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Abstract 

Obtaining a triangular mesh from a set of cells intersecting the surface with perturbation functions is considered in this paper. 

The seamless rendering is discussed. The free forms based on the analytical perturbation functions are presented. A method for 
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1. Introduction 

Several representations of geometric objects are currently 

used in computer graphics. Each of the objects, according to 

its properties, is used in different fields, beginning from 3-D 

simulation and CAD systems up to real-time visualization 

systems. 

The functional representation describes most accurately the 

object geometry and has the smallest size of the required data. 

Procedures of functional representation demonstrate compact 

and flexible representation of surfaces and objects that are 

the results of logical operations on volumes. Its disadvantage 

is complicated geometrical processing and visualization in 

real-time. 

There are seven kernels: Gaussian function [1, 2 and 3], 

Inverse function, Inverse squared function and Soft objects [4, 

5], Metaballs [6], W-shaped quartic polynomial and Cauchy 

function [7, 8]. 

Tessellation or polygonization is the generation of polygonal 

approximation of a function-based surface. Why need 

tessellation functionally defined objects? Conventional 

graphics environment are optimized for polygon display and 

manipulation. Many geometric calculations (such as finite 

element analysis) are performed on polygonal models. 

Navigable nature of polygons (list of vertices, edges, faces) 

supports non-graphical operations such as placing an object 

on a surface. Systems of rapid prototyping operate with 

polygonal models. 

However, there are difficulties in achieving this task. The 

generation of polygons from function-based form (for 

example, implicit form) is less straightforward than from 

parametric form. Quadric surfaces can be converted to the 

parametric form; it is difficult to do so for higher order 

functions. 

In general, polygonization software or a polygonizer must 

evaluate the function in sample points and employ some 

numerical procedure to locate polygon vertices. There are 

several algorithms known as tessellation, polygonization, 

triangulation, tiling and meshing [9, 10]. 

This paper a method of tessellation of functionally defined 
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objects with any desired precision is proposed. Octree local 

object space subdivision for search of points of a surface was 

used. As a result program calculates all points of a surface 

without holes [11]. 

Organization 

The paper is organized as follows. Section 2 gives a brief 

survey of the work related to polygonization of implicit 

surfaces. Section 3.1 describes free forms based on 

perturbation functions. Section 3.2 provides the overview of 

approach to computation of the voxel-surface intersection.  
The octree algorithm that performs efficient retrieval of 

volume elements (voxels) involved in surface points finding. 

Linking surface points into polygons is described in Section 

3.3. Hard edges described in this paper are given in Section 

3.4. The export of resulting mesh and examples of results are 

considered in Section 4. Summary and future work is 

discussed in Section 5. 

2. Previous Works 

2.1. Grids and Cells 

A polygonizer uses a spatial partitioning a 3D volume 

divided into semi disjoint (adjacent but non-overlapping) 

cells that completely enclose the function-based surface, in 

particular, implicit surface [12]. Each cell intersected by the 

implicit surface (a transverse cell) is polygonized: 

intersections of the cell edges with the surface are connected 

to form a set of polygons. A fixed resolution (or uniform 

space) means that the cells are fixed in size. An adaptive 

resolution means that the cell size is locally proportional to 

the size of surface detail. The accuracy of fixed resolution 

methods depends on the size of the cell: large cells remove 

detail and small cells yield a lot of polygons. Large cell size 

is used to produce low-resolution polygons in real-time for 

rendering on graphics processors with near real-time design 

interaction. Small cell size is used for quality visualization 

with direct rendering methods such as ray tracing. 

2.2. Classes of Polygonizers 

There are two classes of polygonizers, depending on the 

input data. Discrete data available at cell corners (voxel data 

sets). Space partitioned by exhaustive enumeration [13]. 

Continuous data is the function can be evaluated at arbitrary 

point in space. Space partitioned by subdivision or by 

numerical continuation. Discrete data can be represented in 

the continuous form with the trilinear (or other) interpolation. 

For discrete data the function behavior between the cell 

corners must be approximated (linear interpolation in the 

edge). For continuous data, a function value in any point can 

be determined with given accuracy. 

2.3. Spatial Partitioning Schemes 

A spatial partitioning divides space into semi-disjoint cells 

that collectively enclose the surface; the interior of the object 

is not enclosed. The cells may then polygonized. Subdivision 

is the recursive division of space into subvolumes that fully 

enclosed the surface. There are the following types of trees: 

octree [14, 15 and 16], bintree [17], KD-tree [18]. 

A set of cubes of different size can fill space without gaps or 

overlaps. A cube may be subdivided into similarly shaped 

and oriented polyhedra (eight subcubes). A specially shaped 

tetrahedron, known as the Kuhn complex, may be subdivided 

into similar subshapes: eight subsimplices, four at the corners 

and four internal to the original one. 

A class of incremental polygonization techniques usually 

divided into predictor-corrector and piecewise-linear methods 

[19, 20 and 21]. Predictor-corrector methods apply directly to 

the surface creating polygons by joining an initial surface 

point with additional points [22]. Generation of new points: 

predicted position - displacement along the tangent plane; 

corrected position with Newton iteration. Works well for 

contours but problematic for surfaces (contour points are 

ordered). Piecewise-linear methods begin with a single 

transverse seed cell. Enclose the surface incrementally by 

semi disjoint cells. A seed cell center (seed point) can be 

located by a random search within a slowly increasing radius 

of some starting point. New cells are the neighbors sharing 

the transverse faces. The process iterates until the entire 

surface is enclosed. To prevent cycling, the processed cell 

locations must be stored. An implicit surface can consist of 

several disjoint components. Continuation produces only a 

single surface component for one seed cell. To polygonize all 

components, appropriate seed cells have to be selected 

(automatically or by a user). Simplicial continuation employs 

not cubes but n-dimensional simplices and consists of a 

single simplex and rules to compute adjacent simplices. 

Finally, the implicit surface is surrounded by tetrahedra 

(volumetric triangulation), for example, by Kuhn simplices. 

A polygonization method for non-manifold is surfaces was 

introduced in [23]. 

2.4. Cell Polygonization 

Cell polygonization generates a set of polygons for the 

surface patch inside a single transversal cell. This procedure 

consists of the following steps. Detected a cell edge which 

intersects the surface (different function signs in the 

endpoints). Such edge is assumed to contain a single 

intersection. Compute an intersection point (surface vertex). 

Connect surface vertices to form polygons. Surface vertex 

computation consists from linear interpolation and binary 

subdivision. Surface vertices connection consists of the 
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following steps. Algorithm starts with a transversal edge, 

looks for the next transversal edge in the face and stops when 

the polygon is complete. Table for tetrahedra is as follows. 

From a four-bit number abcd such that bit a is set to 1, if the 

function is positive in vertex a. The sixteen cases are 

obtained. Table for cubic cells ("Marching Cubes") is as 

follows [13]. The configuration of the set of polygons for a 

cubic cell depends on the number of cell corners with 

positive function values. For eight corners, there are two 

hundred fifty six possible configurations. Only fifteen 

configurations have to be stored. Others are equivalent to 

them due to symmetry and rotations. 

2.5. Ambiguities 

Ambiguity occurs for certain configurations at the cell level. 

Alternate surface vertex connection for a cell face. There are 

ambiguous corner configurations for a cube. Surface vertices 

must be connected consistently along shared faces. Holes 

appear in the method [13]. Disambiguation strategies are 

topology inference, preferred polarity, and cell 

decomposition. Topology inference determines vertex 

connectivity using different schemes: face center sampling 

[4], approximated function gradients [24]. Preferred polarity 

ensures that the polygon separates cell corners of a certain 

sign [25]. Cell decomposition subdivides a cell into 

tetrahedra to resolve the ambiguity [25]. 

Particle-based techniques were proposed in [26]. 

3. Method Description 

3.1. Basics 

A functionally defined object is completely defined by means 

of the real-valued describing function of three variables (x1, 

x2, x3) in the form of F(X) ≥ 0, then the objects are treated as 

closed subsets of the Euclidean space 
3E , defined by the 

describing function F(X) ≥ 0, where F is the continuous real-

valued function and X= (x1, x2, x3) is the point in 
3E , defined 

by the coordinate variables. Here F(X) > 0 defines points 

inside the object, F(X) = 0 defines points on the boundary, 

and F(X) < 0 defines points that lie outside and do not belong 

to the object. 

This is the basis for tessellation. 

It is possible to describe complex geometry forms by 

specifying surface deviation function (of second order) in 

addition to surface basic function of second order [27]. 

Generally a function F(x,y,z) specifies surface of second 

order that is quadric (see Fig. 1): 
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where x, y and z are spatial variables. 

 
Figure 1. Surface of second order 

The free form is a composition of the base surface and the 

perturbation functions 
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where fi is the form-factor; the perturbation function R(x, y, z) 

is found as follows 

3( , , ), ( , , ) 0
( , , )

0, ( , , ) 0
i

i

i iQ x y z if Q x y z
R x y z

if Q x y z

 ≥= 
<

  (3) 

Herein, Q(x, y, z) is the perturbing quadric. 

Since max[Q + R] ≤max[Q] + max[R], for estimating the 

maximum Q on some interval we have to calculate the 

maximum perturbation function on the same interval. The 

obtained surfaces are smooth (see Fig. 2), and creation of 

complex surface forms requires few perturbation functions. 

 
Figure 2. The free form based on quadric (synthesized by means of the three 

analytical perturbation functions) 
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3.2. Surface Points Building 

When intended for triangulation no perspective normalization 

is used thus the scene is located in local cube space. Points 

are building by recursive subdivision of local space. At every 

step program subdivides local space into eight parts and stop 

when achieved maximum level of octree. For every part of 

volume can say whether this part belongs to object or is 

outside of object. If part of space is outside of the object 

program stops subdivision and skip this part. Thus program 

continue to subdivide space where object is located. Just like 

after subdividing stage when algorithm ends we have a buffer, 

some elements of which empty while others contain object 

subdivision results. 

Octal subdivision coefficients of function-based surfaces are 

divided into four. And the coefficients XYZ are divided into 

two. This reduces the size of the cube (4). 

A A/4,

B B/4,

C C/4,

D D/4,

E E/4,

F F/4,

G G/2 i*A/2 j*D/4 k*E/4,

H H/2 i*D/4 j*B/2 k*F/4,

I I/2 i*E/4 j*F/4 k*C/2,

K K i*G/4 j*H/4 k*I/4,

′ =
′ =
′ =
′ =
′ =
′ =
′ = + + +
′ = + + +

′ = + + +
′ = + + +

           (4) 

Then made the shift to vector (+/- 0.5, +/- 0.5, +/- 0.5), i.e. in 

one of the eight subcubes. The necessary resolution defined 

by the user. The calculation of points is carried out for one 

angle surface this is sufficient for the lack of artifacts, since 

no holes are formed in the resulting search locations octree 

subdivision of local space object. And, hence, no need to 

adjust the local curvature. 

 
Figure 3. The cloud of points 

As result we got cloud of points, which consists of surface 

(Fig. 3). 

3.3. Linking of Surface Points into Four-

Sided Polygons 

Every surface point belongs to the vertical and horizontal 

cross-section. The current task is to find point’s neighbors in 

cross-section. In figure 4 neighbors of surface point B are 

surface points A and C. 

We search neighbors in horizontal and vertical cross-sections. 

 

Figure 4. Vertical cross-section of ellipsoid. Black points are interior points, 

red points are surface 

Algorithm of finding neighbors for point in vertical cross-

section (for horizontal cross-section algorithm is analogous) 

is presented below. 

For selected point P we build initial vector of movement 

from empty voxel near P on the ray to surface point P (dY, dZ) 

(See Fig. 5). 

 

Figure 5. Initial vectors for surface points; surface points are black points; 

interior points are gray points 

At each step we look up the cells around in the following 

order: right, front, left, back relatively to vector (See Fig. 6). 

 

Figure 6. Looking up for cells 

We select the first cell which is not empty namely Q. Then 

we reconstruct vector dY=Q.Y-P.Y; dZ=Q.Z-P.Z. 



 International Journal of Automation, Control and Intelligent Systems Vol. 1, No. 1, 2015, pp. 1-8  5 

 

Now we move to the Q point and have current vector equals 

(dY, dZ). 

So we move to the border of cross-section. 

If Q point is surface point – we stop, because the neighbor is 

found. 

If Q is interior cell – we continue looking up the cells (Q) 

If we look up cells in the right, front, left, back order then we 

move by the border contour of vertical cross-section counter-

clockwise. If we look cells in opposite order: left, front, right, 

back, we move by the border clockwise. 

So for each point P we could find Up-Neighbor (moving 

clockwise) and Down-Neighbor (moving counter-clockwise). 

For horizontal cross-section we have cross-sections in XZ 

plane and vector has coordinates (dX, dZ). Initial enter vector 

we find the same way as described above (dX=0, dZ= -1 or 

1). If we move by horizontal cross-section border clockwise 

we find Left-Neighbor, if counter-clockwise – we find Right-

Neighbor. 

For linking surface points into 4-sided polygons we move 

from surface point A down in A’s vertical cross-section to 

A’s Down-Neighbor B; then from B in B’s horizontal cross-

section to it’s Right-Neighbor C; then from C in C’s vertical 

cross-section to it’s Up-Neighbor D; then from D in D’s 

horizontal cross-section to it’s Left-Neighbor P; if P is A we 

enclose 4-sided polygon ABCD. 

 

Figure 7. Linking of surface points A, B, C, D into 4-sided polygon ABCD 

We do this for every surface point. 

We produce two faces by A->B->C and C->D->B. Their 

normal orientation can be either inward or outward; so please 

note that currently you need to see meshes as double-sided 

object to see all faces independently their orientation. 

The time of linking is O(N), where N is amount of builder 

surface points. 

The result is a first grid quadrangles, and after the division of 

quadrangles - a grid of triangles (See Fig. 8). 

 

Figure 8. A grid of triangles 

3.4. “Hard” Edges 

On “hard edges”, which belong two faces with wide angle 

(over 45 degree) between normals, relaxation of the edge 

after the insertion in the face of centroid (mass center, 

crossing the medians) can bring about the loss of the form 

(see Figure 10- is the mesh of cone.). So for “hard edge” PQ 

instead of relaxation of the edge is done partition: 

1) Criterion of partition: if s(P) is a desired average length of 

the edges in the point P, s(Q) is a desired average length of 

the edges in the point Q, that values of lengths of the edges, 

which we want to reach, is conducted test: 

If (2.0)||PQ|| > [s(P)+s(Q)]/2  that is the edge too long, is 

conducted partition 

2) If the edge must be split on criterion in 1, the point S, 

splitting the edge has coordinates 

S=(s(P)Q+s(Q)P)/(s(P)+s(Q)) 

That is to say S splits an edge on the center only then, when 

s(P)=s(Q). If s(P) is not s(Q), the point S splits an edge PQ 

pro rata weights. 

3) After partitioning of the edge each face is divided on two 

faces (see Figure 9). 

 

Figure 9. There is tight of holes on sides of cone 
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Figure 10. The triangle mesh of the cone with artifacts 

 

Figure 11. The triangle mesh of the cone without artifacts 

4. Export of Resulting Mesh 

Export mesh in ASE format was used. ASE format is text 

format (ASCII) and there are many converters from ASE 

format to other format 3DS, OBJ, X etc. In order to see 

exported model correctly please check double-sided property 

for the model, because some faces can be oriented inward. 

You can export object in ASE format from VXDemo by 

standard File->SaveAs dialog (Fig. 12). 

 

Figure 12. VxDemo export 

Select .ase from the drop-down list of available extensions 

and enter name of file to export to (Fig. 13). 

 

Figure 13. Export object in ASE format 

 

Figure 14. Function-Based object: Perturbation Functions Amount=83 
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Figure 15. Polygonal object: Faces Amount=136306 Vertices 

Amount=68418 

  

Figure 16. Model of teapot: Faces Amount=317188 Vertices 

Amount=158613 Perturbation Functions Amount=13 

Figures 14, 15 and 16 show the result of tessellation. 

For analyzing how close the function-based surface the 

polygonal mesh were used two error metrics. The metrics 

measure deviations of the vertices from the function-based 

surface and deviations of mesh normal from the normal of 

the function-based surface. 

Estimation of two error metrics and uniformity is considered: 

tessellation of perturbation functions directly - uniformity; 

criteria – vertex deviation, normal deviation, uniformity. 

5. Summary 

Octree subdivision mesh extraction method based on 

recursion is proposed. A cell containing the model is 

subdivided into eight smaller cells, which are examined 

whether they contain the surface or not. The process repeats, 

until the minimum cell size is reached. All the leaf cells 

containing the surface are polygonized. Unlike the predictor-

corrector methods, this algorithm does not need an initial 

point to begin the polygonization with. It detects the surface 

automatically without holes. 

Proposed algorithm of surface points building works faster 

than step-by-step algorithm. Step-by-step calculations look 

every cell of space to define whether object is inside or 

outside the cell, but proposed algorithm can skip big amount 

of empty cells at once. During the surface triangulation, a 

mesh is calculated from a multitude of points. This mesh may 

have holes. The main stages of the many known method are: 

hole identification, hole triangulation, mesh refinement, and 

mesh fairing. 

There are several areas for future work. The performance of 

algorithms can be further improved by investigating more 

optimizations. 
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