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Abstract 

Ontology similarity calculation is important research topics in information retrieval and widely used in science and engineering. 

By analyzing the technology of GraphNet, we propose the new algorithm for ontology similarity measure and ontology mapping. 

Via the ontology sparse vector learning, the ontology graph is mapped into a line consists of real numbers. The similarity between 

two concepts then can be measured by comparing the difference between their corresponding real numbers. The experiment 

results show that the proposed new algorithm has high accuracy and efficiency on ontology similarity calculation and ontology 

mapping. 
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1. Introduction 

As a conceptual shared and knowledge representation model, 

ontology has been used in knowledge management, image 

retrieval and information retrieval search extension. 

Furthermore, acted as an effective concept semantic model, 

ontology is employed in other fields except computer science, 

including medical science, social science, pharmacology 

science, geography science and biology science (see Przydzial 

et al., [1], Koehler et al., [2], Ivanovic and Budimac [3], 

Hristoskova et al., [4], and Kabir et al., [5] for more detail). 

The ontology model is a graph G=(V,E) such that each vertex 

v expresses a concept and each directed edge e=vivj denote a 

relationship between concepts vi and vj. The aim of ontology 

similarity measure is to get a similarity function Sim: V×V →
{0} such that each pair of vertices is mapped to a 

non-negative real number. Moreover, the aim of ontology 

mapping is to obtain the link between two or more ontologies. 

In more applications, the key of ontology mapping is to get a 

similarity function S to determine the similarity between 

vertices from different ontologies.  

In recent years, ontology similarity-based technologies were 

employed in many applications. By virtue of technology for 

stable semantic measurement, a graph derivation 

representation based trick for stable semantic measurement is 

presented by Ma et al., [6]. Li et al., [7] determined an 

ontology representation method which can be used in online 

shopping customer knowledge with enterprise information. A 

creative ontology matching system is proposed by 

Santodomingo et al., [8] such that the complex 

correspondences are deduced by processing expert knowledge 

with external domain ontologies and in view of novel 

matching technologies. The main features of the food 

ontology and several examples of application for traceability 

aims were reported by Pizzuti et al., [9]. Lasierra et al., [10] 

pointed out that ontologies can be employed in designing 

architecture for taking care of patients at home. More ontology 

+
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learning algorithms can refer to [11-22]. 

In this paper, we present the new ontology similarity 

computation and ontology mapping algorithms relied on the 

GraphNet technology which was proposed in Grosenick et al., 

[23]. In terms of the sparse vector, the ontology graph is 

mapped into a real line and vertices are mapped into real 

numbers. Then the similarity between vertices is measured by 

the difference between their corresponding real numbers. 

2. Basic Idea 

Let V be an instance space. For any vertex in ontology graph G, 

its information (including its attribute, instance, structure, 

name and semantic information of the concept which is 

corresponding to the vertex and that is contained in its vector) 

is denoted by a vector with p dimension. Let v=
1{ , , }pv v⋯  be 

a vector which is corresponding to a vertex v. For facilitating 

the expression, we slightly confuse the notations and denote v 

both the ontology vertex and its corresponding vector. The 

purpose of ontology learning algorithms is to get an optimal 

ontology function f: V → ℝ , then the similarity between two 

vertices is determined by the difference between two real 

numbers which they correspond to. The essence of such 

algorithm is dimensionality reduction, that is to say, use one 

dimension vector to represent p dimension vector. From this 

point of view, an ontology function f can be regarded as a 

dimensionality reduction map f: p
ℝ → ℝ . 

3. Main Ontology Algorithms 

In this section, we present our main ontology sparse vector 

learning algorithms for ontology similarity measuring and 

ontology mapping by virtue of graph-constrained elastic-net. . 

In the real implement, the sparse ontology function can be 

denoted as 

( )f vβ =
1

p

i i

i

v β
=
∑ ,             (1) 

where β =
1( , , )pβ β⋯  is a sparse vector. For determining the 

ontology function f, we should get the sparse vector β  first. 

The simplest model to learn the ontology sparse vector can be 

denoted as 

β̂ =
2

2
arg min y V

β
β−  

= T 1 T( )V V V y− ,                   (2) 

where V is information matrix and y is the target vector. By 

adding a penalty term ( )P β , the optimal model (1) can be 

expressed as 

β̂ =
2

2
arg min ( )y V P

β
β λ β− +        (3) 

where λ ∈ +ℝ  is a parameter that trades off least squares 

goodness-of-fit with the penalty on the model coefficients.  

In graph-constrained elastic-net (GraphNet) setting, it uses a 

mixture 
1
l - and 

2
l -norm regularization, and (3) can be 

written as 

β̂ =
2

12 1
arg min y V

β
κ β λ β− +  

2

2 2
λ β+ ,                            (4) 

where 
1

λ  and 
2

λ  are balance parameters. 

The GraphNet model with modification 
2

l -norm penalty term 

is described by 

β̂ =
2

12 1
arg min -y V

β
κ β λ β+ 2

H H
λ β+  

2

H
β = T Hβ β =

1 1

p p

j jk k

j k

Hβ β
= =
∑∑ ,        (5) 

where H is a sparse graph. Note that if H=I is the identity 

matrix, then the GraphNet is just the Elastic-Net. Hence, the 

Elastic-Net is a special situation of GraphNet and we can 

replicate the effects of increasing an Elastic-Net penalty via 

adding a scaled version of the identity matrix 2

H

I
λ
λ

 to H (for 

Hλ >0). 

If H=L (graph Laplacian matrix), then 
2

H
β  has the 

appealingly simple representation 

2

H
β =

2

( , )

( )
H

i j

i j ε
β β

∈
−∑ , 

where 
H

ε  is the set of index pairs that share an edge in graph 

H (i.e. have a nonzero entry in the adjacency matrix A).  

Furthermore, the adaptive GraphNet model with an adaptive 

penalty is denoted as 

β̂ =
2

12
1

ˆarg min
p

j j

j

y V w
β

κ β λ β
=

− + ∑
2

H H
λ β+ , 

where ˆ
jw = j

γ
β

−
ɶ  and γ  is a real number. 

More generally, we can formulate the penalized ontology 

problem of interest as minimizing the penalized empirical risk 
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( )pR β  as a function of the coefficients, so that 

β̂ = arg min ( )
p

R
β

β  

=
ˆarg min ( , ) ( )R P

β
λ β+y y ,      (6) 

where ŷ  is the estimate of response variable y (denote ŷ =

ˆV β  in the linear models we consider) and ˆ( , )R y y =

1

ˆ( , )
n

i i

i

L y y

n

=
∑

 is the average of the ontology loss function over 

the training data of the loss function ˆ( , )
i i

L y y  that penalizes 

differences between the estimated and true values of y at the 

i-th observation. For example,  

ˆ( , )R y y =
2

2
ˆ−y y  =

2

1

ˆ( )
n

i i

i

y y
=

−∑ . 

Outlying data points are an important consideration when 

modeling special data, in which a variety of factors ranging 

from residual motion artifacts to field inhomogeneities can 

cause some observations to fall far from the sample mean. In 

the case of standard squared-error loss, a standard solution is 

to use a robust ontology loss function, such as the Huber loss 

function 

ˆ( , ; )HR y y δ = 1

ˆ( )
n

i i

i

L y y

n

δ
=

−∑
,        (7) 

where  

ˆ( )i iL y yδ − =

2

2

ˆ( )
ˆ          if 

2

ˆ ˆ,  if  
2

i i

i i

i i i i

y y
y y

y y y y

δ

δδ δ

 −
− ≤


 − − − >


 

Since GraphNet uses squared-error loss, it can be modified to 

include a robust penalty like the Huber loss. Replacing the 

squared error ontology loss function with the loss function 

gets 

β̂ =
1 1

arg min ( , ; )
H

R y V
β

κ β δ λ β+ 2

H H
λ β+ .  (8) 

Next, we use the technology called infimal convolution, and is 

defined as  

inf
( )( )f g x⋅ = inf{ ( ) ( ) | }

n

y
f x y g y y− + ∈ℝ , (9) 

where f and g are two functions of 
p

x ∈ℝ . Thus, we can 

re-express the i-th term in the Huber loss function (7) the 

infimal convolution of the squared and absolute-value 

functions applied to the i-th residual 
i

r :  

( )
i

rδρ = 2

inf

1
( ( ) )( )
2

i
r⋅ ⋅ ⋅ =

2

inf
2i i i

i

i
a b r

a
bδ

+ =
+ ,       (10) 

where 
i

r = ˆ( )
i i

y V β− . This deduced the augmented 

estimation ontology problem 

ˆˆ( , )α β =
2

2
,

1
arg min

2
y V

α β
β α− −  

11 1

T

H
Hλ β β δ α λ β+ + +      (11) 

where 
nα ∈ℝ  are auxiliary variables. Considering the 

residuals ir , the first term in the objective of (11) can be 

denoted as 
2

2

1

2
y V β α− −  =

21
( )

2
i i

i

r α−∑  and thus each 

i
α can directly reduce the residual sum of squares 

corresponding to a single observation by taking a value close 

to 
i

r . Furthermore, (11) can be rewrite as 

γ̂ =
2 T

2

1
arg min '

2
Hy Z H

γ
γ λ γ γ− +

1

p n

j j

j

w γ
+

=
∑ ,  (12) 

Z= [  ]
n n

V I × , γ = [  ]β α , 

jw =
1
,   =1, ,

,    = +1, , +

j p

j p p n

λ
δ




⋯

⋯
, 

'H =
1

1

0

0 0

n

n n n

H ×

× ×

 
 
 

∈ ( ) ( )p n p nS + × +
+ , 

where ( ) ( )p n p nS + × +
+ is the set of positive semidefinite 

( ) ( )p n p n+ × + matrices.  

The GraphNet ontology problem expressed in (5) obtains from 

a constrained maximum likelihood problem, and this is a 

constrained convex optimization ontology problem 

maximize  loglik( | , )V y
β

β         (13) 

s. t. 
11

cβ ≤ , 
2

HH
cβ ≤ ,        (14) 

where 
1

c ∈ +ℝ  and 
H

c ∈ +ℝ set hard bounds on the size of 

the coefficients on the  1l and Hl norms, respectively. A 

standard approach for solving such ontology problems is to 

relax the hard constraints to linear penalties and consider just 

those terms containing β , giving the Lagrangian form of the 

GraphNet problem 
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β̂ =
1 1

arg min loglik( | , )V y
β

β λ β− +  

2

H H
λ β+ , 

1
λ ,

H
λ ∈ +ℝ .            (15) 

Ontology problem (15) can also be arrived at from a Bayesian 

perspective as a maximum a posteriori estimator. In this 

situation, the form of the penalty ( )P β  is related to one's 

prior beliefs about the structure of the coefficients. For 

instance, the Elastic-Net penalty corresponds to the prior 

1 2, ( )pλ λ β ∝ 2

1 21 2
exp{ ( )}λ β λ β− + . 

The GraphNet penalty thus corresponds to the prior 

distribution 

1 , ( )
H

pλ λ β ∝ T

1 1
exp{ ( )}

H
Hλ β λ β β− +  

∝
1

1 1

exp{ | } exp{ }
p p

j H i ij j

i ji i

Hλ β λ β β
= =

− − ∑∏ ∏
∼

,      (16) 

where i j∼  denotes that vertex i in the graph H is adjacent to 

vertex j.  

Coordinate-wise descent is guaranteed to converge for 

GraphNet methods since they are all of the form 

1arg min ( , , )pf
β

β β⋯ = 1

1

arg min ( , , ) ( )
p

p j

j

g h
β

β β β
=

+∑⋯ ,  (17) 

where 
1( , , )pg β β⋯ is a convex, differentiable function, and 

where each ( )jh β is a convex  function. We consider the 

coordinate-wise updates for the standard GraphNet problem 

given in (5). Letting ŷ = \ j jV Vβ β+ɶɶ  (where Vɶ =
\ jV ≠  is the 

matrix V with the j-th column removed, and βɶ =
jβ≠  the 

coefficient vector with the j-th coefficient removed), then the 

subdifferential of the risk with respect to only the j-th 

coefficient is 

j pRβ∂ =
T T T

\ \ \ \j j j j jV y V V V Vβ β− + +ɶɶ  

T2 1

\ \ 2
( ) ( )

2 2
j j jj j j

H H
λ λβ λ β β≠+ + + Γɶ ,            (18) 

where the set-valued function ( )jβΓ =-1 if jβ <0, ( )jβΓ  =1 

if jβ >0 and ( )jβΓ ∈ [−1,1] if jβ =0. If we let 
( )jβΓ =

sign( )jβ  in (18), then the coordinate update iteration for the 

j-th coefficient estimate is 

ˆ
jβ ←

T T2 1
\ \ \

T

\ \ 2

( ( ) ( ) , )
2 2

j j j

j j jj

S V y V H

V V H

λ λβ β

λ
≠− −

+

ɶ ɶɶ

,   (19) 

where 

( , )S x γ = sign( )( )x x γ +−            (20) 

is the elementwise soft-thresholding function. 

Now, we present main ontology sparse vector learning 

algorithm, which is a modification of algorithm in Grosenick et 

al., [23]” 

Step 1. Fixed a set of data and parameters Ω  =
1

{ , , , }
H

V y λ λ , 

previous coefficient estimates
( )ˆ rα , ( )ˆ rβ , and p p×  positive 

semidefinite constraint graph H∈ p pS ×
+ , let 

( )ˆ rγ = ( ) ( ) Tˆ ˆ[ ]r rβ α , 

Z= [  ]
n n

V I × . 

Step 2. Select coordinate j using essentially cyclic rule and fix

γɶ = ( ){ | }r

k k jγ ≠ , Zɶ  = 
\ jZ ≠ , βɶ = ( ){ | }r

k k jβ ≠ . 

Step 3. Update 
( )ˆ r

j
γ  by virtue of  

( 1)ˆ r

j
γ + ←

T T '2 1
\ \ \

T '

\ \

1

( ( ) ( ) , )
2 2 ,  

if {1, , }

((y Z ) , ),                                
2

if { 1, , }

j j j

j j G jj

j

S Z y Z H

Z Z H

j p

S

j p p n

λ λγ γ

λ

λγ

≠
 − −
 +
 ∈

 −

 ∈ + +

ɶ ɶ ɶ

⋯

ɶ ɶ

⋯

 

where ( , )S x γ is the element-wise soft-thresholding operator 

in (20), and where 'H  is the appropriately augmented H 

given in (12). 

Step 4. Repeat steps (1)–(3) cyclically for all j∈{1,…, p+n} 

until convergence. 

Step 5. Optional: rescale resulting estimates. 

For a particular coordinate j, we are interested in the estimates 

jγɶ =
2

\
2

1
arg min

2j

j j
y Z Z

γ
γ γ− − +ɶ ɶ  

T ' ' 2

\ \ 1( ( ) )H j j j jj j jH Hλ γ γ γ λ γ≠ + +ɶ  

if {1, , }j p∈ ⋯ , 

jγɶ =
2

\
2

1
arg min

2j

j j
y Z Z

γ
γ γ− − +ɶ ɶ  

jδ γ  if  { 1, , }j p p n∈ + +⋯ . 

Using coordinate-wise descent and active set methods, this 

yields the coordinate-wise updates 
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jγɶ ←

T T '2 1
\ \ \

T '

\ \

( ( ) ( ) , )
2 2

j j j

j j G jj

S Z y Z H

Z Z H

λ λγ γ

λ
≠− −

+

ɶ ɶ ɶ

 

if {1, , }j p∈ ⋯ , 

jγɶ ←

T 1
\

T

\ \

( ( ), )
2

j

j j

S Z y Z

Z Z

λγ− ɶ ɶ
 

if  { 1, , }j p p n∈ + +⋯ . 

where ( , )S x γ is the element-wise soft-thresholding operator 

in (20). 

4. Experiments 

Two simulation experiments on ontology similarity measure 

and ontology mapping are designed in this section. For detail 

implement, we first obtain the optimal sparse vector using the 

algorithm raised in our paper, and then the ontology function 

is yielded by (1). 

4.1. Experiment on Biology Data 

The “Go” ontology O1 was constructed by http: //www. 

geneontology. org. (Fig. 1 presents the graph structure of O1). 

We use P@N (defined by Craswell and Hawking [24]) to 

determine the equality of the experiment result.  

Beside our ontology algorithm, ontology algorithms in Huang 

et al., [12], Gao and Liang [13] and Gao and Gao [14] are also 

acted to “Go” ontology. Then, we compare the precision ratio 

which we have deduced from the four tricks. Some parts of 

experiment results can be seen in Table 1. 

 

Figure 1. “Go” ontology. 

Table 1. The experiment data for ontology similarity measure. 

 P@3 average precision ratio P@5 average precision ratio 
P@10 average precision 

ratio 
P@20 average precision ratio 

Our Algorithm  47.02% 53.97% 64.05% 82.45% 

Algorithm in [12] 46.38% 53.48% 62.34% 74.59% 

Algorithm in [13] 43.56% 49.38% 56.47% 71.94% 

Algorithm in [14] 42.13% 51.83% 60.19% 72.39% 

 

As we can see in the Figure 1, when N= 3, 5, 10 or 20, the 

precision ratio in view of our algorithm is higher than that got 

by tricks which has been determined in Huang et al., [12], Gao 

and Liang [13] and Gao and Gao [14]. 

4.2. Experiment on Physical Education Data 

For our second experiment, we use physical education 

ontologies O2 and O3 (the graph structures of O2 and O3 are 

raised in Fig. 2 and Fig. 3 respectively). The purpose of this 

experiment is to construct the ontology mapping between O2 

and O3. Again, P@N criterion is applied to measure the 

equality of the experiment results. 

Furthermore, ontology technologies in Huang et al., [12], Gao 

and Liang [13] and Gao et al., [16] are employed to “physical 

education” ontology. At last, we compare the precision ratio 

that we have obtained from four tricks. Table 2 present several 

results for this experiment. 

 

Figure 2. “Physical Education” Ontology O2. 
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Figure 3. “Physical Education” Ontology O3. 

Table 2. The experiment data for ontology mapping. 

 
P@1 average 

precision ratio 

P@3 average 

precision 

ratio 

P@5 average 

precision ratio 

Our Algorithm 69.13% 78.49% 90.97% 

Algorithm in 

[12] 
61.29% 73.12% 79.35% 

Algorithm in 

[13] 
69.13% 75.56% 84.52% 

Algorithm in 

[16] 
67.74% 77.42% 89.68% 

From what we have obtained in Table 2, we find it more 

efficient to use our Algorithm than algorithms determined by 

Huang et al., [12], Gao and Liang [13] and Gao et al., [16], 

especially where N is sufficiently large. 

5. Conclusions 

In our article, a new algorithm for ontology similarity measure 

and ontology mapping application is presented by virtue of 

GraphNet. Furthermore, experiment results reveal that our 

new algorithm has high efficiency in both biology and physics 

education. The ontology algorithm presented in our paper 

illustrates the promising application prospects for ontology 

use. 
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