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Abstract 

Recently, an image encryption scheme based on rotation matrix bit-level permutation and block diffusion was proposed [Y 

Zhang, D Xiao. Commun Nonlinear Sci Numer Simulat. 2014, 19:74-82]. In this paper, this image encryption scheme was 

studied in detail and its defects of low encryption speed and weak security were pointed out. This scheme with one round was 

crypt-analyzed successfully with the chosen plaintext method. The simulation results show that their scheme cannot be used in 

practical communications. 
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1. Introduction 

In recent years, a number of image encryption schemes based 

on chaotic systems were proposed [1-7]. In such image 

encryption systems, the encryption algorithms are sensitive to 

secret keys and plain images, while the decryption algorithms 

are sensitive to secret keys and cipher images. The latter 

makes the cipher images generated by such image encryption 

systems cannot be transmitted in noise channel directly due 

to the slight changing in cipher images will lead to complete 

failure in decryption process. Currently, there are still some 

scientists engaged in the anti-noise image encryption 

technology based on chaotic system. For example, A. N. 

Pisarchik and M. Zanin presented a color image encryption 

scheme with chaotically coupled chaotic maps. This 

encryption scheme utilizes chaotic confusion of image pixels 

using chaotic coupling between chaotic maps, each of which 

in turn induces chaotic diffusion of pixels’ color values. They 

claimed that their scheme not only makes the known 

plaintext attack unfeasible, but also is robust against noise 

and other external disturbances [8]. But soon, D. Arroyo, S. 

Li, and etc. pointed out that the encryption architecture of 

this cryptosystem possesses serious security problems related 

to its implementation and its robustness against noise [9]. 

Recently, Y. Zhang and D. Xiao proposed an image 

encryption scheme based on rotation matrix bit-level 

permutation and block diffusion, and claimed that their 

scheme not only achieves a satisfactory security performance, 

but also has the suitability for a parallel mode and the 

robustness against noise in communication system [10]. 

Their scheme was named as ZX2014. In this paper, we crypt-

analyzed the ZX2014, provided some security vulnerabilities, 

and attacked the ZX2014 with the chosen plaintext method. 

This paper is organized as follows: Section 2 reviews the 

ZX2014; Section 3 analyzes the security problems of 

ZX2014; Section 4 discusses the chosen plaintext attack 

method on ZX2014; Section 5 gives some simulation results; 

Section 6 concludes the paper. 
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2. Encryption Algorithm of 
ZX2014 

The encryption algorithm of ZX2014 consists of three stages: 

(I) scrambling operation based on the entire plain image; (II) 

bit-level permutation based on each small image block; (III) 

diffusion operation based on each small image block. In 

Stages II and III, the operations of permutation and diffusion 

on small blocks are independent to each other, the aim of this 

is: (1) preventing the noise in cipher image from spreading to 

the whole image during the decryption process; (2) 

implementing the parallel computing. The encryption 

algorithm of ZX2014 will be discussed in detail as below: 

Suppose that the plain image is 8-bit gray scale image, 

denoted by P with size of N×N. N mod 8=0 is required. The 

secret key of ZX2014 is denoted by K={key1, key2, key3, key41, 

key42, key5, key6}, where, key1, key2, key3 and key5 are float-

point numbers in interval (0,1) used as initial values of 

Logistic map with the precision of 10
-16

, key41 and key42 are 

two integers range of [1,8], and key6 is an integer range of 

[0,255]. Logistic map is used in ZX2014 to generate the 

pseudo random sequence, and its equation is as follows: 

xi+1=µxi(1-xi), i=0,1,2,...                          (1) 

where, µ=3.9999. 

Stage I. Scrambling operation based on the entire image 

Rearrange matrix P row by row to get a vector of length N
2
, 

denoted by A, such that A((i-1)×N+j)=P(i,j), i,j=1,2,...,N. Let 

the initial value of Eq. (1) be x0=key2, and iterate Eq. (1) as 

transient states for t1 times, then continue to iterate Eq.(1) for 

N
2
 times to get a state variable vector of length N

2
, named by 

{x(i), i=1,2,...,N
2
}, whose index vector is denoted by {I(i)=i, 

i=1,2,...,N
2
}. Sort vector x in ascending order to obtain 

another vector named by {y(i), i=1,2,...,N
2
}, whose index 

vector is denoted by {J(i), i=1,2,...,N
2
}, such that 

x(J(i))=y(I(i)), i=1,2,...,N
2
. Then, employ vector J as the 

subscript to scramble vector A, such that A(I(i)) and A(J(i)) 

are exchanged by position, for every i=1,2,...,N
2
. Note that 

the vector J is one of the target equivalent keys for attacker. 

The scrambled vector A is converted into a matrix with size 

of N×N, denoted by D, such that D(i,j)=A((i-1)×N+j), 

i,j=1,2,...,N. 

Stage II. Bit-level permutation based on each small image 

block  

Step 1. Divide the image D into a series of non-overlapping 

small image blocks with size of 8×8 from left to right then 

from top to bottom sequentially, denoted by B(i), i=1,2,...,L, 

where, L=N
2
/64. By expanding each 8-bit pixel into the form 

of bit group, represent each block B(i) into a three-

dimensional bit cube with size of 8 × 8 × 8, denoted by DB(i), 

i=1,2,...,L. 

Step 2. Let the initial value of Eq. (1) be x0=key3. After 

iterating Eq. (1) for t2 times as the transient states, continue 

to iterate Eq. (1) for L times to get a vector of length L, 

named by {x(i), i=1,2,...,L}. Then convert the vector x into an 

integer vector, denoted by {idx(i), i=1,2,...,L}, with the 

following formula: 

idx(i)=floor(x(i)×10
10

) mod 6 +1, i=1,2,...,L              (2) 

Note that the vector idx is one of target equivalent keys for 

attacker. 

Step 3. Generate eight pieces of bit matrices with size of 8×8, 

denoted by {PM(k), k=1,2,...,8}, with the following 

algorithms: 

(1) Let the initial value of Eq. (1) be x0=key1, then iterate Eq. 

(1) for t3+64 times (include t3 times of transient states 

iteration) to get a vector of length 64, denoted by {x(i), 

i=1,2,...,64}. 

(2) Initialize all elements of each PM(i), i=1,2,...,8 to 0.  

(3) For i=1 to 8 Do 

Introduce a vector y1=x(8×(i-1)+1 to 8×(i-1)+8);  

Sort vector y1 in ascending order to get its sorted index 

sequence, denoted by y2;  

For k=1 to 8 Do 

Set the element of position (y2(k),k) in PM(i) to 1; 

End 

End 

Note that the matrices {PM(i), i=1,2,...,8} are part of target 

equivalent keys for attacker. 

Step 4. For each DB(i), conduct the following bit permutation 

operations:  

(1) Introduce two variables k1 and k2, such that k1=key41 and 

k2=key42. 

Note that key41 and key42 are part of target equivalent keys for 

attacker. 

(2) Rotate matrix DB(i) according to the value of idx(i) 

with one of the following six cases:  

Case idx(i)=1: DB(i) remains unchanged; 

Case idx(i)=2: DB(i) is rotated by 180 degrees; 

Case idx(i)=3: DB(i) is rotated by 90 degrees from left to 

right; 

Case idx(i)=4: DB(i) is rotated by 90 degrees from right to 

left; 
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Case idx(i)=5: DB(i) is rotated by 90 degrees from front to 

back; 

Case idx(i)=6: DB(i) is rotated by 90 degrees from back to 

front. 

(3) For j=1 to 8 Do 

Swap the k1-th row and the k2-th row in PM(j);  

Multiply the j-th layer of cube DB(i) with matrix PM(j) to get 

a matrix denoted by PB(j);  

k1=k2, k2=sum(PB(j)) mod 8 +1 

End 

(4) Arrange matrices PB(1), PB(2),..., PB(8) from top to 

bottom to obtain a new bit cube, denoted by DD(i), which 

is the permutated bit cube of DB(i). Convert DD(i) into a 

decimal 8×8 matrix, denoted by H(i). 

Stage III. Diffusion operation based on each small image 

block 

The size of the small image blocks was suggested to be 8×8 

or 16×16 in ZX2014. If its size is 8×8, the matrices of H(i), 

i=1,2,...,L generated in Stage II can be used in this stage 

directly; otherwise, all the H(i)-s should be combined into a 

whole image and be re-segmented. Without loss of generality, 

we assume that the size of image block used in Stage III is 8 

× 8. 

The diffusion operation for each H(i) is independent to 

realize parallel processing in ZX2014. Set the initial value of 

Eq. (1) as x0=key5, then iterate Eq. (1) for t4+64 times 

(include t4 times of transient states iteration) to obtain a 

vector of length 64, denoted by {x(j), j=1,2,...,64}. Convert x 

into an integer vector, denoted by {X(j), j=1,2,...,64}, with 

the following formula: 

X(j)=(x(j)×10
10

) mod 256, j=1,2,...,64              (3) 

Then diffuse matrix H(i) with the following steps:  

Step 1. Expend H(i) row by row to obtain a vector of length 

64, denoted by {E(j), j=1,2,...,64}. 

Step 2. Transform E into a new vector, denoted by {F(j), 

j=1,2,...,64}, with the following formula:  

F(j)=F(j-1) ⊕X(j) ⊕  (E(j)+X(j) mod 256), j=1,2,...,64   (4) 

Where, ‘⊕’ means bitwise XOR operation, and F(0)=key6.  

Note that the matrix of X and key6 are part of target 

equivalent keys for attacker. 

Convert vector F into two-dimensional matrix G, such that 

G(k,j)=F(8×(k-1)+j), k,j=1,2,...,8. Then assign G to H(i) to 

update H(i), i.e. new H(i)=G.  

After the diffusion of all H(i)-s in {H(i), i=1,2,...,L}, 

rearrange all H(i)-s to obtain a matrix of size N×N, denoted 

by C. Then C is the cipher image. The above process may be 

repeated for n times to enhance the security.  

The encryption scheme of ZX2014 is as shown in Fig. 1, and 

more detail about ZX2014 can be referred to [10].  

 

Figure 1. Encryption scheme of ZX2014. 

3. Some Comments on ZX2014 

Table 1. The PER between the decrypted images and original image. 

Salt and 

pepper noise 

Pixel Error Rate (%) 

No. of 

rounds=1 

No. of 

rounds=2 

No. of 

rounds=3 

0.1% 0.7523 5.9555 31.4301 

0.2% 1.4389 10.1395 45.9686 

0.5% 3.7643 21.9452 63.5925 

1.0% 7.0786 36.1359 74.8337 

10.0% 42.8238 79.7211 97.0474 

Based on the analysis of ZX2014 in Section 2, some 

comments are given as below:  

(1) ZX2014 can fight against the salt and pepper noise.  

We took plain image Lena with size of 256×256 as example. 

When the cipher images of Lena were obtained under the 

condition that the round number of encryption process is 1, 2 

and 3, and were polluted by the salt and pepper noise with 

the ratio of 0.1%, 0.2%, 0.5%, 1.0% and 10%. We analyzed 

the pixel error rate (PER) between the decrypted images and 

the original image, and listed the results in Table 1. Then we 

illustrated the decrypted images when the cipher images were 

polluted by 10% of salt and pepper noise in Fig. 2. 

From Table 1 and Fig. 2, it can be seen that ZX2014 can fight 

against the salt and pepper noise. When the cipher images are 

polluted by 10% of salt and pepper noise and the number of 

rounds is 1 and 2, the decryption algorithm of ZX2014 can 
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still recover the outline of the images clearly. However, from 

another perspective, this demonstrates that the decryption 

algorithm of ZX2014 is not sensitive to the change in cipher 

image, i.e., the small changes in the cipher image cannot be 

spread to the whole decrypted image.(2) The encryption 

algorithm of ZX2014 is insensitive to the small changes in 

plain image, when the number of rounds is 1, 2, 3 and 4. 

 

Figure 2. ZX2014 with the secret key K=(0.2386,0.7615,0.9482,6,3,0.5963,97) fights against 10% of salt and pepper noise. (a) Original image Lena; (b) 

Recovered image when the number of rounds is 1; (c) Recovered image when the number of rounds is 2; (d) Recovered image when the number of rounds is 3. 

In general, the NPCR (number of pixels change rate) and 

UACI (unified average changing intensity) are used to 

measure the sensitivity of cryptosystem [3]. NPCR and 

UACI are calculated by the following formulas:  

NPCR＝
∑ �(	,�)
,�

�×�
× 100%                          (5) 

UACI =
�

�×�
∑

|��(	,�)���(	,�)|

�  	,� × 100%                   (6) 

Where, C1 and C2 are two cipher images with size of M×N. If 

C1(i,j)=C2(i,j), then D(i,j)=0; otherwise, D(i,j)=1. Their 

theoretical values of NPCR and UACI are 255/256 ≈ 99.6094% 

and 257/768 ≈ 33.4635%, respectively [11].  

Take the plain image Lena of size 256×256 as example. 

Under the condition that the number of rounds is 1, 2, 3 or 4, 

randomly select one pixel from the plain image and change 

its value by 1. Encrypt the original and changed images to get 
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two cipher images, respectively. And then calculate the 

NPCR and UACI of these two cipher images. We did the 

above test for 100 times to calculate the average values of 

NPCR and UACI, and the results were listed in Table 2. 

Table 2. The results of sensitivity test on plain image. 

 
No. of 

rounds=1 

No. of 

rounds=2 

No. of 

rounds=3 

No. of 

rounds=4 

NPCR (%) 0.0594 1.8273 46.6931 96.0555 

UACI (%) 0.0131 0.5710 15.5069 32.2344 

It should be noted that the result for rounds=2 or 3 in table 2 

is obviously different from the result in [10]. The possible 

reason for this is we use same secret keys and blocks with 

same size in every round, while [10] used different secret 

keys and blocks with different size in every round. 

From Table 2, it can be seen that the calculated values of 

NPCR and UACI deviate from their theoretical values 

seriously, respectively, when the number of rounds is 1, 2 and 

3, while the calculated values of NPCR and UACI are much 

closer to their theoretical values, respectively, when the 

number of rounds is 4. This shows that the encryption 

algorithm of ZX2014 is not sensitive to the changes in plain 

image. Therefore, there could be security loopholes in 

ZX2014 for differential attacks. So, the number of round 

should be 4 or above in ZX2014. 

Meantime, we cannot evaluate the plain image sensitivity of 

ZX2014 simply by the values of NPCR and UACI, because 

the encryption algorithm of ZX2014 is a block encryption 

strategy. However, the calculated values of NPCR and UACI 

deviating far from their theoretical values, at least explains 

that the diffusion level between image blocks in ZX2014 is 

limited.  

Table 3. The encryption and decryption time of ZX2014 (s). 

 
No. of 

rounds=1 

No. of 

rounds=2 

No. of 

rounds=3 

No. of 

rounds=4 

Encryption 

time(s) 
3.6589 7.2638 10.9361 14.5965 

Decryption 

time(s) 
3.6660 7.3067 10.9778 14.7705 

(3) The encryption speed of ZX2014 is slow. 

The computer used was configured with Intel Duo Core I5 

M460@2.53GHz, 2GB DDR3 RAM, Windows 7 and 

MATLAB 8.3. Without loss of generality, the secret key in 

ZX2014 is taken as K = (0.2386, 0.7615, 0.9482, 6, 3, 0.5963, 

97). The encryption and decryption time with the number of 

rounds being 1, 2, 3 and 4 is listed in Table 3. 

In the same computer configuration, encrypt plain image of 

size 357×317with the encryption scheme presented in [11] 

will cost 0.3511s around. However, it can be seen from Table 

3 that the time cost is 3.6589s around for encrypting image of 

size 256×256 by ZX2014 with one round, which is about 10 

times slower that the scheme in [11]. Even taking into 

account the parallel nature of Stage II and III in ZX2014 with 

six levels of pipelined execution mode, the time consumed is 

still greater than 0.6s. Needless to mention that the 

encryption/decryption time will be multiplied when the 

number of rounds is more than 1. 

(4) The encryption algorithm of ZX2014 is weak sensitive to 

part of secret keys. 

Because the precision of double type in MATLAB is limited, 

the precision of key1, key2, key3 and key5 is taken as 10
-14

 (in 

[10], it is 10
-16

). Below, we will examine the sensitivity of the 

secret key.  

Firstly, do 100 trials and randomly generate a secret key K1 in 

each trial, and change the value of key1, key2, key3 or key5 by 

10
-14

 to get a new secret key named by K2. Set the number of 

rounds to 1 for ZX2014, encrypt the image (as shown in Fig. 

2a) using ZX2014 with keys K1 and K2 to get two cipher 

images, denoted by C1 and C2, respectively. And then 

calculate the NPCR and UACI based on C1 and C2. At last, 

calculate the average values of NPCR and UACI for the 100 

trials.  

Secondly, do 100 trials and in each trial change the value of 

key41 or key42 by 1 to calculate the average values of NPCR 

and UACI. 

Thirdly, do 100 trials and in each trial change the value of 

key6 by 1 to calculate the average values of NPCR and UACI.  

Finally, set the number of rounds to 2 for ZX2014 and repeat 

the above tests to get a new group of NPCR and UACI. 

The test results are listed in Table 4. 

Table 4. Sensitivity test results for secret keys.  

No. of rounds 
key1, key2, key3, key5 key41, key42 key6 

1 2 1 2 1 2 

NPCR (%) 94.3456 98.5647 89.8703 99.4934 100.0000 98.8924 

UACI (%) 31.6286 33.1208 28.0381 33.4066 1.7888 30.9464 

 

As can be seen from Table 4, the calculated values of NPCR 

and UACI are way different from their theoretical values, it 

indicates that the encryption algorithm is weak sensitive to 

the changes of key41, key42 and key6 when the number of 

rounds is 1 in ZX2014. Especially, small changes of key6 will 

make all of the pixels in the cipher images change 

(NPCR=100%), but the changes are tiny (UACI=1.7888%). 

Meanwhile, key41, key42 and key6 are part of direct target 
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secret keys for attacker, so their poor sensitivity makes them 

very vulnerable. 

(5) For the Stages II and III of ZX2014, there're special 

images can remain unchanged even go through these two 

stages. For example, the images whose pixel values are all 

identical will keep unchanged after permutated by the 

algorithm of Stage II; the all-0s and all-255s images remain 

unchanged after permutated by the joint algorithms of Stages 

II and III. Furthermore, any image permutated by the joint 

algorithms of Stages II and III has the unchanged number of 

bit 1. These are weaknesses for the chosen plaintext attack.  

(6) ZX2014 has an interesting loophole. If the plain image is 

all-0s, and the number of round is 1, the corresponding cipher 

image will have identical pixel value, i.e. key6. This is 

because the Stages II and III have no permutation effect on 

the images when they are all-0s image. And from Eq. (4), we 

can get F(j)=F0,  j=1,2,..,64. This loophole even makes 

ZX2014 with two rounds unsafe for the chosen plaintext 

attack. 

Through the above analysis, we can see that the encryption 

speed is slow, but the security is stronger in ZX2014 when 

the number of rounds is more than 2. It will take a very long 

time to crack it using personal computers though the 

slowness make it cannot be applied in the actual 

communications. However, Ref. [10] implies that ZX2014 

can work well with one round. In the following section, we 

will discuss the crack on ZX2014 with one round using the 

chosen plaintext attack method on personal computer. 

4. Chosen Plaintext Attack on 

ZX2014 with One Round 

From Section 2, we can see that the attacker can break 

ZX2014 only by attacking the equivalent keys of key41, key42, 

key6, J, idx, PM(i), i=1,2,…,8  and X. The attack algorithm is 

discussed in details as follows: 

(1) Attack key6 

Select all-0s image as the plain image, and encrypt the plain 

image by ZX2014 to get a cipher image, denoted by C. Then, 

the values of all the pixels in C are key6. 

(2) Attack part of idx(i), i=1,2,…,L, L=N
2
/64. 

Step 1. Select all-254s (‘1111 1110’ in binary) image as the 

plain image. Encrypt the plain image with ZX2014 to get a 

cipher image, denoted by C1. Divide C1 into small image 

blocks all of size 8×8, denoted by CB1(i), i=1,2,…,L. For all 

of the i, when idx(i)=1, 3 or 4, the corresponding blocks of 

CB1(i) are identical; for idx(i) =2, idx(i) =5, and idx(i)=6, the 

corresponding blocks of CB1(i) are identical too, respectively. 

Since the value of  idx(i) are range in {1,2,3,4,5,6}, 

CB1(i),i=1,2,…,L have only four different types of matrices 

(image blocks). In all the block of CB1(i), 3/6 of them 

correspond to the idx(i) whose values are range in {1,3,4}; 

others correspond to the idx(i) whose values are range in 

{2,5,6}. 

Step 2. Select all-126s (‘0111 1110’ in binary) image as the 

plain image. Encrypt the plain image with ZX2014 to get a 

cipher image, denoted by C2. Divide C2 into small image 

blocks all of size 8×8, denoted by CB2(i), i=1,2,…,L. For all 

of the i, when idx(i)=1, 2, 3 or 4, the corresponding blocks of 

CB2(i) are identical; when idx(i) =5 or 6, the corresponding 

blocks of CB2(i) are identical too. Since the value of  idx(i) 

are range in {1,2,3,4,5,6}, CB2(i),i=1,2,…,L have only two 

different types of matrices (image blocks). In all the block of 

CB1(i), 4/6 of them correspond to the idx(i) whose values are 

range in {1,2,3,4}; others correspond to the idx(i) whose 

values are range in {2,5,6}. 

Comparing the idx in the above two steps, we can distinguish 

the i-s corresponding to idx(i)={1,3,4}, idx(i)=2, or 

idx(i)={5,6}. To simplify the below discussion, we assume 

that idx(i1)=2, where, i1 is a certain i, and i1 will be used to 

attack X in following operation. 

(3) Attack X. 

Step 1. Sequentially select all-2
k
, k=0,1,2,…,7 as the plain 

images, denoted by Pk+1, k=0,1,2,..,7, and encrypt then with 

ZX2014 to get their corresponding cipher images, denoted by 

Ck+1, k=0,1,2,…,7, respectively. Divide Pk+1 into small image 

blocks of size 8×8, denoted by PBk+1(i), i=1,2,…,L. Divide 

Ck+1 into small image blocks of size 8×8, denoted by CBk+1(i), 

i=1,2,..,L. 

Step 2. For each k, choose the i1-th block PBk+1(i1), and 

convert each element of PBk+1(i1) from 2
k
 to 2

7-k
 to get a 

matrix, denoted by EBk+1(i1), and then expand  EBk+1(i1) row 

by row to obtain a vector of length 64, denote by Ek+1,i1(j), 

j=1,2,…,64.  

This step is also described as: Generate eight vectors of 

length 64, denoted by Ek+1,i1(j), j=1,2,…,64, k=0,1,2…,7, 

whose elements are all set to 2
7-k

.  

Step 3. For each k, pick up the i1-th cipher image block 

CBk+1(i1), and expand this block row by row to get a vector of 

length 64, denoted by Fk+1,i1(j), j=1,2,…,64.  

Step 4. According to the algorithm in Stage III, there are 

following relationship exists: 

Fk+1,i1(j)=Fk+1,i1(j-1) ⊕ X(j) ⊕  (Ek+1,i1(j)+X(j) mod 256), 

j=1,2,...,64                                  (7) 

Where, k=0,1,…,7. We can get the values of X(j), j=1,2,…,64 

by solving Eq. (7). 
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Note: For any j ϵ  {1,2,…,64}, there’s existing X(j) 

⊕ (Ek+1,i1(j)+X(j) mod 256)=(X(j)+128) ⊕  

(Ek+1,i1(j)+X(j)+128 mod 256), which is workable regardless 

of the value of Ek+1,i1(j). Therefore, for each j, resolve Eq. (7) 

will get two legal values for X(j), which differ by 128. This 

means that both X(j) and X(j)+128 mod 256, j=1,2,…,64 are 

legal equivalent keys, and this also is a loophole of ZX2014. 

(4) Attack PM, key41 and key42. 

Step 1. Search the i2 which satisfying the following two 

conditions:  

Condition 1: Select an all-0s image as the plain image except 

that on a certain position (u,v) whose pixel value is changed 

from 0 to 255 (0xFF in hexadecimal). Encrypt this image to 

get a cipher image, denoted by C. Divide C from left to right 

and top to bottom into small image blocks of size 8×8, and 

the i2-th block contains pixels whose values is not equal to 

key6. 

Condition 2: idx(i2)=2.  

In vector idx, about 1/6 of the elements have a value of 2, so 

theoretically, changing the values of six adjacent pixels in the 

plain image sequentially, we can find a position (u,v), whose 

corresponding pixel in the cipher image will fall into the i2-th 

block. In the actual experiment, the time of this process may 

be slightly larger than 6. Therefore, we need to choose about 

six pieces of plain images in this step, and execute the 

encryption algorithm of ZX2014 about 6 times. 

Step 2. In the i2–th block of C, find the first element whose 

value is not equal to key6, and denote its position by (row,col). 

Step 3. Construct a small image block of size 8×8 and make 

its elements are all-zero except that the pixel in position 

(row,col) is set to 255 (0xFF in hexadecimal). Then expand 

this image block to a bit cube of size 8×8×8, denoted by DBi2.  

Step 4. Convert the i2–th block of C to a vector of length 64, 

denoted by Fi2(j), j=1,2,…,64. Based on the obtained X and 

key6, calculate a new vector, denoted by Ei2(j), j=1,2,…,64, 

according to the following formula.  

Ei2(j)=(256+(Fi2(j-1) ⊕  Fi2(j) ⊕ X(j))-X(j)) mod 256  (8) 

Step 5. Rearrange vector Ei2 to get a matrix of size 8×8, and 

then expand it to a bit cube of size 8×8×8, denoted by DDi2. 

Obviously, DDi2 is the resultant bit-cube obtained from DBi2 

by the algorithm in Step 4 of Stage II, in ZX2014. 

Step 6. According to the reverse operation in Step 4 of Stage 

II in ZX2014, we can obtain the values of PM, key41 and 

key42 from DDi2 and DBi2. 

(5) Attack the indeterminate part of idx.  

For a certain i,i=1,2,…,L, if idx(i)={1,3,4}, then let idx(i)=1 

because the effect of the left or right turning of bit-cube can 

be substituted by the scrambling effect or vector J. If 

idx(i)={5,6}, the value of idx(i) can be defined by the 

following steps:  

Step 1. Select all-15s image as the plain image, denoted by P. 

Encrypt P with ZX2014 to get a cipher image, denoted by C. 

Divide C from left to right and top to bottom into small 

image blocks all of size 8×8, denoted by Fi, i=1,2,…,L. 

Step 2. For a certain i, i=1,2,..,L, if idx(i)={5,6}, Fi(1,1) will 

be transformed into a new value by Eq. (8) with the obtained 

X and key6, denote the new value by Ei(1,1). If Ei(1,1)=0, 

then idx(i)=5; If Ei(1,1)=255, then idx(i)=6. 

(6) Attack J.  

Assume that A1(k), k=1,2,…,N
2
 is a vector of length N

2
. 

Attack J with steps as follows: 

Step 1. If k<256, then let A1(k)=k; If k>=256, then let A(k)=0.  

Step 2. Convert A1 into a matrix of size N×N, denoted by P. 

Encrypt P with ZX2014 to get a cipher image, denoted by C. 

With the help of the obtained X, key6, key41, key42, idx and 

PM, execute the reverse operations on C as the description in 

Stages III and II of ZX2014 to get a new image matrix, 

denoted by D. Expend D row by row to get a vector of length 

N×N, denoted by A2. 

Step 3. Compare the elements of A1 and A2 to find those 

corresponding elements whose values are equal to get the 

values of J(k), k=1,2,..,255.  

Now let A1(k)=k－255, 256<=k<256×2; A1(k)=0, otherwise. 

According to the similar steps described above, we can get 

the values of J(k), 256<=k<511. So, using the above methods 

we need to select floor(N
2
/255)+1 pieces of images to get the 

whole values of J(k), k=1,2,…,N
2
. 

Through the above analysis, cracking the equivalent keys of 

ZX2014 need 19+floor(N
2
/255) pieces of chosen images. So, 

cracking the plain image of size 256×256 need 276 chosen 

images. 

Note that in the cracked equivalent keys, key41, key42, key6 

and PM are identical to the original secret keys, while there 

are two legal values for each element in the cracked vector X, 

and the cracked idx and J are different from the original 

secret keys due to the permutation effect of idx(i)=3 or 4 

being substituted by the scrambling of J. 

5. Simulation Results 

We did multiple tests to confirm the availability of proposed 

crack algorithm. Without loss of generality, assume the secret 

key of ZX2014 is K=(0.5574,0.9015,0.8421,2,7,0.7893,169), 

and the plain images are taken as Lena, Baboon and Pepper 
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all of size 256×256. The original images and their 

corresponding cipher images generated by ZX2014 are as 

shown in Figs. 3a-3c and Figs. 3d-3f respectively. Cracking 

ZX2014 with the chosen plaintext attack method described in 

Section 4, we can get the equivalent secret keys of key41, 

key42, key6, PM, idx, X and J, and then use them to decipher 

Figs. 3d-3f to get the recovered images as shown in Figs. 3g-

3i, respectively. From Figs. 3a-3c and 3g-3i we can see the 

recovered images are identical to the original images 

respectively. The time consumed is about 1577s. 

 

Figure 3. Simulation results. (a)-(c) Plain images of Lena, Baboon and Pepper, respectively; (d)-(f) Cipher images of (a)-(c), respectively; (g)-(i) Cracked 

images of (d)-(f). 

When the cipher images are disturbed by the salt and pepper 

noise, the cipher images still can be cracked with the 

obtained equivalent secret keys to get the recovered images, 

and the effect is similar to the results as shown in Table 1 and 

Fig. 2. 

6. Conclusion 

This paper analyzed the encryption scheme of ZX2014 in 

detail, and pointed out that there are drawbacks such as low 

encryption speed and security loopholes. This paper cracked 

ZX2014 with one round successfully. Time consumed for the 

image of size 256×256 is about 1577s. The cracked 

equivalent secret keys are not exactly identical to the original 

keys, which show that there are multiple equivalent keys in 

the key space of ZX2014. Our study work demonstrates that 

ZX2014 is weak on security and cannot be applied in the 

actual communications. 
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