

American Journal of Circuits, Systems and Signal Processing

Vol. 1, No. 3, 2015, pp. 105-113

http://www.aiscience.org/journal/ajcssp

* Corresponding author

E-mail address: zhangyong@jxufe.edu.cn

Comments on “An Image Encryption Scheme
Based on Rotation Matrix Bit-Level Permutation
and Block Diffusion”

Yong Zhang*

School of Software and Communication Engineering, Jiangxi University of Finance and Economics, Nanchang, P. R. China

Abstract

Recently, an image encryption scheme based on rotation matrix bit-level permutation and block diffusion was proposed [Y

Zhang, D Xiao. Commun Nonlinear Sci Numer Simulat. 2014, 19:74-82]. In this paper, this image encryption scheme was

studied in detail and its defects of low encryption speed and weak security were pointed out. This scheme with one round was

crypt-analyzed successfully with the chosen plaintext method. The simulation results show that their scheme cannot be used in

practical communications.

Keywords

Chaotic System, Chosen Plaintext Attack, Cryptanalysis, Image Encryption

Received: June 27, 2015 / Accepted: July 11, 2015 / Published online: July 23, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

In recent years, a number of image encryption schemes based

on chaotic systems were proposed [1-7]. In such image

encryption systems, the encryption algorithms are sensitive to

secret keys and plain images, while the decryption algorithms

are sensitive to secret keys and cipher images. The latter

makes the cipher images generated by such image encryption

systems cannot be transmitted in noise channel directly due

to the slight changing in cipher images will lead to complete

failure in decryption process. Currently, there are still some

scientists engaged in the anti-noise image encryption

technology based on chaotic system. For example, A. N.

Pisarchik and M. Zanin presented a color image encryption

scheme with chaotically coupled chaotic maps. This

encryption scheme utilizes chaotic confusion of image pixels

using chaotic coupling between chaotic maps, each of which

in turn induces chaotic diffusion of pixels’ color values. They

claimed that their scheme not only makes the known

plaintext attack unfeasible, but also is robust against noise

and other external disturbances [8]. But soon, D. Arroyo, S.

Li, and etc. pointed out that the encryption architecture of

this cryptosystem possesses serious security problems related

to its implementation and its robustness against noise [9].

Recently, Y. Zhang and D. Xiao proposed an image

encryption scheme based on rotation matrix bit-level

permutation and block diffusion, and claimed that their

scheme not only achieves a satisfactory security performance,

but also has the suitability for a parallel mode and the

robustness against noise in communication system [10].

Their scheme was named as ZX2014. In this paper, we crypt-

analyzed the ZX2014, provided some security vulnerabilities,

and attacked the ZX2014 with the chosen plaintext method.

This paper is organized as follows: Section 2 reviews the

ZX2014; Section 3 analyzes the security problems of

ZX2014; Section 4 discusses the chosen plaintext attack

method on ZX2014; Section 5 gives some simulation results;

Section 6 concludes the paper.

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 105-113 106

2. Encryption Algorithm of
ZX2014

The encryption algorithm of ZX2014 consists of three stages:

(I) scrambling operation based on the entire plain image; (II)

bit-level permutation based on each small image block; (III)

diffusion operation based on each small image block. In

Stages II and III, the operations of permutation and diffusion

on small blocks are independent to each other, the aim of this

is: (1) preventing the noise in cipher image from spreading to

the whole image during the decryption process; (2)

implementing the parallel computing. The encryption

algorithm of ZX2014 will be discussed in detail as below:

Suppose that the plain image is 8-bit gray scale image,

denoted by P with size of N×N. N mod 8=0 is required. The

secret key of ZX2014 is denoted by K={key1, key2, key3, key41,

key42, key5, key6}, where, key1, key2, key3 and key5 are float-

point numbers in interval (0,1) used as initial values of

Logistic map with the precision of 10
-16

, key41 and key42 are

two integers range of [1,8], and key6 is an integer range of

[0,255]. Logistic map is used in ZX2014 to generate the

pseudo random sequence, and its equation is as follows:

xi+1=µxi(1-xi), i=0,1,2,... (1)

where, µ=3.9999.

Stage I. Scrambling operation based on the entire image

Rearrange matrix P row by row to get a vector of length N
2
,

denoted by A, such that A((i-1)×N+j)=P(i,j), i,j=1,2,...,N. Let

the initial value of Eq. (1) be x0=key2, and iterate Eq. (1) as

transient states for t1 times, then continue to iterate Eq.(1) for

N
2
 times to get a state variable vector of length N

2
, named by

{x(i), i=1,2,...,N
2
}, whose index vector is denoted by {I(i)=i,

i=1,2,...,N
2
}. Sort vector x in ascending order to obtain

another vector named by {y(i), i=1,2,...,N
2
}, whose index

vector is denoted by {J(i), i=1,2,...,N
2
}, such that

x(J(i))=y(I(i)), i=1,2,...,N
2
. Then, employ vector J as the

subscript to scramble vector A, such that A(I(i)) and A(J(i))

are exchanged by position, for every i=1,2,...,N
2
. Note that

the vector J is one of the target equivalent keys for attacker.

The scrambled vector A is converted into a matrix with size

of N×N, denoted by D, such that D(i,j)=A((i-1)×N+j),

i,j=1,2,...,N.

Stage II. Bit-level permutation based on each small image

block

Step 1. Divide the image D into a series of non-overlapping

small image blocks with size of 8×8 from left to right then

from top to bottom sequentially, denoted by B(i), i=1,2,...,L,

where, L=N
2
/64. By expanding each 8-bit pixel into the form

of bit group, represent each block B(i) into a three-

dimensional bit cube with size of 8 × 8 × 8, denoted by DB(i),

i=1,2,...,L.

Step 2. Let the initial value of Eq. (1) be x0=key3. After

iterating Eq. (1) for t2 times as the transient states, continue

to iterate Eq. (1) for L times to get a vector of length L,

named by {x(i), i=1,2,...,L}. Then convert the vector x into an

integer vector, denoted by {idx(i), i=1,2,...,L}, with the

following formula:

idx(i)=floor(x(i)×10
10

) mod 6 +1, i=1,2,...,L (2)

Note that the vector idx is one of target equivalent keys for

attacker.

Step 3. Generate eight pieces of bit matrices with size of 8×8,

denoted by {PM(k), k=1,2,...,8}, with the following

algorithms:

(1) Let the initial value of Eq. (1) be x0=key1, then iterate Eq.

(1) for t3+64 times (include t3 times of transient states

iteration) to get a vector of length 64, denoted by {x(i),

i=1,2,...,64}.

(2) Initialize all elements of each PM(i), i=1,2,...,8 to 0.

(3) For i=1 to 8 Do

Introduce a vector y1=x(8×(i-1)+1 to 8×(i-1)+8);

Sort vector y1 in ascending order to get its sorted index

sequence, denoted by y2;

For k=1 to 8 Do

Set the element of position (y2(k),k) in PM(i) to 1;

End

End

Note that the matrices {PM(i), i=1,2,...,8} are part of target

equivalent keys for attacker.

Step 4. For each DB(i), conduct the following bit permutation

operations:

(1) Introduce two variables k1 and k2, such that k1=key41 and

k2=key42.

Note that key41 and key42 are part of target equivalent keys for

attacker.

(2) Rotate matrix DB(i) according to the value of idx(i)

with one of the following six cases:

Case idx(i)=1: DB(i) remains unchanged;

Case idx(i)=2: DB(i) is rotated by 180 degrees;

Case idx(i)=3: DB(i) is rotated by 90 degrees from left to

right;

Case idx(i)=4: DB(i) is rotated by 90 degrees from right to

left;

107 Yong Zhang: Comments on “An Image Encryption Scheme Based on Rotation Matrix Bit-Level

Permutation and Block Diffusion”

Case idx(i)=5: DB(i) is rotated by 90 degrees from front to

back;

Case idx(i)=6: DB(i) is rotated by 90 degrees from back to

front.

(3) For j=1 to 8 Do

Swap the k1-th row and the k2-th row in PM(j);

Multiply the j-th layer of cube DB(i) with matrix PM(j) to get

a matrix denoted by PB(j);

k1=k2, k2=sum(PB(j)) mod 8 +1

End

(4) Arrange matrices PB(1), PB(2),..., PB(8) from top to

bottom to obtain a new bit cube, denoted by DD(i), which

is the permutated bit cube of DB(i). Convert DD(i) into a

decimal 8×8 matrix, denoted by H(i).

Stage III. Diffusion operation based on each small image

block

The size of the small image blocks was suggested to be 8×8

or 16×16 in ZX2014. If its size is 8×8, the matrices of H(i),

i=1,2,...,L generated in Stage II can be used in this stage

directly; otherwise, all the H(i)-s should be combined into a

whole image and be re-segmented. Without loss of generality,

we assume that the size of image block used in Stage III is 8

× 8.

The diffusion operation for each H(i) is independent to

realize parallel processing in ZX2014. Set the initial value of

Eq. (1) as x0=key5, then iterate Eq. (1) for t4+64 times

(include t4 times of transient states iteration) to obtain a

vector of length 64, denoted by {x(j), j=1,2,...,64}. Convert x

into an integer vector, denoted by {X(j), j=1,2,...,64}, with

the following formula:

X(j)=(x(j)×10
10

) mod 256, j=1,2,...,64 (3)

Then diffuse matrix H(i) with the following steps:

Step 1. Expend H(i) row by row to obtain a vector of length

64, denoted by {E(j), j=1,2,...,64}.

Step 2. Transform E into a new vector, denoted by {F(j),

j=1,2,...,64}, with the following formula:

F(j)=F(j-1) ⊕X(j) ⊕ (E(j)+X(j) mod 256), j=1,2,...,64 (4)

Where, ‘⊕’ means bitwise XOR operation, and F(0)=key6.

Note that the matrix of X and key6 are part of target

equivalent keys for attacker.

Convert vector F into two-dimensional matrix G, such that

G(k,j)=F(8×(k-1)+j), k,j=1,2,...,8. Then assign G to H(i) to

update H(i), i.e. new H(i)=G.

After the diffusion of all H(i)-s in {H(i), i=1,2,...,L},

rearrange all H(i)-s to obtain a matrix of size N×N, denoted

by C. Then C is the cipher image. The above process may be

repeated for n times to enhance the security.

The encryption scheme of ZX2014 is as shown in Fig. 1, and

more detail about ZX2014 can be referred to [10].

Figure 1. Encryption scheme of ZX2014.

3. Some Comments on ZX2014

Table 1. The PER between the decrypted images and original image.

Salt and

pepper noise

Pixel Error Rate (%)

No. of

rounds=1

No. of

rounds=2

No. of

rounds=3

0.1% 0.7523 5.9555 31.4301

0.2% 1.4389 10.1395 45.9686

0.5% 3.7643 21.9452 63.5925

1.0% 7.0786 36.1359 74.8337

10.0% 42.8238 79.7211 97.0474

Based on the analysis of ZX2014 in Section 2, some

comments are given as below:

(1) ZX2014 can fight against the salt and pepper noise.

We took plain image Lena with size of 256×256 as example.

When the cipher images of Lena were obtained under the

condition that the round number of encryption process is 1, 2

and 3, and were polluted by the salt and pepper noise with

the ratio of 0.1%, 0.2%, 0.5%, 1.0% and 10%. We analyzed

the pixel error rate (PER) between the decrypted images and

the original image, and listed the results in Table 1. Then we

illustrated the decrypted images when the cipher images were

polluted by 10% of salt and pepper noise in Fig. 2.

From Table 1 and Fig. 2, it can be seen that ZX2014 can fight

against the salt and pepper noise. When the cipher images are

polluted by 10% of salt and pepper noise and the number of

rounds is 1 and 2, the decryption algorithm of ZX2014 can

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 105-113 108

still recover the outline of the images clearly. However, from

another perspective, this demonstrates that the decryption

algorithm of ZX2014 is not sensitive to the change in cipher

image, i.e., the small changes in the cipher image cannot be

spread to the whole decrypted image.(2) The encryption

algorithm of ZX2014 is insensitive to the small changes in

plain image, when the number of rounds is 1, 2, 3 and 4.

Figure 2. ZX2014 with the secret key K=(0.2386,0.7615,0.9482,6,3,0.5963,97) fights against 10% of salt and pepper noise. (a) Original image Lena; (b)

Recovered image when the number of rounds is 1; (c) Recovered image when the number of rounds is 2; (d) Recovered image when the number of rounds is 3.

In general, the NPCR (number of pixels change rate) and

UACI (unified average changing intensity) are used to

measure the sensitivity of cryptosystem [3]. NPCR and

UACI are calculated by the following formulas:

NPCR＝
∑ �(,�)
,�

�×�
× 100% (5)

UACI =
�

�×�
∑

|��(,�)���(,�)|

� 	,� × 100% (6)

Where, C1 and C2 are two cipher images with size of M×N. If

C1(i,j)=C2(i,j), then D(i,j)=0; otherwise, D(i,j)=1. Their

theoretical values of NPCR and UACI are 255/256 ≈ 99.6094%

and 257/768 ≈ 33.4635%, respectively [11].

Take the plain image Lena of size 256×256 as example.

Under the condition that the number of rounds is 1, 2, 3 or 4,

randomly select one pixel from the plain image and change

its value by 1. Encrypt the original and changed images to get

109 Yong Zhang: Comments on “An Image Encryption Scheme Based on Rotation Matrix Bit-Level

Permutation and Block Diffusion”

two cipher images, respectively. And then calculate the

NPCR and UACI of these two cipher images. We did the

above test for 100 times to calculate the average values of

NPCR and UACI, and the results were listed in Table 2.

Table 2. The results of sensitivity test on plain image.

No. of

rounds=1

No. of

rounds=2

No. of

rounds=3

No. of

rounds=4

NPCR (%) 0.0594 1.8273 46.6931 96.0555

UACI (%) 0.0131 0.5710 15.5069 32.2344

It should be noted that the result for rounds=2 or 3 in table 2

is obviously different from the result in [10]. The possible

reason for this is we use same secret keys and blocks with

same size in every round, while [10] used different secret

keys and blocks with different size in every round.

From Table 2, it can be seen that the calculated values of

NPCR and UACI deviate from their theoretical values

seriously, respectively, when the number of rounds is 1, 2 and

3, while the calculated values of NPCR and UACI are much

closer to their theoretical values, respectively, when the

number of rounds is 4. This shows that the encryption

algorithm of ZX2014 is not sensitive to the changes in plain

image. Therefore, there could be security loopholes in

ZX2014 for differential attacks. So, the number of round

should be 4 or above in ZX2014.

Meantime, we cannot evaluate the plain image sensitivity of

ZX2014 simply by the values of NPCR and UACI, because

the encryption algorithm of ZX2014 is a block encryption

strategy. However, the calculated values of NPCR and UACI

deviating far from their theoretical values, at least explains

that the diffusion level between image blocks in ZX2014 is

limited.

Table 3. The encryption and decryption time of ZX2014 (s).

No. of

rounds=1

No. of

rounds=2

No. of

rounds=3

No. of

rounds=4

Encryption

time(s)
3.6589 7.2638 10.9361 14.5965

Decryption

time(s)
3.6660 7.3067 10.9778 14.7705

(3) The encryption speed of ZX2014 is slow.

The computer used was configured with Intel Duo Core I5

M460@2.53GHz, 2GB DDR3 RAM, Windows 7 and

MATLAB 8.3. Without loss of generality, the secret key in

ZX2014 is taken as K = (0.2386, 0.7615, 0.9482, 6, 3, 0.5963,

97). The encryption and decryption time with the number of

rounds being 1, 2, 3 and 4 is listed in Table 3.

In the same computer configuration, encrypt plain image of

size 357×317with the encryption scheme presented in [11]

will cost 0.3511s around. However, it can be seen from Table

3 that the time cost is 3.6589s around for encrypting image of

size 256×256 by ZX2014 with one round, which is about 10

times slower that the scheme in [11]. Even taking into

account the parallel nature of Stage II and III in ZX2014 with

six levels of pipelined execution mode, the time consumed is

still greater than 0.6s. Needless to mention that the

encryption/decryption time will be multiplied when the

number of rounds is more than 1.

(4) The encryption algorithm of ZX2014 is weak sensitive to

part of secret keys.

Because the precision of double type in MATLAB is limited,

the precision of key1, key2, key3 and key5 is taken as 10
-14

 (in

[10], it is 10
-16

). Below, we will examine the sensitivity of the

secret key.

Firstly, do 100 trials and randomly generate a secret key K1 in

each trial, and change the value of key1, key2, key3 or key5 by

10
-14

 to get a new secret key named by K2. Set the number of

rounds to 1 for ZX2014, encrypt the image (as shown in Fig.

2a) using ZX2014 with keys K1 and K2 to get two cipher

images, denoted by C1 and C2, respectively. And then

calculate the NPCR and UACI based on C1 and C2. At last,

calculate the average values of NPCR and UACI for the 100

trials.

Secondly, do 100 trials and in each trial change the value of

key41 or key42 by 1 to calculate the average values of NPCR

and UACI.

Thirdly, do 100 trials and in each trial change the value of

key6 by 1 to calculate the average values of NPCR and UACI.

Finally, set the number of rounds to 2 for ZX2014 and repeat

the above tests to get a new group of NPCR and UACI.

The test results are listed in Table 4.

Table 4. Sensitivity test results for secret keys.

No. of rounds
key1, key2, key3, key5 key41, key42 key6

1 2 1 2 1 2

NPCR (%) 94.3456 98.5647 89.8703 99.4934 100.0000 98.8924

UACI (%) 31.6286 33.1208 28.0381 33.4066 1.7888 30.9464

As can be seen from Table 4, the calculated values of NPCR

and UACI are way different from their theoretical values, it

indicates that the encryption algorithm is weak sensitive to

the changes of key41, key42 and key6 when the number of

rounds is 1 in ZX2014. Especially, small changes of key6 will

make all of the pixels in the cipher images change

(NPCR=100%), but the changes are tiny (UACI=1.7888%).

Meanwhile, key41, key42 and key6 are part of direct target

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 105-113 110

secret keys for attacker, so their poor sensitivity makes them

very vulnerable.

(5) For the Stages II and III of ZX2014, there're special

images can remain unchanged even go through these two

stages. For example, the images whose pixel values are all

identical will keep unchanged after permutated by the

algorithm of Stage II; the all-0s and all-255s images remain

unchanged after permutated by the joint algorithms of Stages

II and III. Furthermore, any image permutated by the joint

algorithms of Stages II and III has the unchanged number of

bit 1. These are weaknesses for the chosen plaintext attack.

(6) ZX2014 has an interesting loophole. If the plain image is

all-0s, and the number of round is 1, the corresponding cipher

image will have identical pixel value, i.e. key6. This is

because the Stages II and III have no permutation effect on

the images when they are all-0s image. And from Eq. (4), we

can get F(j)=F0, j=1,2,..,64. This loophole even makes

ZX2014 with two rounds unsafe for the chosen plaintext

attack.

Through the above analysis, we can see that the encryption

speed is slow, but the security is stronger in ZX2014 when

the number of rounds is more than 2. It will take a very long

time to crack it using personal computers though the

slowness make it cannot be applied in the actual

communications. However, Ref. [10] implies that ZX2014

can work well with one round. In the following section, we

will discuss the crack on ZX2014 with one round using the

chosen plaintext attack method on personal computer.

4. Chosen Plaintext Attack on

ZX2014 with One Round

From Section 2, we can see that the attacker can break

ZX2014 only by attacking the equivalent keys of key41, key42,

key6, J, idx, PM(i), i=1,2,…,8 and X. The attack algorithm is

discussed in details as follows:

(1) Attack key6

Select all-0s image as the plain image, and encrypt the plain

image by ZX2014 to get a cipher image, denoted by C. Then,

the values of all the pixels in C are key6.

(2) Attack part of idx(i), i=1,2,…,L, L=N
2
/64.

Step 1. Select all-254s (‘1111 1110’ in binary) image as the

plain image. Encrypt the plain image with ZX2014 to get a

cipher image, denoted by C1. Divide C1 into small image

blocks all of size 8×8, denoted by CB1(i), i=1,2,…,L. For all

of the i, when idx(i)=1, 3 or 4, the corresponding blocks of

CB1(i) are identical; for idx(i) =2, idx(i) =5, and idx(i)=6, the

corresponding blocks of CB1(i) are identical too, respectively.

Since the value of idx(i) are range in {1,2,3,4,5,6},

CB1(i),i=1,2,…,L have only four different types of matrices

(image blocks). In all the block of CB1(i), 3/6 of them

correspond to the idx(i) whose values are range in {1,3,4};

others correspond to the idx(i) whose values are range in

{2,5,6}.

Step 2. Select all-126s (‘0111 1110’ in binary) image as the

plain image. Encrypt the plain image with ZX2014 to get a

cipher image, denoted by C2. Divide C2 into small image

blocks all of size 8×8, denoted by CB2(i), i=1,2,…,L. For all

of the i, when idx(i)=1, 2, 3 or 4, the corresponding blocks of

CB2(i) are identical; when idx(i) =5 or 6, the corresponding

blocks of CB2(i) are identical too. Since the value of idx(i)

are range in {1,2,3,4,5,6}, CB2(i),i=1,2,…,L have only two

different types of matrices (image blocks). In all the block of

CB1(i), 4/6 of them correspond to the idx(i) whose values are

range in {1,2,3,4}; others correspond to the idx(i) whose

values are range in {2,5,6}.

Comparing the idx in the above two steps, we can distinguish

the i-s corresponding to idx(i)={1,3,4}, idx(i)=2, or

idx(i)={5,6}. To simplify the below discussion, we assume

that idx(i1)=2, where, i1 is a certain i, and i1 will be used to

attack X in following operation.

(3) Attack X.

Step 1. Sequentially select all-2
k
, k=0,1,2,…,7 as the plain

images, denoted by Pk+1, k=0,1,2,..,7, and encrypt then with

ZX2014 to get their corresponding cipher images, denoted by

Ck+1, k=0,1,2,…,7, respectively. Divide Pk+1 into small image

blocks of size 8×8, denoted by PBk+1(i), i=1,2,…,L. Divide

Ck+1 into small image blocks of size 8×8, denoted by CBk+1(i),

i=1,2,..,L.

Step 2. For each k, choose the i1-th block PBk+1(i1), and

convert each element of PBk+1(i1) from 2
k
 to 2

7-k
 to get a

matrix, denoted by EBk+1(i1), and then expand EBk+1(i1) row

by row to obtain a vector of length 64, denote by Ek+1,i1(j),

j=1,2,…,64.

This step is also described as: Generate eight vectors of

length 64, denoted by Ek+1,i1(j), j=1,2,…,64, k=0,1,2…,7,

whose elements are all set to 2
7-k

.

Step 3. For each k, pick up the i1-th cipher image block

CBk+1(i1), and expand this block row by row to get a vector of

length 64, denoted by Fk+1,i1(j), j=1,2,…,64.

Step 4. According to the algorithm in Stage III, there are

following relationship exists:

Fk+1,i1(j)=Fk+1,i1(j-1) ⊕ X(j) ⊕ (Ek+1,i1(j)+X(j) mod 256),

j=1,2,...,64 (7)

Where, k=0,1,…,7. We can get the values of X(j), j=1,2,…,64

by solving Eq. (7).

111 Yong Zhang: Comments on “An Image Encryption Scheme Based on Rotation Matrix Bit-Level

Permutation and Block Diffusion”

Note: For any j ϵ {1,2,…,64}, there’s existing X(j)

⊕ (Ek+1,i1(j)+X(j) mod 256)=(X(j)+128) ⊕

(Ek+1,i1(j)+X(j)+128 mod 256), which is workable regardless

of the value of Ek+1,i1(j). Therefore, for each j, resolve Eq. (7)

will get two legal values for X(j), which differ by 128. This

means that both X(j) and X(j)+128 mod 256, j=1,2,…,64 are

legal equivalent keys, and this also is a loophole of ZX2014.

(4) Attack PM, key41 and key42.

Step 1. Search the i2 which satisfying the following two

conditions:

Condition 1: Select an all-0s image as the plain image except

that on a certain position (u,v) whose pixel value is changed

from 0 to 255 (0xFF in hexadecimal). Encrypt this image to

get a cipher image, denoted by C. Divide C from left to right

and top to bottom into small image blocks of size 8×8, and

the i2-th block contains pixels whose values is not equal to

key6.

Condition 2: idx(i2)=2.

In vector idx, about 1/6 of the elements have a value of 2, so

theoretically, changing the values of six adjacent pixels in the

plain image sequentially, we can find a position (u,v), whose

corresponding pixel in the cipher image will fall into the i2-th

block. In the actual experiment, the time of this process may

be slightly larger than 6. Therefore, we need to choose about

six pieces of plain images in this step, and execute the

encryption algorithm of ZX2014 about 6 times.

Step 2. In the i2–th block of C, find the first element whose

value is not equal to key6, and denote its position by (row,col).

Step 3. Construct a small image block of size 8×8 and make

its elements are all-zero except that the pixel in position

(row,col) is set to 255 (0xFF in hexadecimal). Then expand

this image block to a bit cube of size 8×8×8, denoted by DBi2.

Step 4. Convert the i2–th block of C to a vector of length 64,

denoted by Fi2(j), j=1,2,…,64. Based on the obtained X and

key6, calculate a new vector, denoted by Ei2(j), j=1,2,…,64,

according to the following formula.

Ei2(j)=(256+(Fi2(j-1) ⊕ Fi2(j) ⊕ X(j))-X(j)) mod 256 (8)

Step 5. Rearrange vector Ei2 to get a matrix of size 8×8, and

then expand it to a bit cube of size 8×8×8, denoted by DDi2.

Obviously, DDi2 is the resultant bit-cube obtained from DBi2

by the algorithm in Step 4 of Stage II, in ZX2014.

Step 6. According to the reverse operation in Step 4 of Stage

II in ZX2014, we can obtain the values of PM, key41 and

key42 from DDi2 and DBi2.

(5) Attack the indeterminate part of idx.

For a certain i,i=1,2,…,L, if idx(i)={1,3,4}, then let idx(i)=1

because the effect of the left or right turning of bit-cube can

be substituted by the scrambling effect or vector J. If

idx(i)={5,6}, the value of idx(i) can be defined by the

following steps:

Step 1. Select all-15s image as the plain image, denoted by P.

Encrypt P with ZX2014 to get a cipher image, denoted by C.

Divide C from left to right and top to bottom into small

image blocks all of size 8×8, denoted by Fi, i=1,2,…,L.

Step 2. For a certain i, i=1,2,..,L, if idx(i)={5,6}, Fi(1,1) will

be transformed into a new value by Eq. (8) with the obtained

X and key6, denote the new value by Ei(1,1). If Ei(1,1)=0,

then idx(i)=5; If Ei(1,1)=255, then idx(i)=6.

(6) Attack J.

Assume that A1(k), k=1,2,…,N
2
 is a vector of length N

2
.

Attack J with steps as follows:

Step 1. If k<256, then let A1(k)=k; If k>=256, then let A(k)=0.

Step 2. Convert A1 into a matrix of size N×N, denoted by P.

Encrypt P with ZX2014 to get a cipher image, denoted by C.

With the help of the obtained X, key6, key41, key42, idx and

PM, execute the reverse operations on C as the description in

Stages III and II of ZX2014 to get a new image matrix,

denoted by D. Expend D row by row to get a vector of length

N×N, denoted by A2.

Step 3. Compare the elements of A1 and A2 to find those

corresponding elements whose values are equal to get the

values of J(k), k=1,2,..,255.

Now let A1(k)=k－255, 256<=k<256×2; A1(k)=0, otherwise.

According to the similar steps described above, we can get

the values of J(k), 256<=k<511. So, using the above methods

we need to select floor(N
2
/255)+1 pieces of images to get the

whole values of J(k), k=1,2,…,N
2
.

Through the above analysis, cracking the equivalent keys of

ZX2014 need 19+floor(N
2
/255) pieces of chosen images. So,

cracking the plain image of size 256×256 need 276 chosen

images.

Note that in the cracked equivalent keys, key41, key42, key6

and PM are identical to the original secret keys, while there

are two legal values for each element in the cracked vector X,

and the cracked idx and J are different from the original

secret keys due to the permutation effect of idx(i)=3 or 4

being substituted by the scrambling of J.

5. Simulation Results

We did multiple tests to confirm the availability of proposed

crack algorithm. Without loss of generality, assume the secret

key of ZX2014 is K=(0.5574,0.9015,0.8421,2,7,0.7893,169),

and the plain images are taken as Lena, Baboon and Pepper

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 105-113 112

all of size 256×256. The original images and their

corresponding cipher images generated by ZX2014 are as

shown in Figs. 3a-3c and Figs. 3d-3f respectively. Cracking

ZX2014 with the chosen plaintext attack method described in

Section 4, we can get the equivalent secret keys of key41,

key42, key6, PM, idx, X and J, and then use them to decipher

Figs. 3d-3f to get the recovered images as shown in Figs. 3g-

3i, respectively. From Figs. 3a-3c and 3g-3i we can see the

recovered images are identical to the original images

respectively. The time consumed is about 1577s.

Figure 3. Simulation results. (a)-(c) Plain images of Lena, Baboon and Pepper, respectively; (d)-(f) Cipher images of (a)-(c), respectively; (g)-(i) Cracked

images of (d)-(f).

When the cipher images are disturbed by the salt and pepper

noise, the cipher images still can be cracked with the

obtained equivalent secret keys to get the recovered images,

and the effect is similar to the results as shown in Table 1 and

Fig. 2.

6. Conclusion

This paper analyzed the encryption scheme of ZX2014 in

detail, and pointed out that there are drawbacks such as low

encryption speed and security loopholes. This paper cracked

ZX2014 with one round successfully. Time consumed for the

image of size 256×256 is about 1577s. The cracked

equivalent secret keys are not exactly identical to the original

keys, which show that there are multiple equivalent keys in

the key space of ZX2014. Our study work demonstrates that

ZX2014 is weak on security and cannot be applied in the

actual communications.

113 Yong Zhang: Comments on “An Image Encryption Scheme Based on Rotation Matrix Bit-Level

Permutation and Block Diffusion”

Acknowledgement

This work was fully supported by the Natural Science

Foundation of Jiangxi Province (Grant No.

20122BAB201036).

References

[1] J. Fridrich. Symmetric ciphers based on two-dimensional
chaotic maps. International Journal of Bifurcation and Chaos,
1998, 8(6): 1259-1284.

[2] N. K. Pareek, V. Patidar, K. K. Sud. Cryptography using
multiple one-dimensional chaotic maps. Communications in
Nonlinear Science and Numerical Simulation, 2005, 10(7):
715-723.

[3] G. R. Chen, Y. Mao, C. K. Chui. A symmetric image
encryption scheme based on 3D chaotic cat maps. Chaos,
Solitons and Fractals, 2004, 21(3): 749-761.

[4] G. Alvarez, S. J. Li. Some basic cryptographic requirements
for chaos-based cryptosystems. International Journal of
Bifurcation and Chaos, 2006, 16(8): 2129-2151.

[5] J. S. A. Eyebe Fouda, J. Y. Effa, S. L. Sabat, M. Ali. A fast
chaotic block cipher for image encryption. Commun.
Nonlinear Sci. Numer. Simulat., 2014, 19(3): 578-588.

[6] G. Ye. A block image encryption algorithm based on wave
transmission and chaotic systems. Nonlinear Dyn. 2014, 75(3):
417-427.

[7] P. Cheng, H. Yang, P. Wei, W. Zhang. A fast image encryption
algorithm based on chaotic and lookup table. Nonlinear
Dynamics, 2015,79(3): 2121-2131.

[8] A. N. Pisarchik, M. Zanin. Image encryption with chaotically
coupled chaotic maps. Physica D, 2008, 237(20): 2638-2648.

[9] D. Arroyo, S. Li, J. M. Amigó, G. Alvarez, R. Rhouma.
Comments on “Image encryption with chaotically coupled
chaotic maps”. Physica D, 2010, 239(12): 1002-1006.

[10] Y. Zhang, D. Xiao. An image encryption scheme based on
rotation matrix bit-level permutation and block diffusion.
Commun Nonlinear Sci Numer Simulat, 2014, 19(1): 74-82.

[11] Y. Zhang. A chaotic system based image encryption algorithm
using plaintext-related confusion. TELKOMNIKA, 2014,
12(11): 7952-7962.

