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Abstract 

In this paper, the homotopy Pade technique is presented as an alternative method to derive the analytical solution for nonlinear 

dynamical system. Illustrative example is used to show the validity and accuracy of the method in solving the nonlinear system. 

Comparisons are conducted between the analytical approximation and numerical solution. The results obtained here demonstrate 

that the homotopy Pade approximate is an effective and robust technique for nonlinear dynamical systems. 
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1. Introduction 

Nonlinear dynamical systems are omnipresent in numerous 

practical engineering and mathematics problems. It is hardly 

to seek the exact solutions in normal circumstances. However, 

the development of analytical methods can provide an 

all-embracing understanding for the systems. The homotopy 

analysis method (HAM) [1] is a robust analytical approximate 

technique for solving a class of nonlinear problems. The 

originated idea of the HAM was enlightened from the 

homotopy in topology. Inasmuch as the accuracy and validity 

of the HAM is not depended on the presence of small 

parameters in the governing systems of motion, it overcomes 

the foregoing restrictions of conventional analysis methods. 

For more than two decade, a number of scholars have adopted 

the HAM to a variety of nonlinear problems in mathematics 

and engineering [2-12]. In this paper, the application of the 

HAM is exploited to nonlinear dynamical systems. The 

significance of dynamical systems is mainly due to its global 

bifurcation, regular and chaotic motions, the intensive 

research subjects are thus at the forefront of nonlinear 

dynamics. Recently, some achievements and fruitful outcome 

have been established for dynamical systems [13-18]. Some 

optimal HAM approaches are developed, which can get faster 

convergent homotopy series solution [19-27].  

The objective of the present work is to conduct a quantitative 

analysis for nonlinear dynamical systems. The example is 

selected to substantiate the validity and accuracy of the 

homotopy Pade approximate technique. Comparisons are 

carried out between the results of these analytical method and 

the exact solutions. Because the selected example herein are 

exactly solvable, therefore its results demonstrate that the 

homotopy Pade approximate solutions are highly accurate for 

nonlinear dynamical system. 

2. Homotopy Pade 
Approximate 

Pade approximate expands a function as a ratio of two power 

series. If the rational function is 
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then ( )R t  is said to be a [ ],M N  Pade approximate of the 

series 
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Equation (3) provides 1M N+ +  equations for the unknowns 

parameters 
0
, ,

M
a a⋯  and

1
, ,

N
b b⋯ . The homotopy Pade 

approximate technique is a combination of the above 

mentioned traditional Pade technique with the HAM. 

3. Illustrative Example and 
Discussion 

Consider the nonlinear system 
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with the initial conditions 

1
(0) 1x = , 

1
(0) 1x′ = , 

2
(0) 1x = , 

2
(0) 1x′ = − .      (5) 

The exact solutions for Eqs. (4) subject to the initial conditions 

in Eq. (5) are  
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Suppose that the solution can be expressed by a set of base 

functions { }| 0 , 1, 2 , 3,nt n = ⋯ , we choose the initial 

approximation as 
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Defining the nonlinear operator as 
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Thus, the zeroth-order deformation equation can be written in 

the form 
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And the mth-order deformation equation can be expressed as 
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From the initial conditions and the initial approximation, we 

have  
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From Eq. (10), it implies that 
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We now successively obtain the second-order analytical 

approximation by HAM as the following 
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The valid region of ℏ  can be determined from the −ℏ curve 

in Fig. 1. The series of ( )
1

x t  and ( )
2

x t  converges at 

1.3 0.6− < < −ℏ . Let 1= −ℏ , the 10th-order analytical 

approximation series solutions of the HAM are 
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The [ ]5,5  homotopy Pade approximate solutions of 
1
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A comparison is shown between the 10th-order homotopy 

analysis approximate solutions and exact solutions for ( )1x t  

and ( )2x t  in Fig. 2. From Fig. 3 we can see that the [5, 5] 

homotopy Pade approximate solutions provides excellent 

agreement with the exact solutions. The algorithm is coded by 

the symbolic computation software Mathematica. 

 
Figure 1. −ℏ curves of ( )1 0x′′ , ( )1 0x′′′  and ( )(4)

2
0x  obtained from 10th-order approximation for Eq. (4). 

 
Figure 2. Comparison of 10th-order homotopy analysis approximation and exact solution for ( )1x t  and ( )2x t . 

 
Figure 3. Comparison of [5, 5] homotopy Pade approximation and exact solution for ( )1x t  and ( )2x t . 
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4. Conclusions 

In summary, homotopy Pade approximate is applied to obtain 

analytical approximation solution for dynamical system. The 

fundamental idea of the method is essentially different from 

other existing analytical methods. The homotopy Pade 

approximate provide an ingenious avenue for controlling the 

convergences of approximation series. The exact solutions of 

this example can be used to verify the accuracy of the method. 

By solving such example, it is illustrated that the present 

technique are not an ad-hoc approach, it can be generalized to 

investigate time-variant and time-invariant systems. Because 

of its flexibility, the present techniques can also be further 

generalized to investigate more complicated nonlinear 

dynamical systems that can only be solved by numerical 

approaches. 
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