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1. Introduction 

A one-bit full adder is a very important leaf cell in the design 

of Application Specific Integrated Circuits. This paper gives 

guidelines for high level modelling in Verilog. We have 

modelled four different full adders in high level with Verilog 

and then we have made some comparison on them based on 

their area, delay and etc. We also have simulated and 

synthesized the adders. So in this paper we have introduced 

some basic concepts of description levels of HDLs like 

Verilog and also we have talked about simulation and 

synthesis.  

Here we have modelled different full adders like 

Carry-Look-Ahead adder, Carry-Skip adder, Carry-Select 

adder and Brent-Kung adder using high level descriptions. 

This document consists of some parts as they are described 

below: The structures of the full adders are described in 

section 2, while the implementation, modelling and simulation 

methodology is explained in section 3. Next in section 4, the 

results are summarized. Finally, conclusions are drawn in 

section 5. 

2. Descriptions of Four 
Different Full Adders 

Here are the structures of different full adders such as: 

Carry-Look-Ahead adder, Carry-Select adder, Brent-Kung 

adder and also Carry-Skip adder. 

A. CARRY-LOOKAHEAD ADDER (CLA) 

CLA can generate all the carries in parallel. As following by 

applying the equations in Fig.1 part (a) recursively, all the Ci+ls 

can be generated based on Gi, Pi and C0. 

C1 = G0 + C0P0 

C2 = G1 + C1P1 

     = G1 + G0P1 + C0P0 P1 

C3 = G2 + C2P2 

     = G2 + G1P2 + G0P1P2 + C0P0 P1P2..... 

Ci+1 = Gi + Gi-1Pi + Gi-2Pi-1Pi + … + G0P1P2…Pi + C0P0 

P1P2...Pi….. 

Cn = Gn-1 + Gn-2Pn-1 + … + G0P1P2…Pn-1 + C0P0 P1P2...Pn-1. 
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The circuit to generate Ci+ls is called Carry-Look-Ahead unit 

shown in part (b) of Fig.1.The final sum S can be computed 

once Cis, i = 1, 2. . . N, are known. Part(c) in Fig.1 shows the 

structure of summation. One can see that in Equation above, 

the number of terms in the OR function is as big as n + 1, and 

in the last term the number of valuables in the AND function is 

also n + 1. Fan-in and fan-out parameters could be a problem 

in Carry-Look-Ahead adder, as the number of bits (n) 

increases. On the other hand, sequential generation of each 

Ci+l is too slow. Instead, block Carry-Look-Ahead adder 

(BCLA) can be adopted in which groups of carries are 

generated in parallel  [1] [6]. 

B. CARRY-SELECT ADDER 

A Carry-Select adder is divided into parts that each of which 

accomplish two additions in concurrent, one assuming a 

carry-in of zero, the other a carry-in of one, except for the least 

significant. The 16-bit carry-select adder of Fig.2 is divided 

into sectors of lengths 1, 2, 3, 4, and 6. The 4-bit sector of 

Fig.2 (b) illustrates the common principle. Within the sector, 

there are two 4-bit ripple- carry adders take the same data 

inputs but different carry-ins. The upper adder has a carry-in 

of zero; the lower adder a carry-in of one. The real carry-in 

from the prior sector chooses one of the two adders. 

Comparing to a Ripple-Carry adder instead of having to ripple 

through four full adders, the carry now only has to pass 

through an individual multiplexer [7]. 
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Fig. 1. Carry-Look-Ahead adder [10]. 

 

(a). 16-bit Carry-Select adder 

 
(b). 4-bit Sector (Schematic) 

Fig. 2. Carry-Select adder. 

C. BRENT-KUNG ADDER 

The following picture shows a Brent-Kung full adder 

(Fig.3.)[11]. The Brent-Kung adder has a gate level depth of 

O(log2(n)). Adding two n-bit numbers is performed as adding 

in parallel the lower halves of the addends, the lower halves 

with input carry 0, and the upper halves with input carry 1, 

then selecting the appropriate upper half sum based on the 

output carry from the lower half sum. Thus the gate level 
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depth of the n-bit adder is equal to the depth of the half-width 

adder plus the depth of a mux. The following is the formula 

that is the basis of this adder:  

(g, p) = (gm ,pm) .(g1,p1) = ( gm+pm.g1,pm.p1)       [2] 

D. CARRY-SKIP ADDER 

To speed-up operation, propagation is skipped to position i 

without waiting for rippling. Operation time varies according 

to operands as in carry-complete addition. To implement 

Carry-Skip adder, stages are divided into blocks (Fig.4.)[3]. 

Carry-Skip logic is added to each block to detect when 

carry-in the block can be passed directly to the next block. 

Define carry transfer: ti = ai + bi , carry skipping can be detected 

for a block size of  m as follows (carry propagates through all 

stages): 

Tj .Tj+1…Tj+m-1=1 (= (aj + bj) .(aj+1+bj+1)…) 

This method takes into account both propagated and generated 

carries. Block size in carry-skip adder is very important (Fig.5.) 

Worst case operation time takes place when: 

– Carry is generated in the first block 

– Carry skips intermediate stages 

– Carry is killed in the last block  [4] [8]. 

 

Fig. 3. Brent-Kung adder  [3]. 

 

Fig. 4. Carry skipping. 
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Fig. 5. Carry-Skip logic. 

 

Fig. 6. Simulation result of Carry-Look-Ahead adder. 

 

Fig. 7. Simulation result of Carry-Select adder. 

 

Fig. 8. Simulation result of Brent-Kung adder. 

 

Fig. 9. Simulation result of Carry-Skip adder. 

3. Methodology 

We have implemented our modules in Verilog. The modules 

are named as belonged to a special kind of adder such as: 

Carry-Look-Ahead adder, Carry-Skip adder, Carry-Select 

adder and Brent-Kung adder using high level descriptions. 

Then by scripting we have simulated them and after all we 

have used Synplify and Leonardo to synthesize Brent-Kung 

adder. We have made optimization based on area/delay or both 

of them. At last we have made comparisons on them. In this 
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work we have used scripting for simulation with Modelsim 

(appendix1). The results of simulation and synthesis have 

come in the result section. Interesting observations could be 

gotten of them. Appendix1also has some parts of report files 

of the synthesis. 

 

Fig. 10. Brent-Kung adder synthesis result by Synplify RTL view.

4. Results of Simulations and 
Synthesis Processes 

The results of the simulations and synthesis are shown in Fig.6 

to Fig.13. The result of Modelsim simulation of 

Carry-Look-Ahead adder is depicted in Fig. 6. Resulted wave 

forms of Modelsim simulation of Carry-Select, Brent-Kung 

and Carry- Skip adders are illustrated in Fig.7, Fig.8 and Fig.9 

respectively. 

Brent-Kung adder synthesis result by Synplify RTL view is in 

Fig.10. Brent-Kung adder synthesis result by Synplify 

technology view is in Fig.11. Brent-Kung adder synthesis 

result by Leonardo is in Fig.12. Brent-Kung adder synthesis 

result _critical path_ is in Fig.13. 

5. Summary and Conclusion 

In this paper we have showed how to implement codes in high 

level and also we have got familiar with modularity coding. 

We have used Modelsim for simulation and verification and 

also we have shown that we can use scripting for simulations. 

Most of the adders discussed in this paper are applicable to 

general purpose designs, with a few exceptions. The first 

exception is the Carry-Skip adder, which is the slowest adder 

for all bit sizes. It has also larger area requirements and higher 

active capacitance than the Ripple adder or the Transmission 

Gate adder for all bit sizes. It may always be replaced with 

either one of these adder structures. The second adder 

structure which can be always replaced is the 

Carry-Look-Ahead adder. But based on previous works for 8 

to 32 bit circuits the Conditional-Sum adder has better results 
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than the Carry-Look-Ahead adder. For the 4-bit adder this 

adder structure can be replaced with the Transmission-Gate 

adder or with the Ripple adder, because both of these 

structures have better results [5].  

Brent-Kung adder requires 2(log N −1) stages. In Brent-Kung 

adder using binary tree for carry propagation leads to 

logarithmic delay. Its area is twice as large as ripple adder and 

layout of the cells is very compact. Once carry signals are 

ready, sum bits derived in constant time. It is good for wide 

adders. Carry-Look-Ahead adder calculates carries in advance. 

Limited fan-in for NAND gate is less than or equal to 5. It is 

impractical for Ci with i >4 and need 2-level CLA with block 

size k. CLA compared to Ripple-Carry adder is Faster, but 

delay is still linear and has larger area. The limitation is that it 

cannot go beyond 4 bits of look-ahead and large p, g fan-out 

slows down carry generation. Carry-Select adder calculates 

two cases simultaneously. Sum computed in one step after the 

intermediate carry signals are ready. Area overhead is about an 

additional carry path and a multiplexer (not the whole adder) 

and about 30% more than a Ripple-Carry. Its delay is 

sub-linear [9]. According to the simulation and synthesis 

results, the adder topology which has the best compromise 

between area, delay and power dissipation is carry look-ahead 

adder and it is suitable for high performance and low-power 

circuits. So the fastest adder is Carry-Select with the penalty 

of area. Carry-Skip adder improves on the delay of a 

Ripple-Carry adder with little effort compared to other adders. 

Carry-Select adder is one of the fastest adders to perform 

arithmetic operations.  From the structure of CSL adder there 

is a scope for reducing the area and delay. 

 

Fig. 11. Brent-Kung adder synthesis result by Synplify technology view. 

 

Fig. 12. Brent-Kung adder synthesis result by Leonardo. 

 

Fig. 13. Brent-Kung adder synthesis result _critical path. 
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Appendix1 

Sunplify synthesis reports of Brent-Kung  adder 

Brent-Kung  plg file of synplify 

@P:  Worst Slack : -6.187 

@P:  System - Estimated Frequency : 61.8 MHz 

@P:  System - Requested Frequency : 100.0 MHz 

@P:  System - Estimated Period : 16.187 

@P:  System - Requested Period : 10.000 

@P:  System - Slack : -6.187 

@P:  Total Area : 103.0 

 

Rev8(brent_kung.htm) 

Worst Path Information 

Path information for path number 1:  

    Requested Period:                        10.000 

    = Required time:                         10.000 

 

    - Propagation time:                      16.187 

    = Slack (critical) :                     -6.187 

 

    Number of logic level(s):                12 

    Starting point:                          B[15:0] / B[0] 

    Ending point:                            Sum[15:0] / Sum[11] 

    The start point is clocked by            System [rising] 

    The end   point is clocked by            System [rising] 

Total path delay (propagation time + setup) of 16.187 is 

2.867(17.7%) logic and 13.320(82.3%) route. 

 

Brent_kung.areasrr 

Report for cell Brent_Kung_ADDER.verilog 

Cell usage: 

                             

 cell       count     area    count*area 

                              

 IB33        33       0.0        0.0 

                             

 OB33PH        17       0.0        0.0 

... 

TOTAL            132                103.0 

 

Leonardo synthesis reports of Brent-Kung  adder  

Auto optimization area 

Cell: Brent_Kung16    View: INTERFACE    Library: work 

********************************************** 

 Cell    Library  References     Total Area 

 

AN21    CUB    15 x      1      9 gates 

AND2    CUB    16 x      1     10 gates 

EN1     CUB    15 x      1     12 gates 

EO1     CUB     1 x      1      1 gates 

IN2     CUB    32 x      0     10 gates 

OA21    CUB    16 x      1     12 gates 

ON21    CUB     1 x      1      1 gates 

 

 Number of ports :                      50 

 Number of nets :                      129 

 Number of instances :                  96 

 Number of references to this view :     0 

 

Total accumulated area :  

 Number of gates :                      54 

 Number of accumulated instances :      96 

Delay 

                        Critical Path Report 

 

Critical path #1, (path slack =  1.8): 

 

NAME                               GATE              ARRIVAL              LOAD 

--------------------------------------------------------------------- 

A(0)/                                          0.00  0.00 up             0.11 

ipg16_ix1/Q                        AND2        0.29  0.29 up             0.11 

ipg16_ix359/Q                      IN2         0.13  0.41 dn             0.05 

ipg16_ix7/Q                        OA21        0.40  0.81 dn             0.14 
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ix431/Q                            AN21        0.29  1.10 up             0.14 

ix3/Q                              IN2         0.17  1.27 dn             0.06 

ix452/Q                            AN21        0.30  1.57 up             0.14 

ix7/Q                              IN2         0.17  1.74 dn             0.06 

ix426/Q                            AN21        0.30  2.04 up             0.14 

ix11/Q                             IN2         0.17  2.21 dn             0.06 

ix457/Q                            AN21        0.32  2.53 up             0.16 

ix15/Q                             IN2         0.17  2.70 dn             0.06 

ix421/Q                            AN21        0.30  3.01 up             0.14 

ix19/Q                             IN2         0.17  3.17 dn             0.06 

ix466/Q                            AN21        0.32  3.49 up             0.16 

ix23/Q                             IN2         0.17  3.67 dn             0.06 

ix416/Q                            AN21        0.30  3.97 up             0.14 

ix27/Q                             IN2         0.17  4.14 dn             0.06 

ix475/Q                            AN21        0.32  4.46 up             0.16 

ix31/Q                             IN2         0.17  4.63 dn             0.06 

ix411/Q                            AN21        0.32  4.95 up             0.16 

ix35/Q                             IN2         0.17  5.13 dn             0.06 

ix484/Q                            AN21        0.30  5.43 up             0.14 

ix39/Q                             IN2         0.17  5.60 dn             0.06 

ix406/Q                            AN21        0.30  5.90 up             0.14 

ix43/Q                             IN2         0.17  6.07 dn             0.06 

ix493/Q                            AN21        0.32  6.39 up             0.16 

ix47/Q                             IN2         0.17  6.56 dn             0.06 

ix401/Q                            AN21        0.32  6.88 up             0.16 

ix51/Q                             IN2         0.17  7.05 dn             0.06 

ix502/Q                            AN21        0.30  7.36 up             0.14 

ix55/Q                             IN2         0.17  7.53 dn             0.06 

ix396/Q                            AN21        0.30  7.83 up             0.14 

ix95/Q                             EN1         0.33  8.16 up             0.02 

S(15)/                                         0.00  8.16 up             0.00 

data arrival time                                    8.16 

 

data required time  (default specified)              10.00 

--------------------------------------------------------------------- 

data required time                                   10.00 

data arrival time                                    8.16 

                                                  ---------- 

slack                                               1.84 

--------------------------------------------------------------------- 

Delayoptimization 

delay 

data required time                                   10.00 

data arrival time                                    7.99 

                                                  ---------- 

slack                                               2.01 

area 

Cell    Library  References     Total Area 

 

AN21    CUB    31 x      1     19 gates 

AND2    CUB    16 x      1     10 gates 

EN1     CUB    15 x      1     12 gates 

EO1     CUB     1 x      1      1 gates 

IN2     CUB    48 x      0     15 gates 

ON21    CUB     1 x      1      1 gates 

 

 Number of ports :                      50 

 Number of nets :                      145 

 Number of instances :                 112 

 Number of references to this view :     0 

 

Total accumulated area :  

 Number of gates :                      57 

 Number of accumulated instances :     112 

area optimization 

area 

Cell    Library  References     Total Area 

 

AN21    CUB    15 x      1      9 gates 

AND2    CUB    16 x      1     10 gates 

EN1     CUB    15 x      1     12 gates 

EO1     CUB     1 x      1      1 gates 

IN2     CUB    31 x      0     10 gates 

OA21    CUB    16 x      1     12 gates 

ON21    CUB     1 x      1      1 gates 
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 Number of ports :                      50 

 Number of nets :                      128 

 Number of instances :                  95 

 Number of references to this view :     0 

 

Total accumulated area :  

 Number of gates :                      54 

 Number of accumulated instances :      95 

Delay 

--------------------------------------------------------------------- 

data required time                                   10.00 

data arrival time                                    8.16 

                                                  ---------- 

slack                                               1.84 

--------------------------------------------------------------------- 

 

One sample script of these four adders 

Brent-Kung  adder 

.tcl file 

puts { 

  Compile and Simulate script for divider 

  Provided by Mahdi N. Bojnordi 

} 

 

cd ../sim/pre_syn 

 

set library_file_list { 

  design_library {../../model/Verilog/Brent_Kung16.v} 

  test_library   {../../test/ Brent_Kung16_test.v } 

} 

 

set top_level  work.brent_test 

 

set wave_patterns { 

  /* 

} 

set wave_radices { 

  hexadecimal {A,B,Cin,Sum,Cout} 

} 

 

set PrefMain(font) { 

  Courier 10 roman normal 

} 

 

# compilation 

vlib work 

foreach {library file_list} $library_file_list { 

  foreach file $file_list { 

    if [regexp {.vhdl?$} $file] { 

      vcom -93 $file 

    } else { 

      vlog $file 

    } 

  } 

} 

 

# simulation 

eval vsim $top_level 

 

# If waves are required 

if [llength $wave_patterns] { 

  noview wave 

  foreach pattern $wave_patterns { 

    add wave $pattern 

  } 

  configure wave -signalnamewidth 1 

  foreach {radix signals} $wave_radices { 

    foreach signal $signals { 

      catch {property wave -radix $radix $signal} 

    } 

  } 

} 

 

# run the simulation 

run -all 
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puts { 

  job finished. 

} 

 

Verilog source codes for adders 

********************************* 

Carry-Look-Ahead  adder with test bench 

module cla_16(a, b, c_in, sum, c_out, gen_out, prop_out); 

 

input [15:0] a, b;      // numbers to add 

input c_in;             // carry in 

output [15:0] sum;      // sum 

output c_out;           // carry of 16-bit addition 

output gen_out;         // generate of 16-bit addition 

output prop_out;        // propagate of 16-bit addition 

 

wire [3:0] part_carry;  // calculated carry_out of 

                        //each 4-bit part 

wire [3:0] part_gen;    // generate of each 4-bit part 

wire [3:0] part_prop;   // propagate of each 4-bit part 

   // Make instances to calculate generates and 

propagates. 

   // First 4 instances calculate generate and propagate 

   // for each 4-bit part.  Last instance calculates 

   // generate and propagate for all 16 bits. 

 

gen_prop gp0( (a[3:0] & b[3:0]), (a[3:0] | b[3:0]),part_gen[0], 

part_prop[0]); 

 

gen_prop gp1( (a[7:4] & b[7:4]), (a[7:4] | b[7:4]),part_gen[1], 

part_prop[1]); 

 

gen_prop gp2( (a[11:8] & b[11:8]), (a[11:8] | 

b[11:8]),part_gen[2], part_prop[2]); 

 

gen_prop gp3( (a[15:12] & b[15:12]), (a[15:12] | 

b[15:12]),part_gen[3], part_prop[3]); 

 

gen_prop gp(part_gen, part_prop, gen_out, prop_out); 

 

// Make instances to calculate carries for each 4-bit part 

carry c( part_gen, part_prop, c_in, part_carry ); 

assign c_out = part_carry[3]; 

 

// make 4-bit adders to do additions 

assign sum[3:0] = a[3:0] + b[3:0] + c_in; 

assign sum[7:4] = a[7:4] + b[7:4] + part_carry[0]; 

assign sum[11:8] = a[11:8] + b[11:8] + part_carry[1]; 

assign sum[15:12] = a[15:12] + b[15:12] + part_carry[2]; 

endmodule 

 

module carry(gens_in, props_in, c_in, carries); 

input [3:0] gens_in;  // generate for each of 4 parts 

input [3:0] props_in; // propagate for each of 4 parts 

input c_in;           // carry in 

 output [3:0] carries;  // carry out for each of 4 parts 

   

function [3:0] get_carries; 

input [3:0] gens_in, props_in; 

input c_in; 

reg [3:0] carries; 

integer i; 

  

begin 

   for (i = 0; i <= 3; i = i + 1) 

      if (i == 0) 

         carries[i] = gens_in[i] | props_in[i] & c_in; 

      else 

         carries[i] = gens_in[i] | props_in[i] & 

                                             carries[i-1]; 

   get_carries = carries; 

end 

endfunction 

  

assign carries = get_carries(gens_in, props_in, c_in); 

endmodule 
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module gen_prop(gens_in, props_in, gen_out, prop_out); 

  

input [3:0] gens_in;  // generate for each of 4 parts 

input [3:0] props_in; // propagate for each of 4 parts 

output gen_out, prop_out; 

  

function [1:0] get_gen_and_prop; 

input [3:0] gens_in, props_in; 

reg prop, gen; 

integer i; 

  

begin 

   for (i = 0; i <= 3; i = i + 1) begin 

      if (i == 0) begin 

         gen = gens_in[i]; 

         prop = props_in[i]; 

      end else begin 

         gen = gens_in[i] | props_in[i] & gen; 

         prop = props_in[i] & prop; 

      end 

   end 

  

get_gen_and_prop = {gen, prop}; 

end 

endfunction 

 

assign {gen_out, prop_out} = get_gen_and_prop(gens_in, 

props_in); 

endmodule 

 

//////simulation 

module cla_test; 

 

reg [15:0] A, B;       // numbers to add 

reg C_IN;              // carry in 

trireg [15:0] SUM;     // sum 

trireg C_OUT;          // carry of 16-bit addition 

trireg GEN_OUT;        // generate of 16-bit addition 

trireg PROP_OUT;      // propagate of 16-bit addition 

 

cla_16 adder1 (A, B, C_IN, SUM, C_OUT, GEN_OUT, 

PROP_OUT); 

 

initial 

begin 

 $monitor("%0d SUM = %b A = %b B = %b C_IN = %b  

C_OUT = %b, GEN_OUT = %b, PROP_OUT = %b", 

                         $time, SUM, A, B, C_IN, C_OUT, GEN_OUT, 

PROP_OUT); 

 

 A = 16'b0000000000000000; 

 B = 16'b0110011001100110; 

 C_IN = 0; 

    #10 A = 16'b1001100110011001;  

    #10 B = 16'b0110011001100111; 

    #10 C_IN = 0; B = 16'b0110011001100110; 

    #10 A = 16'b0000000000000000; B = 

16'b0000000000000000; 

    #10 C_IN = 0; A = 16'b0000000000000001; B = 

16'b0000000000000001; 

    #10 $finish; 

end 

endmodule 

 

Brent-Kung adder with test bench 

 

module black (pg, pg0, pgo); 

 

    input [1:0] pg, pg0; 

    output [1:0] pgo; 

 

    assign pgo[1] = pg[1] & pg0[1]; 

    assign pgo[0] = (pg0[0] & pg[1]) | pg[0]; 

 

endmodule 

///////////////////////////////////////////////// 

module gray (pg, pg0, pgo); 
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    input [1:0] pg; 

    input pg0; 

    output pgo; 

 

    assign pgo = (pg0 & pg[1]) | pg[0]; 

 

endmodule 

//////////////////////////////////////////// 

module xor16 (A, B, S); 

 

    input [15:0] A, B; 

    output [15:0] S; 

 

    assign S = A ^ B; 

 

endmodule 

//////////////////////////////////////////////////// 

module pg16 (A, B, pg15, pg14, pg13, pg12, pg11, pg10, pg9, 

pg8, pg7, pg6, pg5, pg4, pg3, pg2, pg1, pg0); 

    input [15:0] A, B; 

    output [1:0] pg15, pg14, pg13, pg12, pg11, pg10, pg9, pg8, 

pg7, pg6, pg5, pg4, pg3, pg2, pg1, pg0; 

 

    assign pg15 = {(A[15] ^ B[15]), (A[15] & B[15])};  

    assign pg14 = {(A[14] ^ B[14]), (A[14] & B[14])};  

    assign pg13 = {(A[13] ^ B[13]), (A[13] & B[13])};  

    assign pg12 = {(A[12] ^ B[12]), (A[12] & B[12])};  

    assign pg11 = {(A[11] ^ B[11]), (A[11] & B[11])};  

    assign pg10 = {(A[10] ^ B[10]), (A[10] & B[10])};  

    assign pg9 = {(A[9] ^ B[9]), (A[9] & B[9])};  

    assign pg8 = {(A[8] ^ B[8]), (A[8] & B[8])};  

    assign pg7 = {(A[7] ^ B[7]), (A[7] & B[7])};  

    assign pg6 = {(A[6] ^ B[6]), (A[6] & B[6])};  

    assign pg5 = {(A[5] ^ B[5]), (A[5] & B[5])};  

    assign pg4 = {(A[4] ^ B[4]), (A[4] & B[4])};  

    assign pg3 = {(A[3] ^ B[3]), (A[3] & B[3])};  

    assign pg2 = {(A[2] ^ B[2]), (A[2] & B[2])};  

    assign pg1 = {(A[1] ^ B[1]), (A[1] & B[1])};  

    assign pg0 = {(A[0] ^ B[0]), (A[0] & B[0])};  

 

endmodule 

///////////////////////////////////////////////////// 

module Brent_Kung16 (A, B, Cin, S, Cout); 

    input [15:0] A, B; 

    input Cin; 

    output [15:0] S; 

    output Cout; 

 

   // First generate the propigate and generate signals for each 

bit  

    wire [1:0] r1c16, r1c15, r1c14, r1c13, r1c12, r1c11, r1c10, 

r1c9; 

    wire [1:0] r1c8, r1c7, r1c6, r1c5, r1c4, r1c3, r1c2, r1c1; 

 

    pg16 

ipg16(.A(A), .B(B), .pg15(r1c16),.pg14(r1c15),.pg13(r1c14), 

        .pg12(r1c13),.pg11(r1c12),.pg10(r1c11),.pg9(r1c10),.pg

8(r1c9), 

        .pg7(r1c8),.pg6(r1c7),.pg5(r1c6),.pg4(r1c5),.pg3(r1c4), 

        .pg2(r1c3),.pg1(r1c2),.pg0(r1c1)); 

 

    // First row  

    wire [1:0] r2c15, r2c13, r2c11, r2c9, r2c7, r2c5, r2c3; 

    wire r2c1; 

 

    black ir1c15(.pg(r1c15), .pg0(r1c14), .pgo(r2c15)); 

    black ir1c13(.pg(r1c13), .pg0(r1c12), .pgo(r2c13)); 

    black ir1c11(.pg(r1c11), .pg0(r1c10), .pgo(r2c11)); 

    black ir1c9(.pg(r1c9), .pg0(r1c8), .pgo(r2c9)); 

    black ir1c7(.pg(r1c7), .pg0(r1c6), .pgo(r2c7)); 

    black ir1c5(.pg(r1c5), .pg0(r1c4), .pgo(r2c5)); 

    black ir1c3(.pg(r1c3), .pg0(r1c2), .pgo(r2c3)); 

    gray ir1c1(.pg(r1c1), .pg0(Cin), .pgo(r2c1)); 

 

    // Second row 

    wire [1:0] r3c15, r3c11, r3c7; 
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    wire r3c3; 

 

    black ir2c15(.pg(r2c15), .pg0(r2c13), .pgo(r3c15)); 

    black ir2c11(.pg(r2c11), .pg0(r2c9), .pgo(r3c11)); 

    black ir2c7(.pg(r2c7), .pg0(r2c5), .pgo(r3c7)); 

    gray ir2c3(.pg(r2c3), .pg0(r2c1), .pgo(r3c3)); 

 

    // Third row  

    wire [1:0] r4c15; 

    wire r4c7; 

 

    black ir3c15(.pg(r3c15), .pg0(r3c11), .pgo(r4c15)); 

    gray ir3c7(.pg(r3c7), .pg0(r3c3), .pgo(r4c7)); 

 

    // Fourth row  

    wire r5c15, r5c11; 

 

    gray ir4c15(.pg(r4c15), .pg0(r4c7), .pgo(r5c15)); 

    gray ir6c11(.pg(r3c11), .pg0(r4c7), .pgo(r5c11)); 

 

    // Fifth row  

    wire r6c13, r6c9, r6c5; 

 

    gray ir5c13(.pg(r2c13), .pg0(r5c11), .pgo(r6c13)); 

    gray ir5c9(.pg(r2c9), .pg0(r4c7), .pgo(r6c9)); 

    gray ir5c5(.pg(r2c5), .pg0(r3c3), .pgo(r6c5)); 

 

    // Sixth row  

    wire r7c14, r7c12, r7c10, r7c8, r7c6, r7c4, r7c2; 

 

    gray ir6c14(.pg(r1c14), .pg0(r6c13), .pgo(r7c14)); 

    gray ir6c12(.pg(r1c12), .pg0(r5c11), .pgo(r7c12)); 

    gray ir6c10(.pg(r1c10), .pg0(r6c9), .pgo(r7c10)); 

    gray ir6c8(.pg(r1c8), .pg0(r4c7), .pgo(r7c8)); 

    gray ir6c6(.pg(r1c6), .pg0(r6c5), .pgo(r7c6)); 

    gray ir6c4(.pg(r1c4), .pg0(r3c3), .pgo(r7c4)); 

    gray ir6c2(.pg(r1c2), .pg0(r2c1), .pgo(r7c2)); 

 

    // Finaly produce the sum  

    xor16 

ixor16(.A({r5c15,r7c14,r6c13,r7c12,r5c11,r7c10,r6c9,r7c8,r4

c7,r7c6, 

        

r6c5,r7c4,r3c3,r7c2,r2c1,Cin}), .B({r1c16[1],r1c15[1],r1c14[

1], 

        

r1c13[1],r1c12[1],r1c11[1],r1c10[1],r1c9[1],r1c8[1],r1c7[1],r

1c6[1], 

        r1c5[1],r1c4[1],r1c3[1],r1c2[1],r1c1[1]}), .S(S)); 

 

    // Generate Cout  

    gray gcout(.pg(r1c16), .pg0(r5c15), .pgo(Cout)); 

 

endmodule 

//////////////////////////////////////////////////////////////////////// 

module brent_test; 

         

  reg [15:0] a,b;  // numbers to add 

  reg cin;  // carry in 

  wire[15:0] s;  //sum 

  wire cout;  //cout 

   

  Brent_Kung16 bk16(a, b, cin, s, cout); 

   

  initial 

   begin 

    a=16'b1010101010101010; 

    b=16'b0101010101010101; 

    cin=1'b1; 

     

    #10 b=16'b1010101010101010; 

    #20 a=16'b0101010101010101; 

    #30 cin=1'b0; 

   end 

endmodule[8] 

 

Carry-Select  adder 
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module fulladder(s,cout,a,b,cin); 

   input a,b,cin; 

   output s,cout; 

    

   assign s = ((a ^ b) ^ cin); 

   assign cout = ((a & b)| (cin & (a ^ b))); 

    

endmodule 

///////////////////////////////////////////////////    

 module adder4(s, cout, a, b, cin); 

     input [3:0] a; 

     input [3:0] b; 

     input cin; 

     output [3:0] s; 

     output cout; 

      

    fulladder fulladder0(s[0],cout0, a[0], b[0], cin); 

    fulladder fulladder1(s[1],cout1, a[1], b[1], cout0); 

    fulladder fulladder2(s[2],cout2, a[2], b[2], cout1); 

    fulladder fulladder3(s[3],cout, a[3], b[3], cout2);  

      

 endmodule 

///////////////////////////////////////////////////////  

 module csa (s, cout, a, b,  cin, c0, c1 ); 

               

              input [15:0] a; 

              input [15:0] b; 

              input cin,c0,c1; 

               

              output [15:0] s; 

              output cout ;   

               

              wire  [8:0] x0 ; 

              wire  [8:0] x1; 

              wire  [4:0] w1; 

              wire  [4:0] w2; 

              wire  [3:0] w3; 

              wire  [3:0] w4; 

              wire  [4:0] w7; 

              wire  [4:0] w8; 

              wire  [4:0] w9; 

              wire  [4:0] w10; 

              wire  [4:0] w11; 

              wire  [8:0] w12; 

              wire  cout1 ; 

              wire  w5 ; 

              wire  w6 ; 

 

   

   adder4   a1(s[3:0], cout1, a[3:0], b[3:0], cin);   

   adder4   a2(w1[3:0], w1[4], a[7:4], b[7:4], c0); 

   adder4   a3(w2[3:0], w2[4], a[7:4], b[7:4], c1); 

   adder4   a4(w3[3:0], w5, a[11:8], b[11:8], c0); 

   adder4   a5(w4[3:0], w6, a[11:8], b[11:8], c1); 

   adder4   a6(w7[3:0], w7[4], a[15:12], b[15:12], c0); 

   adder4   a7(w8[3:0], w8[4], a[15:12], b[15:12], c1); 

 

assign  w9[4:0]=   cout1   ?  {w2[4:0]} : (~ cout1)  ?  

{w1[4:0]} :  5'b00000;  

assign  w10[4:0]=   w6   ?  {w8[4:0]} : (~ w6)  ?  {w7[4:0]} :  

5'b00000;  

assign  w11[4:0]=   w5   ?  {w8[4:0]} : (~ w5)  ?  {w7[4:0]} :  

5'b00000;  

    

   assign x0 [8:4] = w10 [4:0] ; 

   assign x0 [3:0] = w3 [3:0] ;  

    

   assign x1[8:4] = w11 [4:0] ; 

   assign x1[3:0] = w4 [3:0] ; 

    

   

 assign  w12[8:0]=   w9[4]   ?  {big_in_1} : (~ w9[4])  ?  {x0} :  

9'b0_0000_0000;  

  

   assign s[7:4] = w9[3:0];  

   assign s[15:8] = w12[7:0]; 
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   assign cout = w12[8]; 

    

   endmodule 

    

     module test_csa; 

            

                     reg [15:0] a; 

                   reg [15:0] b; 

                   reg cin,c0,c1; 

                   wire [15:0] s; 

                   wire cout; 

                      

                      

                     csa csa1 (s, cout, a, b, cin, c0,c1); 

                     

                       initial  

                       begin 

                          a=16'b1010101010101010; 

     b=16'b0101010101010101; 

     cin=1'b1; 

          

          

                          c0 = 1'b0; 

                          c1 = 1'b1; 

                           

                          #10 b=16'b1010101010101010; 

     #20 a=16'b0101010101010101; 

     #30 cin=1'b0; 

 

                       end 

                  

            endmodule[9] 

 

Carry-Skip adder 

 

module padder(carry,sum,po,a,b,c); 

 

   output carry;   

   output sum;     

   output po;    

   

   input a; 

   input b; 

   input c; 

 

   assign sum=a^b^c;   

   assign po=a|b;         

   assign carry=a&b|c&po; 

 

endmodule 

//////////////////////////////////////////////// 

module csblock(cout,Sum,A,B,cin); 

 

   output cout; 

   output [3:0] Sum;  

    

   input  [3:0] A; 

   input  [3:0] B; 

   input  cin; 

 

   wire   [3:0] P,C; 

 

padder a0 (C[0],Sum[0],P[0],A[0],B[0],cin); 

padder a1 (C[1],Sum[1],P[1],A[1],B[1],C[0]); 

padder a2 (C[2],Sum[2],P[2],A[2],B[2],C[1]); 

padder a3 (C[3],Sum[3],P[3],A[3],B[3],C[2]); 

 

assign cout=C[3]|(cin&P[0]&P[1]&P[2]&P[3]); 

endmodule 

/////////////////////////////////////////////////////////// 

module csa(cout,Sum,A,B,cin); 

 

   output cout; 

   output [15:0] Sum; 

   input  [15:0] A; 

   input  [15:0] B; 
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   input  cin; 

 

   wire   [3:0] carries;   

 

csblock b0 (carries[0],Sum[3:0],A[3:0],B[3:0],cin); 

csblock b1 (carries[1],Sum[7:4],A[7:4],B[7:4],carries[0]); 

csblock b2 (carries[2],Sum[11:8],A[11:8],B[11:8],carries[1]); 

csblock b3 (cout,Sum[15:12],A[15:12],B[15:12],carries[2]); 

 

endmodule 

/////////////////////////////////////////////////////////// 

 module csa_test; 

            

                     reg [15:0] A; 

                   reg [15:0] B; 

                   reg cin; 

                   wire [15:0] Sum; 

                   wire cout; 

                                           

                     csa csa1 (cout,Sum,A,B,cin); 

                     

                        initial  

                   begin 

                            a=16'b1010101010101010; 

              b=16'b0101010101010101; 

              cin=1'b1; 

                   

                 

                                   c0 = 1'b0; 

                                   c1 = 1'b1; 

                                    

                            #10 b=16'b1010101010101010; 

              #20 a=16'b0101010101010101; 

              #30 cin=1'b0; 

                       end   

        endmodule[10] 
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