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1. Introduction 

The using of efficient algorithms for solving calculation tasks 

existed to the era of the spread of computers. Methods of 

Runge (1905), Danielson - Lanczos (1942), Levinson (1947) 

have been known for use in highly specialized areas, and do 

not became the fundamental works on efficient algorithms 

for harmonic and spectral analysis [1,2]. They are ahead of 

their time, though efficient algorithms for spectral estimation 

would were advantageous over the last hundred years. The 

catalyst of intensive research and development of fast 

computational algorithms was discrete transform of Fourier 

class and digital convolution based computer systems in 

various application areas. 

Algorithm Cooley-Tukey [3] of the effective computation of 

discrete Fourier transform (DFT) has become a significant 

milestone the beginning of the intensive development of 

signal processing and fast computing. Only for a few years it 

became clear that another very different from the algorithm 

Cooley-Tukey (1965) was developed independently Good 

(1958) [4] and Thomas (1963) [5]. The existence of more 

efficient algorithms with computational point of comparison 

with the algorithm of Cooley-Tukey showed Yavne (1968) 

[6]. Building on experience in the field of efficient 

algorithms S. Winograd (1978) [7] published a more effective 

but also more complex algorithm for DFT, which reduced the 

number of multiplications, compared with the algorithm of 

Cooley-Tukey on the base of two, to near five times. 

The profound theoretical study of the systems of orthogonal 

basises have led to the creation of the theory of generalized 

spectral analysis in the late 70's. It allowed not only to 

reevaluate the value of the classical Fourier analysis and the 

possibility of its practical application, but create a synthesis 

methods of real basises of Fourier class for the most effective 

solutions of practical problems [8, 9]. 

Discrete transforms and convolutions are the main operations 

and key tools in Signal Processing. Especially widely used 

are discrete Fourier transform, discrete Hartley transform, 

discrete cosine transform, discrete sine transform – common 

named discrete harmonic transforms (DHT) presenting 

signals in frequency domain. The discrete convolutions 

(linear, circular, field) find important applications in various 

aspects in the time-domain. The paradox looks the having 

connection in frequency-domain and time-domain, not only 

in physical but and in computational applications. There are 
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many different ways to compute convolutions, more widely 

used the transformations of both data to the frequency 

domain on basis the efficient discrete transforms of Fourier 

class, then used the pointwise multiply and transformations 

back to the time domain (theorem of convolution). 

A significant event associated with another trend of 

development the efficient algorithms, which is marked in 

many editions of digital signal processing, it is possibility 

computation of FFT through cyclic convolutions [10]. 

Pioneering in this area is considered to be the strategy 

proposed C.M. Rader of the possibility of effective 

computation of DFT via cyclic convolution. Various ways of 

implementation this strategy were proposed by Goertzel, 

Bluestein, Winograd and named in their honor. Along with 

researches on FFT developed the approaches of effective 

computation of direct digital convolution, called fast 

convolution. That is effective computation DFT may imply 

the implementation of fast convolution [11]. Efficient 

computing the cyclic convolution using convolution theorem, 

algorithm Toom-Cook, prime factor algorithm Agarwal and 

Cooley, polynomial transformations and number theoretic 

transforms, algorithm of partitioning convolution, a method 

Pitassi, a method based on pseudocirculant factorization. 

Therefore the significant potential of effective computation 

of discrete transform on Fourier class using cyclic 

convolutions had accumulated. 

This paper is organized as follows. In two section is reviewed 

the famous and new approaches to the synthesis of efficient 

algorithm based on the cyclic convolutions. In conclusions is 

considered a short enumeration the advantages and 

imperfections of approaches of efficient computation discrete 

transform of Fourier class using cyclic convolutions. 

2. The Approaches of 
Computation DHT Using 
Cyclic Convolutions 

Between of variety the algorithms, leading to efficient 

computations of DHT, have the historical development of fast 

algorithms using cyclic convolutions. To enumerate the 

famous approaches of efficient computation DFT on the basis 

of cyclic convolutions: 

� for transform size N is a prime, the DFT is trivially are 

computed  the remaining (N−1) components using an 

efficient cyclic convolution algorithm presented by Rader 

(1968) [10]; 

� for arbitrary transform size, individual discrete 

components DFT are computed using a cyclic convolution 

algorithm presented by Goertzel (1968) [12]; 

� for arbitrary transform size, chirp-algorithm define DFT 

via cyclic-convolution and additional multiplications 

presented by Bluestein (1970) [13]; 

� for transform the size is the integer power of prime, 

presented by Winograd Fourier Transform Algorithm 

(1978) [7]. 

2.1. Rader Algorithm 

In first the convolutional formulation DFT is considered the 

publication of the Raiders [10]. Discrete Fourier transform of 

the basis W reduced to computing cyclic convolution 

sequence for the sizes equal to the prime number N. The DFT 

of prime length N defined as: 

1
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where n, k = 0,1, ..., N-1. Formulate of the cyclic convolution 

through reindexing input sequence x(k) applying for  this 

primitive root g of the corresponding exponent. That can 

express (1.1) in a form:  
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which correspond cyclic convolution without the inclusion 

x(0). Number g corresponds to the primitive root, not 

necessarily the one, with the properties of g
(N-1)

=g
(0)

=1, g
k≠1, 

for 0 <k <N-1 and take into account that 

( ) mod ( )
, 1

n knk nk N g g g n k N
W W W W W

+= = = = .   (3) 

Raiders algorithm can be used to compute the DFT of prime 

size N of any algebraic field. The primitive root g use in the 

structure of this field for indexing input sequence and the 

transition to a cyclic convolution. 

2.2. Goertzel Algorithm 

At the same time the work Goertzel [12] was appeared and 

devoted the computation of the individual values of DFT 

using convolution operation. Goertzel algorithm does not 

belong to the FFT, as its complexity is proportional to N
2
. 

Since FFT algorithms compute all the components of the 

transformation, Goertzel algorithm can be used when it is 

necessary to determine the number of initial components no 

most log2N with N components. 

According Goertzel algorithm computing X(k), for k = 0,1, ..., 

N-1, where N- point sequence x(n) is performed as follows. 

For each value of k to determine X(k), N- point sequence X(k) 

appears at the output of the system for which x(n) input 

sequence, and WN
-nk

 is the impulse response of the system, 

then the adoption of n = N 
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According Goertzel algorithm the computation X(k), for k = 

0,1, ..., N-1, where N- point sequence x(n) is performed as 

follows. For each value of k to determine X(k), N- point 

sequence X(k) appears at the output of the system for which 

x(n) is input sequence, and WN
-nk

 is the impulse response of 

the system, then the adoption of n = N 

X(k)= yk(n)
 
 |n=N , 
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Thus, yk(n) is defined as the convolution of a given sequence 

x(n) and WN
-nk

, and X(k) then simply obtained taking into 

yk(n) values of n equal to N. 

2.3. Bluestein Chirp-Algorithm 

In the work Bluestein [13] is showed, that computation DFT 

can be reduced to perform of convolutions. Describe the 

main algorithm 
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where φk = φ0+k∆φ, ∆φ=2π/N. 

Denote We j =∆− ϕ
, then for φk can find that 
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Accordance the expression: 
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corresponds the definition of convolution. 

This chirp-algorithm transforms DFT of size N to N-point 

circular convolution and 2N additional products. The 

algorithm contains N multiplications, cyclic convolution and 

the following N point multiplication. From the computational 

point of view algorithm Bluestein do not match the efficiency. 

Nevertheless chirp-algorithm in certain applications it has a 

simpler hardware implementation. 

2.4. Winograd Algorithms of DFT 

Further development of FFT algorithms and efficient 

algorithms for cyclic convolution are considered in 

publications S. Winograd. After 10 years, developing the 

approach of Good-Thomas, Winograd [7] published a more 

efficient, but also much more complex algorithm that reduces 

the computation of DFT through computing of the short 

convolutions (with the number of multiplications 5 times less 

than the algorithm of Cooley-Tukey). 

Publications Winograd further develop Raiders approach of 

effective computation of DFT through cyclic convolution for 

sequences of a prime and power of a prime number [14]. S. 

Winograd has derived formula for computational complexity 

of DFT with minimum multiplicative component. Winograd 

algorithms used for data reindexing the specific reordering 

based on Chinese remainder theorem, the properties of the 

direct product of matrices and cyclic convolution algorithms. 

Winograd FFT is designed for efficient computation of DFT 

of small sizes using for reduce the computation of cyclic 

convolutions the modular arithmetic in the ring of 

polynomials. 

In the case of equal the size of transform DFT the power of 

prime N= p
r
, according the algorithm Winograd, first from 

the set {1,2,3,4,...,p
r
- 1} separate numbers of multiple of N. 

This subset is reduced to a cyclic convolution of size (p
r
-

1)(p-1), which forms the basis of the algorithm. Branches (p
r
-

1) rows and columns can be computed by the algorithm 

Winograd to convolution of less size. For example, N =3
2
 = 9, 

separates the grouping numbers 0,3,6, is the basis of the 6-

point convolution and four 2-point convolutions. Thus, the 

transform of sizes N = p
r
, can be computed using one cyclic 

convolution of p
r-1

(p-1) -point, two of p
r- 2

(p-1)-point, four of 

p
r- 3

(p-1), ..., 2
r- 1 

convolution of (p-1)-point. 

In the case, the size of transform DFT the power of prime N= 

p
r
, according the algorithm Winograd, first to separate from 

the set {1,2,3,4,...,p
r
- 1} numbers of multiple of N. This 

subset is reduced to a cyclic convolution of size (p
r
-1)(p-1), 

which forms a part of the basis of the algorithm. The 

subarray of (p
r
-1) rows and columns can be computed by the 

algorithm Winograd to convolution of less size. For example, 

N =3
2
 = 9, separates the grouping numbers 0,3,6, is the basis 

of transform of the 6-point convolution and four 2-point 

convolutions. Thus, the transform of sizes N = p
r
, can be 

computed using one cyclic convolution of p
r-1

(p-1) -point, 

two of p
r- 2

(p-1)-point, four of p
r- 3

(p-1), ..., 2
r- 1 

convolution of 

(p-1)-point. 

In the case, the  transform of sizes of N = N1xN2x ... xNk, 
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where Ni mutually prime numbers, Winograd algorithm are 

based on matrix representation of the sizes N in the form of a 

direct product ⊗ of matrices Ni -point DFT 

1 2
...

N N N Nk
W W W W W⊗≅ = ⊗ ⊗ ⊗ ,               (11) 

and reduce the computation to Ni point cyclic convolutions 

using modular arithmetic in the ring of polynomials. The rule 

reindexing of information data based on the Chinese 

remainder theorem. 

However, these algorithms have their own specific features 

for each size of N associated with reindexing input sequence 

and consequently obtained some irregular structures. 

Therefore, these algorithms are researched and updated by 

many authors [15, 16]. 

3. The Further Approaches of 
Computation DHT Using 

Cyclic Convolutions 

The efficient cyclic convolutions will lead to efficient 

computations of DHT. These algorithms present in the 

various forms and based the properly rearranging the basic 

matrix are leaded to pseudo/quasi cyclic structures. The 

techniques can reform the size of transform to different set of 

the less sizes the cyclic structures. The paper [17] shows that 

when the length of a p prime is such that (p-1)/2 is odd, the 

DCT can be computed as two cyclic convolutions, each of 

length (p-1)/2. The paper [18] proposes to decompose the 

computation of the N point DCT into two matrix-vector 

multiplications, where each matrix is of size (M−1)×(M−1) 

and M = N/2. Each of the decomposed matrix-vector products 

is then converted into a pair of [(M−1)/2] point circular 

convolution-like operations for reduced-complexity of 

concurrent systolization. 

Modern computation of discrete transform of Fourier class 

the signals are used the generalized scheme of efficient 

algorithms. For many well-known fast algorithms are applied 

purely algebraic methods. The mathematical principles 

establish by the each algorithm, and justified its structure. 

Synthesis of fast algorithms often use a direct method based 

on the properties of the base matrix of transform and 

indirectly method, which involved other fast algorithms of 

discrete transform [19]. 

There are other general approaches to the theoretical basis of 

the possibility the cyclic formulation of discrete harmonic 

transforms. 

3.1. Chan-Siu Algorithm 

The strategy of cyclic or skew-cyclic structures identification 

within the transform matrix is investigated in many papers. A 

general solution is proposed to realize the discrete cosine 

transform of any length via cyclic convolutions in paper [20]. 

The algorithm of the discrete cosine transform (DCT/IDCT) 

with any length N is formulated by using two N-length linear 

convolutions or two cyclic convolutions form, such that one 

can easily implement with technologies that are well suited 

for doing convolutions. 

In such case, are made some modifications, such that we can 

make use of cyclic convolutions 

( ) {2 ( ) (0)cos( / 2 ),Y k T k x k Nπ= +            (12) 

2

( ) 1/ 2 [ ( ) (2 )

( ) (2 )]sec( / 2 )]

T k H k H N k

G k G N k k Nπ
= + − +

+ − ,       (13) 

where k=0,1,…,N-1. For items of the sequence {T(k)}, we 

can first compute two sequences, {H(k)+H(2N-k)} and 

{G(k)+G(2N-k)} and both are  in cyclic convolution form. 

This is an efficient and effective approach as it can avoid 

complicated data routing and data management. This 

algorithm is not optimal in minimizing any measure of 

computational complexity, but it involves some regular forms 

that are most suitable for the realization using technologies 

and structures which are well suited for doing convolutions. 

On the other hand, this algorithm is much more flexible than 

any available DCT algorithm as it can be applied to realize 

DCT/IDCT with any length. 

3.2. Wagh Algorithm 

In paper [21] is considered a generalized algorithm which 

consists of partitioning the DCT kernel into submatrices 

which through the proper rows and columns shuffling and 

negations can be made equivalent to the group tables (or 

parts of them) of appropriate Abelian groups. 

Paper defines a generalized convolution with respect to an 

Abelian group G. Index the sequences u and v by the 

elements of G. Then their convolved sequence w is given by 

( ) ( ) ( )
g

w h u g v n g=∑ �                     (14) 

That this convolution with respect to G ≅ Cnl x Cn2 x… x Cnr 

can be computed through W = U * V where U, V, and W are 

r-dimensional arrays and * denotes an r-dimensional cyclic 

convolution. 

The computations pertaining to the submatrices can be 

carried out using multidimensional cyclic convolutions. In 

other words, the work of the algorithm is based on the 

Abelian group of positive integers relatively prime to N or 

less N with the multiplication taking modulo N. The group 

and group operation is defined as A (N, *). This paper prove 



 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 114-119  118 

 

Theorem 1, which corresponds to the general computation of 

DCT through cyclic convolutions of sequences formed by a 

accordance rule. However, the formation of cyclic 

submatrices in the structure of the base kernel transformation 

is complicated of a significant number of reindexing 

elements what respectively define the complexity of the 

synthesis of computational algorithm. 

3.3. General DHT Algorithm Using Cyclic 

Convolution 

In [22, 23] are considered the general technique for efficient 

computation of discrete harmonic transform of sequences of 

arbitrary number of points using cyclic convolutions. The 

formed hashing arrays in algorithm define partitioning of the 

harmonic basis into the submatrices which can be made 

through shuffling of the rows and columns. The hashing 

arrays, used in the algorithms of synthesis, are more versatile 

and generally better in terms of indexing mapping in 

comparison with the existing algorithms. 

The algebraic system <N-1,*> with operation on set (1,2…N-

1) corresponds to equivalent basis matrix of discrete 

harmonic transform. In case the size of transform N is prime, 

algebraic system <N-1,*> is of Abel group. Besides, the 

algebraic system <N-1,*> with prime N presents cyclic group, 

and table of operation of algebraic system is a Hankel 

circular matrix. Elements of cyclic group are equal to natural 

power of generate element α  G.  The generate element α of 

cyclic group is a primitive root, and α is not the only one. 

Primitive element will be α
N-1

 also. Therefore, all elements of 

cyclic group can be determined by the powers of primitive 

element. Non-primitive elements of cyclic group generate a 

part of set, and the other part of set is formed by 

multiplication of two elements by modulo N. Let us analyze 

Hankel matrix of arguments of degree (N×N) as substitution 

of πi for each row (column) ai, i {1,2,…,x} to first row 

(columns) of matrix, where N is prime. The summation of 

substitutions {ψ1, ψ2, ψ3, ψ4, ψ5,… ,ψx} with operation form 

cyclic group. The quantity of generating and non-primitive 

elements is the same for substitutions and algebraic system 

<N-1,*> with the operation (*= (n x k) mod N) of 

multiplication of the arguments by modulo N. Based on the 

substitutions of rows/columns from data of basis matrix, P(n) 

hashing arrays are 

P(n)=P(n1) P(n2) … P(nk)= 

= (n11, n12, n13, …, n1L1)( n21, n22, n23,…, n2L2) 

(nk1, nk2, …, nkLk),                              (15) 

n = (L1+L2+...+Lk). 

and the simplified hashing array with according subarrays of 

signs S(n) are: 

P'(n)=P'(n1)P'(n2)…P'(nk),                      (16) 

S(n)= S(n1) S(n2)…S(nk ).                      (17) 

P(n) corresponds of the cyclic decomposition of substitution. 

Forming hashing array briefly defines the block cyclic 

structures of basis matrix. The analysis of the structure of 

basis matrix defines the specific of computational algorithm 

for different types of DHT. The concurrency and low 

complexity of these algorithms are well suited for the 

software implementations and integrated circuits hardware 

solutions. 

4. Conclusions 

There are implemented different algorithms of DHT using 

cyclic convolutions [24, 25]. The development efficient 

computations of DHT using cyclic convolutions passed from 

individual discrete components, a prime length, a prime-

factor length, not mutually prime factor length and to 

algorithm for an arbitrary length sequence of transform. The 

indexing techniques can form the size of transform to 

different set of the less sizes of cyclic structures. 

Some of algorithm is not optimal in minimizing any measure 

of computational complexity. Though the efficient 

algorithmic schemes of discrete transform of Fourier class 

using cyclic convolutions are now available and have found 

great efficiency in hardware implementation applying VLSI 

technology [26-29]. Indeed, the cyclic convolution or circular 

correlation structure support a high speed performance, low 

computational complexity, low values for the input/output 

contacts. 

Therefore, approaches and means of the representation DHT 

to the computation through of discrete cyclic structures need 

further investigations and development. 
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