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Abstract 

In order to get a better display in correlation identification, there are two types of deconvolution algorithms applied in correlation 

identification theory, which includes traditional frequency domain deconvolution algorithm and Wiener filtering deconvolution 

algorithm. This article derived the derivation of Wiener filter deconvolution and solved the zero problem traditional frequency 

domain deconvolution problem, and gave out the frequency domain expression of the system impulse response of the Wiener 

deconvolution filter. Then, after the comparison of the two deconvolution algorithms, it was shown that the identification results 

of the Wiener filter deconvolution algorithm were better than traditional frequency domain deconvolution algorithm when using 

the m-sequence as the system’s input signal. Finally, the Wiener filtering deconvolution algorithm was applied into correlation 

identification theory and achieved good identification results. 
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1. Introduction 

Wiener filter deconvolution algorithm can not only improve 

the traditional frequency domain deconvolution algorithm 

zero problem which exhibits an abnormal fluctuation of the 

waveform on the time-domain identification [1], but also be 

suppressed by the impact and noise imaging system in order to 

obtain the best estimate of the signal and to improve 

recognition results [2]. Therefore, the Wiener filter 

deconvolution algorithm is used in many fields. 

Deconvolution has important applications in correlation 

identification algorithm [3]. However, zero problem in 

traditional frequency domain deconvolution algorithm makes 

the results unreliable and leads to the failure of deconvolution. 

To solve zero problem in traditional frequency domain 

deconvolution algorithm, this essay applied the Wiener filter 

deconvolution algorithm into correlation identification. After 

comparing the simulated time domain identification effect of 

two algorithms, it could be found that the result of the Wiener 

filter deconvolution algorithm was better than the traditional 

frequency domain deconvolution algorithm. 

2. Methods 

Deconvolution problems in engineering are frequently 

encountered in many areas such as communications, 

measurement, seismology, optics and astronomy. Because the 

measurement output from the system is always accompanied 

by a noise so that tiny faults in the data could make the 

deconvolution generate different from the true value or the 

result of serious errors. In addition, using the traditional 

frequency domain deconvolution algorithm to find the results 
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of deconvolution directly may lead to an infinite impulse 

response and does not match the actual response, which means 

zero problem happens in the input of the system. On account 

of these two reasons, it is difficult to use the traditional 

frequency domain deconvolution algorithm to solve 

deconvolution directly [4]. However, using wiener filtering 

deconvolution algorithm could improve the two defects that 

could get the best estimate of the true signal in the minimum 

mean square error sense. It also helped improve zero problem 

of the traditional frequency domain deconvolution algorithm 

to some degree [1]. 

a) Introduction of m-sequence 

M-sequence is the most common form of pseudo-random coding 

sequence, the longest linear feedback shift register sequences, 

which is the longest cycle sequence generated by the shift register 

with linear feedback. It is not only having a sharp autocorrelation 

properties like random noise but also having a periodicity. 

Therefore, it is easy to create and copy [5]. Because of these 

characteristics, m-sequences is widely used in communications, 

radar, system reliability testing and other aspects. 

The generate schematic of m-sequences is shown in Fig. 1. 
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In (1), autocorrelation function of m-sequence is similar with 

autocorrelation function of white noise which is an impulse 

response δ(τ) [6]. 

b) Deconvolution 

In mathematics, deconvolution is an algorithm-based process 

used to reverse the effects of convolution on recorded data. 

The concept of deconvolution is widely used in the techniques 

of signal processing and image processing. Because these 

techniques are widely used in many scientific and engineering 

disciplines, deconvolution finds many applications [7]. 

In general, the object of deconvolution is to find the solution 

of a convolution equation of the form: 

f ∗ g = h                (2) 

Usually, h is some recorded signal, and f is some signal that we 

wish to recover, but has been convolved with some other signal g 

before we recorded it. The function g can represent the transfer 

function of an instrument or a driving force that is applied to a 

physical system. If we know g, or at least know the form of g, 

then we can perform deterministic deconvolution. However, if 

we do not know g in advance, then we need to estimate it. This is 

usually done using methods of statistical estimation. 

In physical measurements, the situation is usually closer to 

(f  ∗ g) + e = h                    (3) 

In this case e is noise that has entered our recorded signal. If 

we assume that a noisy signal or image is noiseless when we 

try to make a statistical estimate of g, our estimate will be 

incorrect. Similarly, our estimate of f will also be incorrect. 

The lower the signal-to-noise ratio, the worse our estimate of 

the deconvolved signal will be. That is the reason why inverse 

filtering the signal is usually not a good solution. However, if 

we have at least some knowledge of the type of noise in the 

data, we may be able to improve the estimate of f through 

techniques such as Wiener deconvolution. 

Deconvolution belongs to a class of “Inverse Problem” in 

mathematical physics. Signal output obtained through a 

system is a positive question called convolution integral in 

mathematics and its inverse problem is deconvolution. 

Deconvolution has broad application prospects in the field 

such as signal restoration, image restoration, diagnostic 

ultrasound, seismic exploration, speech processing, 

communications, and radar measurements. Research in 

deconvolution has many aspects including no spectral reverse 

convolution problem, morbid problem caused by noise or 

measurement error, optimal filtering, deconvolution 

algorithms and applications [8]. 

c) Traditional Frequency Domain Deconvolution Algorithm 

Deconvolution is a class fundamental problem in signal 

processing, in simple terms, is known by measuring the output 

and input process system function to retrieve unknown [9]. 

Here is a brief introduction to traditional frequency domain 

deconvolution algorithm: 

 

Figure 1. The generate schematic of m-sequence. 

The system output is: 

y(n) = x(n) ∗ h(n)              (4) 

In the (4), y(n) is system output, x(n) is system output, h(n) is 

system impulse response. 
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Doing Fourier transform to (2) on both sides of the equal sign 

can be obtained [10], 

Y(ω) = X(ω)H(ω)                       (5) 

x(n)’s Fourier transform is X(ω), y(n)’s Fourier transform is 

Y(ω). Then we can conclude h(n) Fourier transform of system 

impulse response is H (ω). 

H(ω) = Y(ω) / X(ω)              (6) 

Doing inverse of discrete Fourier transform to (6) obtains the 

system impulse response h(n). 

d) Wiener Filter 

In signal processing, the Wiener filter is a filter used to produce 

an estimate of a desired or target random process by linear 

time-invariant (LTI) filtering of an observed noisy process, 

assuming known stationary signal and noise spectra, and additive 

noise. The Wiener filter minimizes the mean square error 

between the estimated random process and the desired process. 

The goal of the Wiener filter is to compute a statistical 

estimate of an unknown signal using a related signal as an 

input and filtering that known signal to produce the estimate as 

an output. For example, the known signal may consist of an 

unknown signal of interest that has been corrupted by additive 

noise. The Wiener filter can be used to filter out the noise from 

the corrupted signal to provide an estimate of the underlying 

signal of interest. The Wiener filter is based on statistical 

methods and gives a more statistical account of the theory in 

the minimum mean square error (MMSE) estimation [11]. 

Typical deterministic filters are designed for a desired 

frequency response. However, the design of the Wiener filter 

takes a different approach. One assumption is to have 

knowledge of the spectral properties of the original signal and 

the noise. The other is to seek the linear time-invariant filter 

whose output would come as close to the original signal as 

possible. Wiener filters are characterized by the following [12]: 

(1) Assumption: signal and additive noise are stationary linear 

stochastic processes with known spectral characteristics or 

known autocorrelation and cross-correlation. 

(2) Requirement: the filter must be physically realizable 

causal (this requirement can be dropped, leading to a 

non-causal solution). 

(3) Performance criterion: minimum mean-square error 

(MMSE). 

This filter is frequently used in the process of deconvolution. 

The Wiener filter problem has solutions for three possible 

cases: one where a non-causal filter is acceptable which 

requires an infinite amount of both past and future data, the 

case where a causal filter is desired that uses an infinite 

amount of past data, and the finite impulse response (FIR) 

case where a finite amount of past data is used. 

The Wiener filter has various applications in signal processing, 

image processing, control systems, and digital communications. 

These applications generally divided into four main categories: 

system identification, deconvolution, noise reduction, signal 

detection. For example, the Wiener filter can be used in image 

processing to remove noise from a picture [13]. 

The Wiener filter was proposed by Norbert Wiener during the 

1940s and published in 1949. The discrete-time equivalent of 

Wiener's work was derived independently by Andrey 

Kolmogorov and published in 1941. Hence the theory is often 

called the Wiener–Kolmogorov filtering theory [14]. The 

Wiener filter was the first statistically designed filter to be 

proposed and subsequently gave rise to many others including 

the Kalman filter. 

e) Wiener Filter Deconvolution Algorithm 

In mathematics, Wiener deconvolution is an application of the 

Wiener filter to the noise problems inherent in deconvolution. 

It operates in the frequency domain which attempts to 

minimize the impact of deconvolution noise at frequencies 

which have a poor signal-to-noise ratio. 

The Wiener deconvolution method is widespread used in 

image deconvolution applications as the frequency spectrum 

of most visual images is fairly well behaved and can be 

estimated easily. 

Doing inverse of discrete Fourier transform to (4), it obtains 

the system impulse response h(n). The zero problem is since 

the divisor cannot be zero, from the theoretical point of view 

exist this case which when X(ω) exists zero or close to zero 

that (4) is no longer valid and unable to achieve deconvolution 

[4]. In practice, it exists noise ε(n) or interference generally. 

The generate schematic of wiener filter deconvolution for 

system identification is shown in Fig. 2. 

Then the system output is: 

 

Figure 2. The schematic diagram of wiener filter deconvolution g(n) for 

system identification. 

y(n) = x(n) ∗ h(n) + ε(n)              (7) 

Doing discrete Fourier transform to the equal on both sides of 

(7), it obtains after division: 

H(ω) = (Y(ω) − E(ω)) / X(ω)          (8) 

The amplitude at these points may be small even if H(ω) 
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haven’t the spectrum zero real value of zero. When we get 

H(ω) from (8), if small value of noise causes a greater 

variation and transforms the time-domain to cover the entire 

or most of the signal, it will distort the inversion of the system 

impulse response [15]. Therefore, we consider to use Wiener 

filtering deconvolution algorithm to solve this problem. 

It supposed a filter g(n) which input y(n) and output h��n�: 

 h��n�=y�n�∗g�n�                (9) 

Then, here was condition of satisfaction: 

E ��h�n�−h�(n)�2	 =min              (10) 

According to the orthogonal principle of linear mean square 

estimation, it must be guaranteed: 

E
(h�n�−h�(n))y(n−m)�=0   �m          (11) 

The signal is assumed to be generalized and making both sides 

of the equal sign of (9) correlation calculation [16]. 

Rhy(n) =Ryy(n) ∗ g(n)            (12) 

Then applying discrete Fourier transform to the equation (12), 

Shy(ω) = Syy(ω)G(ω)              (13) 

It got an expression of the Wiener filter after derivation, 

G�ω�=X*�ω�Shh�ω�/(|X�ω�|2Shh�ω�+Snn(ω))    (14) 

Shh(ω), Shy(ω), Snn(ω) are the system impulse response of 

auto-power spectrum, the cross-power spectrum and the 

auto-power spectrum of noise. 

From (14), it got the system frequency domain representation 

of the impulse response: 

 

Figure 3. The time-domain identification rendering of Traditional frequency 

domain deconvolution. 

H��ω�=X*(ω)Y(ω)/�|X(ω)|2+Sm(ω)/Shh(ω))    (15) 

In general, the reciprocal ratio of the system impulse response 

and the noise power spectrum Snn(ω)/Shh(ω) was replaced by a 

number γ and according to the general order of magnitude it took 

0.01 by simulation experience to ensure recognition results. 

3. Experiment and Result 

A simulation experiment of a typical second-order system was 

done by MATLAB. Given a second-order system under test 

which system impulse response was: 

h(t) = 11.5e − 5tsin(8.6t)           (16) 

In (16), input cycle number was 1, the amplitude was 1V, the 

sequence order was 14m, the system function of the sampling 

interval was 0.001s, 7s length and random noise added 5V. 

The time-domain simulation results when using traditional 

frequency domain deconvolution algorithm was shown as Fig. 

3. The time-domain simulation results using Wiener filtering 

deconvolution algorithm was shown as Fig. 4. 

By comparing the two time-domain identification renderings 

that could clearly be seen in Fig. 4 identification better than 3 

and the relevant identification accuracy had a more significant 

increase than in Figure 3 to improve the zero problem of 

traditional frequency-domain deconvolution algorithm. 

4. Conclusions 

In the two time-domain identification renderings, the 

identification results of Fig. 4 are significantly improved in 

comparison with Fig. 3, which could be concluded as: the 

identification results of the wiener filtering deconvolution 

algorithm were superior to the one of the traditional frequency 

domain deconvolution algorithm. Wiener filter deconvolution 

algorithm could solve zero problems of the traditional frequency 

domain deconvolution algorithm and turned down the noise and 

the impact of imaging system to improve recognition results. 

 

Figure 4. The time-domain identification rendering of Wiener filtering 

deconvolution. 



 American Journal of Circuits, Systems and Signal Processing Vol. 2, No. 1, 2016, pp. 1-5 5 

 

Due to the limited bandwidth of the system function testing 

system, the noise fluctuation band directly affects the results 

of deconvolution, leading to the result of poor stability of the 

algorithm itself. While the reciprocal ratio γ of the system 

impulse response and of the noise power spectrum is often 

taken to a constant value. However, the deconvolution result is 

very sensitive to constant value and the crest is wide after 

deconvolution so that the improvement of the identification 

results is not obvious [17]. Through the modification of the 

reciprocal ratio γ of the system impulse response and of the 

noise power spectrum to improve the Wiener filter, it is 

possible to further increase the deconvolution accuracy. 
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