRAPH, Addison Wesley,
August 1995.

[24] J. Wilhelms and Allen Van Gelder. Octrees for faster
isosurface generation. ACM SIGGRAPH Computer Graphics,
Volume 24 Issue 5, Nov. 1990, pp. 57-62.

[25] Bloomenthal J. Polygonization of implicit surfaces.
Computer-Aided Geometric Design, Vol. 5, No. 4, 1988, pp.
341-355.

[26] A. Witkin, P. S. Heckbert. Using particles to sample and
control implicit surfaces, SIGGRAPH 94, 1994, pp. 269-277.

[27] S.I. Vyatkin. Complex Surface Modeling Using Perturbation
Functions// Optoelectronics, Instrumentation and Data
Processing. – 2007 –Vol. 43, N3. pp. 226-233.

