

American Journal of Circuits, Systems and Signal Processing

Vol. 1, No. 3, 2015, pp. 69-85

http://www.aiscience.org/journal/ajcssp

* Corresponding author

E-mail address: Negin.Mahani@uk.ac.ir

High Level Modelling and Relative Comparison of
Different Full Adder Structures

Negin Mahani*

Computer Engineering Faculty, Shahid Bahonar University, Zarand High Education Centre, Kerman, Iran

Abstract

Comparing different full adders is very significant for VLSI design as they are essential components in almost all digital circuits.

The science has yield the benchmarking work laborious as often distinct implementation techniques and technologies have been

used in the design. Additionally, the design characteristics which are selected for performance analysis are not consistent. This

paper shows the results of comparing four adder structures by implementing them all with the same technology and the same

level of abstraction.

Keywords

Carry-Select Adder, Carry-Look-Ahead Adder, Carry-Skip Adder, Brent-Kung Adder

Received: May 19, 2015 / Accepted: June 21, 2015 / Published online: July 13, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

A one-bit full adder is a very important leaf cell in the design

of Application Specific Integrated Circuits. This paper gives

guidelines for high level modelling in Verilog. We have

modelled four different full adders in high level with Verilog

and then we have made some comparison on them based on

their area, delay and etc. We also have simulated and

synthesized the adders. So in this paper we have introduced

some basic concepts of description levels of HDLs like

Verilog and also we have talked about simulation and

synthesis.

Here we have modelled different full adders like

Carry-Look-Ahead adder, Carry-Skip adder, Carry-Select

adder and Brent-Kung adder using high level descriptions.

This document consists of some parts as they are described

below: The structures of the full adders are described in

section 2, while the implementation, modelling and simulation

methodology is explained in section 3. Next in section 4, the

results are summarized. Finally, conclusions are drawn in

section 5.

2. Descriptions of Four
Different Full Adders

Here are the structures of different full adders such as:

Carry-Look-Ahead adder, Carry-Select adder, Brent-Kung

adder and also Carry-Skip adder.

A. CARRY-LOOKAHEAD ADDER (CLA)

CLA can generate all the carries in parallel. As following by

applying the equations in Fig.1 part (a) recursively, all the Ci+ls

can be generated based on Gi, Pi and C0.

C1 = G0 + C0P0

C2 = G1 + C1P1

 = G1 + G0P1 + C0P0 P1

C3 = G2 + C2P2

 = G2 + G1P2 + G0P1P2 + C0P0 P1P2.....

Ci+1 = Gi + Gi-1Pi + Gi-2Pi-1Pi + … + G0P1P2…Pi + C0P0

P1P2...Pi…..

Cn = Gn-1 + Gn-2Pn-1 + … + G0P1P2…Pn-1 + C0P0 P1P2...Pn-1.

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 70

The circuit to generate Ci+ls is called Carry-Look-Ahead unit

shown in part (b) of Fig.1.The final sum S can be computed

once Cis, i = 1, 2. . . N, are known. Part(c) in Fig.1 shows the

structure of summation. One can see that in Equation above,

the number of terms in the OR function is as big as n + 1, and

in the last term the number of valuables in the AND function is

also n + 1. Fan-in and fan-out parameters could be a problem

in Carry-Look-Ahead adder, as the number of bits (n)

increases. On the other hand, sequential generation of each

Ci+l is too slow. Instead, block Carry-Look-Ahead adder

(BCLA) can be adopted in which groups of carries are

generated in parallel [1] [6].

B. CARRY-SELECT ADDER

A Carry-Select adder is divided into parts that each of which

accomplish two additions in concurrent, one assuming a

carry-in of zero, the other a carry-in of one, except for the least

significant. The 16-bit carry-select adder of Fig.2 is divided

into sectors of lengths 1, 2, 3, 4, and 6. The 4-bit sector of

Fig.2 (b) illustrates the common principle. Within the sector,

there are two 4-bit ripple- carry adders take the same data

inputs but different carry-ins. The upper adder has a carry-in

of zero; the lower adder a carry-in of one. The real carry-in

from the prior sector chooses one of the two adders.

Comparing to a Ripple-Carry adder instead of having to ripple

through four full adders, the carry now only has to pass

through an individual multiplexer [7].

71 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

Fig. 1. Carry-Look-Ahead adder [10].

(a). 16-bit Carry-Select adder

(b). 4-bit Sector (Schematic)

Fig. 2. Carry-Select adder.

C. BRENT-KUNG ADDER

The following picture shows a Brent-Kung full adder

(Fig.3.)[11]. The Brent-Kung adder has a gate level depth of

O(log2(n)). Adding two n-bit numbers is performed as adding

in parallel the lower halves of the addends, the lower halves

with input carry 0, and the upper halves with input carry 1,

then selecting the appropriate upper half sum based on the

output carry from the lower half sum. Thus the gate level

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 72

depth of the n-bit adder is equal to the depth of the half-width

adder plus the depth of a mux. The following is the formula

that is the basis of this adder:

(g, p) = (gm ,pm) .(g1,p1) = (gm+pm.g1,pm.p1) [2]

D. CARRY-SKIP ADDER

To speed-up operation, propagation is skipped to position i

without waiting for rippling. Operation time varies according

to operands as in carry-complete addition. To implement

Carry-Skip adder, stages are divided into blocks (Fig.4.)[3].

Carry-Skip logic is added to each block to detect when

carry-in the block can be passed directly to the next block.

Define carry transfer: ti = ai + bi , carry skipping can be detected

for a block size of m as follows (carry propagates through all

stages):

Tj .Tj+1…Tj+m-1=1 (= (aj + bj) .(aj+1+bj+1)…)

This method takes into account both propagated and generated

carries. Block size in carry-skip adder is very important (Fig.5.)

Worst case operation time takes place when:

– Carry is generated in the first block

– Carry skips intermediate stages

– Carry is killed in the last block [4] [8].

Fig. 3. Brent-Kung adder [3].

Fig. 4. Carry skipping.

73 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

Fig. 5. Carry-Skip logic.

Fig. 6. Simulation result of Carry-Look-Ahead adder.

Fig. 7. Simulation result of Carry-Select adder.

Fig. 8. Simulation result of Brent-Kung adder.

Fig. 9. Simulation result of Carry-Skip adder.

3. Methodology

We have implemented our modules in Verilog. The modules

are named as belonged to a special kind of adder such as:

Carry-Look-Ahead adder, Carry-Skip adder, Carry-Select

adder and Brent-Kung adder using high level descriptions.

Then by scripting we have simulated them and after all we

have used Synplify and Leonardo to synthesize Brent-Kung

adder. We have made optimization based on area/delay or both

of them. At last we have made comparisons on them. In this

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 74

work we have used scripting for simulation with Modelsim

(appendix1). The results of simulation and synthesis have

come in the result section. Interesting observations could be

gotten of them. Appendix1also has some parts of report files

of the synthesis.

Fig. 10. Brent-Kung adder synthesis result by Synplify RTL view.

4. Results of Simulations and
Synthesis Processes

The results of the simulations and synthesis are shown in Fig.6

to Fig.13. The result of Modelsim simulation of

Carry-Look-Ahead adder is depicted in Fig. 6. Resulted wave

forms of Modelsim simulation of Carry-Select, Brent-Kung

and Carry- Skip adders are illustrated in Fig.7, Fig.8 and Fig.9

respectively.

Brent-Kung adder synthesis result by Synplify RTL view is in

Fig.10. Brent-Kung adder synthesis result by Synplify

technology view is in Fig.11. Brent-Kung adder synthesis

result by Leonardo is in Fig.12. Brent-Kung adder synthesis

result _critical path_ is in Fig.13.

5. Summary and Conclusion

In this paper we have showed how to implement codes in high

level and also we have got familiar with modularity coding.

We have used Modelsim for simulation and verification and

also we have shown that we can use scripting for simulations.

Most of the adders discussed in this paper are applicable to

general purpose designs, with a few exceptions. The first

exception is the Carry-Skip adder, which is the slowest adder

for all bit sizes. It has also larger area requirements and higher

active capacitance than the Ripple adder or the Transmission

Gate adder for all bit sizes. It may always be replaced with

either one of these adder structures. The second adder

structure which can be always replaced is the

Carry-Look-Ahead adder. But based on previous works for 8

to 32 bit circuits the Conditional-Sum adder has better results

75 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

than the Carry-Look-Ahead adder. For the 4-bit adder this

adder structure can be replaced with the Transmission-Gate

adder or with the Ripple adder, because both of these

structures have better results [5].

Brent-Kung adder requires 2(log N −1) stages. In Brent-Kung

adder using binary tree for carry propagation leads to

logarithmic delay. Its area is twice as large as ripple adder and

layout of the cells is very compact. Once carry signals are

ready, sum bits derived in constant time. It is good for wide

adders. Carry-Look-Ahead adder calculates carries in advance.

Limited fan-in for NAND gate is less than or equal to 5. It is

impractical for Ci with i >4 and need 2-level CLA with block

size k. CLA compared to Ripple-Carry adder is Faster, but

delay is still linear and has larger area. The limitation is that it

cannot go beyond 4 bits of look-ahead and large p, g fan-out

slows down carry generation. Carry-Select adder calculates

two cases simultaneously. Sum computed in one step after the

intermediate carry signals are ready. Area overhead is about an

additional carry path and a multiplexer (not the whole adder)

and about 30% more than a Ripple-Carry. Its delay is

sub-linear [9]. According to the simulation and synthesis

results, the adder topology which has the best compromise

between area, delay and power dissipation is carry look-ahead

adder and it is suitable for high performance and low-power

circuits. So the fastest adder is Carry-Select with the penalty

of area. Carry-Skip adder improves on the delay of a

Ripple-Carry adder with little effort compared to other adders.

Carry-Select adder is one of the fastest adders to perform

arithmetic operations. From the structure of CSL adder there

is a scope for reducing the area and delay.

Fig. 11. Brent-Kung adder synthesis result by Synplify technology view.

Fig. 12. Brent-Kung adder synthesis result by Leonardo.

Fig. 13. Brent-Kung adder synthesis result _critical path.

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 76

Appendix1

Sunplify synthesis reports of Brent-Kung adder

Brent-Kung plg file of synplify

@P: Worst Slack : -6.187

@P: System - Estimated Frequency : 61.8 MHz

@P: System - Requested Frequency : 100.0 MHz

@P: System - Estimated Period : 16.187

@P: System - Requested Period : 10.000

@P: System - Slack : -6.187

@P: Total Area : 103.0

Rev8(brent_kung.htm)

Worst Path Information

Path information for path number 1:

 Requested Period: 10.000

 = Required time: 10.000

 - Propagation time: 16.187

 = Slack (critical) : -6.187

 Number of logic level(s): 12

 Starting point: B[15:0] / B[0]

 Ending point: Sum[15:0] / Sum[11]

 The start point is clocked by System [rising]

 The end point is clocked by System [rising]

Total path delay (propagation time + setup) of 16.187 is

2.867(17.7%) logic and 13.320(82.3%) route.

Brent_kung.areasrr

Report for cell Brent_Kung_ADDER.verilog

Cell usage:

 cell count area count*area

 IB33 33 0.0 0.0

 OB33PH 17 0.0 0.0

...

TOTAL 132 103.0

Leonardo synthesis reports of Brent-Kung adder

Auto optimization area

Cell: Brent_Kung16 View: INTERFACE Library: work

**

 Cell Library References Total Area

AN21 CUB 15 x 1 9 gates

AND2 CUB 16 x 1 10 gates

EN1 CUB 15 x 1 12 gates

EO1 CUB 1 x 1 1 gates

IN2 CUB 32 x 0 10 gates

OA21 CUB 16 x 1 12 gates

ON21 CUB 1 x 1 1 gates

 Number of ports : 50

 Number of nets : 129

 Number of instances : 96

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 54

 Number of accumulated instances : 96

Delay

 Critical Path Report

Critical path #1, (path slack = 1.8):

NAME GATE ARRIVAL LOAD

A(0)/ 0.00 0.00 up 0.11

ipg16_ix1/Q AND2 0.29 0.29 up 0.11

ipg16_ix359/Q IN2 0.13 0.41 dn 0.05

ipg16_ix7/Q OA21 0.40 0.81 dn 0.14

77 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

ix431/Q AN21 0.29 1.10 up 0.14

ix3/Q IN2 0.17 1.27 dn 0.06

ix452/Q AN21 0.30 1.57 up 0.14

ix7/Q IN2 0.17 1.74 dn 0.06

ix426/Q AN21 0.30 2.04 up 0.14

ix11/Q IN2 0.17 2.21 dn 0.06

ix457/Q AN21 0.32 2.53 up 0.16

ix15/Q IN2 0.17 2.70 dn 0.06

ix421/Q AN21 0.30 3.01 up 0.14

ix19/Q IN2 0.17 3.17 dn 0.06

ix466/Q AN21 0.32 3.49 up 0.16

ix23/Q IN2 0.17 3.67 dn 0.06

ix416/Q AN21 0.30 3.97 up 0.14

ix27/Q IN2 0.17 4.14 dn 0.06

ix475/Q AN21 0.32 4.46 up 0.16

ix31/Q IN2 0.17 4.63 dn 0.06

ix411/Q AN21 0.32 4.95 up 0.16

ix35/Q IN2 0.17 5.13 dn 0.06

ix484/Q AN21 0.30 5.43 up 0.14

ix39/Q IN2 0.17 5.60 dn 0.06

ix406/Q AN21 0.30 5.90 up 0.14

ix43/Q IN2 0.17 6.07 dn 0.06

ix493/Q AN21 0.32 6.39 up 0.16

ix47/Q IN2 0.17 6.56 dn 0.06

ix401/Q AN21 0.32 6.88 up 0.16

ix51/Q IN2 0.17 7.05 dn 0.06

ix502/Q AN21 0.30 7.36 up 0.14

ix55/Q IN2 0.17 7.53 dn 0.06

ix396/Q AN21 0.30 7.83 up 0.14

ix95/Q EN1 0.33 8.16 up 0.02

S(15)/ 0.00 8.16 up 0.00

data arrival time 8.16

data required time (default specified) 10.00

data required time 10.00

data arrival time 8.16

slack 1.84

Delayoptimization

delay

data required time 10.00

data arrival time 7.99

slack 2.01

area

Cell Library References Total Area

AN21 CUB 31 x 1 19 gates

AND2 CUB 16 x 1 10 gates

EN1 CUB 15 x 1 12 gates

EO1 CUB 1 x 1 1 gates

IN2 CUB 48 x 0 15 gates

ON21 CUB 1 x 1 1 gates

 Number of ports : 50

 Number of nets : 145

 Number of instances : 112

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 57

 Number of accumulated instances : 112

area optimization

area

Cell Library References Total Area

AN21 CUB 15 x 1 9 gates

AND2 CUB 16 x 1 10 gates

EN1 CUB 15 x 1 12 gates

EO1 CUB 1 x 1 1 gates

IN2 CUB 31 x 0 10 gates

OA21 CUB 16 x 1 12 gates

ON21 CUB 1 x 1 1 gates

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 78

 Number of ports : 50

 Number of nets : 128

 Number of instances : 95

 Number of references to this view : 0

Total accumulated area :

 Number of gates : 54

 Number of accumulated instances : 95

Delay

data required time 10.00

data arrival time 8.16

slack 1.84

One sample script of these four adders

Brent-Kung adder

.tcl file

puts {

 Compile and Simulate script for divider

 Provided by Mahdi N. Bojnordi

}

cd ../sim/pre_syn

set library_file_list {

 design_library {../../model/Verilog/Brent_Kung16.v}

 test_library {../../test/ Brent_Kung16_test.v }

}

set top_level work.brent_test

set wave_patterns {

 /*

}

set wave_radices {

 hexadecimal {A,B,Cin,Sum,Cout}

}

set PrefMain(font) {

 Courier 10 roman normal

}

compilation

vlib work

foreach {library file_list} $library_file_list {

 foreach file $file_list {

 if [regexp {.vhdl?$} $file] {

 vcom -93 $file

 } else {

 vlog $file

 }

 }

}

simulation

eval vsim $top_level

If waves are required

if [llength $wave_patterns] {

 noview wave

 foreach pattern $wave_patterns {

 add wave $pattern

 }

 configure wave -signalnamewidth 1

 foreach {radix signals} $wave_radices {

 foreach signal $signals {

 catch {property wave -radix $radix $signal}

 }

 }

}

run the simulation

run -all

79 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

puts {

 job finished.

}

Verilog source codes for adders

Carry-Look-Ahead adder with test bench

module cla_16(a, b, c_in, sum, c_out, gen_out, prop_out);

input [15:0] a, b; // numbers to add

input c_in; // carry in

output [15:0] sum; // sum

output c_out; // carry of 16-bit addition

output gen_out; // generate of 16-bit addition

output prop_out; // propagate of 16-bit addition

wire [3:0] part_carry; // calculated carry_out of

 //each 4-bit part

wire [3:0] part_gen; // generate of each 4-bit part

wire [3:0] part_prop; // propagate of each 4-bit part

 // Make instances to calculate generates and

propagates.

 // First 4 instances calculate generate and propagate

 // for each 4-bit part. Last instance calculates

 // generate and propagate for all 16 bits.

gen_prop gp0((a[3:0] & b[3:0]), (a[3:0] | b[3:0]),part_gen[0],

part_prop[0]);

gen_prop gp1((a[7:4] & b[7:4]), (a[7:4] | b[7:4]),part_gen[1],

part_prop[1]);

gen_prop gp2((a[11:8] & b[11:8]), (a[11:8] |

b[11:8]),part_gen[2], part_prop[2]);

gen_prop gp3((a[15:12] & b[15:12]), (a[15:12] |

b[15:12]),part_gen[3], part_prop[3]);

gen_prop gp(part_gen, part_prop, gen_out, prop_out);

// Make instances to calculate carries for each 4-bit part

carry c(part_gen, part_prop, c_in, part_carry);

assign c_out = part_carry[3];

// make 4-bit adders to do additions

assign sum[3:0] = a[3:0] + b[3:0] + c_in;

assign sum[7:4] = a[7:4] + b[7:4] + part_carry[0];

assign sum[11:8] = a[11:8] + b[11:8] + part_carry[1];

assign sum[15:12] = a[15:12] + b[15:12] + part_carry[2];

endmodule

module carry(gens_in, props_in, c_in, carries);

input [3:0] gens_in; // generate for each of 4 parts

input [3:0] props_in; // propagate for each of 4 parts

input c_in; // carry in

 output [3:0] carries; // carry out for each of 4 parts

function [3:0] get_carries;

input [3:0] gens_in, props_in;

input c_in;

reg [3:0] carries;

integer i;

begin

 for (i = 0; i <= 3; i = i + 1)

 if (i == 0)

 carries[i] = gens_in[i] | props_in[i] & c_in;

 else

 carries[i] = gens_in[i] | props_in[i] &

 carries[i-1];

 get_carries = carries;

end

endfunction

assign carries = get_carries(gens_in, props_in, c_in);

endmodule

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 80

module gen_prop(gens_in, props_in, gen_out, prop_out);

input [3:0] gens_in; // generate for each of 4 parts

input [3:0] props_in; // propagate for each of 4 parts

output gen_out, prop_out;

function [1:0] get_gen_and_prop;

input [3:0] gens_in, props_in;

reg prop, gen;

integer i;

begin

 for (i = 0; i <= 3; i = i + 1) begin

 if (i == 0) begin

 gen = gens_in[i];

 prop = props_in[i];

 end else begin

 gen = gens_in[i] | props_in[i] & gen;

 prop = props_in[i] & prop;

 end

 end

get_gen_and_prop = {gen, prop};

end

endfunction

assign {gen_out, prop_out} = get_gen_and_prop(gens_in,

props_in);

endmodule

//////simulation

module cla_test;

reg [15:0] A, B; // numbers to add

reg C_IN; // carry in

trireg [15:0] SUM; // sum

trireg C_OUT; // carry of 16-bit addition

trireg GEN_OUT; // generate of 16-bit addition

trireg PROP_OUT; // propagate of 16-bit addition

cla_16 adder1 (A, B, C_IN, SUM, C_OUT, GEN_OUT,

PROP_OUT);

initial

begin

 $monitor("%0d SUM = %b A = %b B = %b C_IN = %b

C_OUT = %b, GEN_OUT = %b, PROP_OUT = %b",

 $time, SUM, A, B, C_IN, C_OUT, GEN_OUT,

PROP_OUT);

 A = 16'b0000000000000000;

 B = 16'b0110011001100110;

 C_IN = 0;

 #10 A = 16'b1001100110011001;

 #10 B = 16'b0110011001100111;

 #10 C_IN = 0; B = 16'b0110011001100110;

 #10 A = 16'b0000000000000000; B =

16'b0000000000000000;

 #10 C_IN = 0; A = 16'b0000000000000001; B =

16'b0000000000000001;

 #10 $finish;

end

endmodule

Brent-Kung adder with test bench

module black (pg, pg0, pgo);

 input [1:0] pg, pg0;

 output [1:0] pgo;

 assign pgo[1] = pg[1] & pg0[1];

 assign pgo[0] = (pg0[0] & pg[1]) | pg[0];

endmodule

///

module gray (pg, pg0, pgo);

81 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

 input [1:0] pg;

 input pg0;

 output pgo;

 assign pgo = (pg0 & pg[1]) | pg[0];

endmodule

//

module xor16 (A, B, S);

 input [15:0] A, B;

 output [15:0] S;

 assign S = A ^ B;

endmodule

//

module pg16 (A, B, pg15, pg14, pg13, pg12, pg11, pg10, pg9,

pg8, pg7, pg6, pg5, pg4, pg3, pg2, pg1, pg0);

 input [15:0] A, B;

 output [1:0] pg15, pg14, pg13, pg12, pg11, pg10, pg9, pg8,

pg7, pg6, pg5, pg4, pg3, pg2, pg1, pg0;

 assign pg15 = {(A[15] ^ B[15]), (A[15] & B[15])};

 assign pg14 = {(A[14] ^ B[14]), (A[14] & B[14])};

 assign pg13 = {(A[13] ^ B[13]), (A[13] & B[13])};

 assign pg12 = {(A[12] ^ B[12]), (A[12] & B[12])};

 assign pg11 = {(A[11] ^ B[11]), (A[11] & B[11])};

 assign pg10 = {(A[10] ^ B[10]), (A[10] & B[10])};

 assign pg9 = {(A[9] ^ B[9]), (A[9] & B[9])};

 assign pg8 = {(A[8] ^ B[8]), (A[8] & B[8])};

 assign pg7 = {(A[7] ^ B[7]), (A[7] & B[7])};

 assign pg6 = {(A[6] ^ B[6]), (A[6] & B[6])};

 assign pg5 = {(A[5] ^ B[5]), (A[5] & B[5])};

 assign pg4 = {(A[4] ^ B[4]), (A[4] & B[4])};

 assign pg3 = {(A[3] ^ B[3]), (A[3] & B[3])};

 assign pg2 = {(A[2] ^ B[2]), (A[2] & B[2])};

 assign pg1 = {(A[1] ^ B[1]), (A[1] & B[1])};

 assign pg0 = {(A[0] ^ B[0]), (A[0] & B[0])};

endmodule

///

module Brent_Kung16 (A, B, Cin, S, Cout);

 input [15:0] A, B;

 input Cin;

 output [15:0] S;

 output Cout;

 // First generate the propigate and generate signals for each

bit

 wire [1:0] r1c16, r1c15, r1c14, r1c13, r1c12, r1c11, r1c10,

r1c9;

 wire [1:0] r1c8, r1c7, r1c6, r1c5, r1c4, r1c3, r1c2, r1c1;

 pg16

ipg16(.A(A), .B(B), .pg15(r1c16),.pg14(r1c15),.pg13(r1c14),

 .pg12(r1c13),.pg11(r1c12),.pg10(r1c11),.pg9(r1c10),.pg

8(r1c9),

 .pg7(r1c8),.pg6(r1c7),.pg5(r1c6),.pg4(r1c5),.pg3(r1c4),

 .pg2(r1c3),.pg1(r1c2),.pg0(r1c1));

 // First row

 wire [1:0] r2c15, r2c13, r2c11, r2c9, r2c7, r2c5, r2c3;

 wire r2c1;

 black ir1c15(.pg(r1c15), .pg0(r1c14), .pgo(r2c15));

 black ir1c13(.pg(r1c13), .pg0(r1c12), .pgo(r2c13));

 black ir1c11(.pg(r1c11), .pg0(r1c10), .pgo(r2c11));

 black ir1c9(.pg(r1c9), .pg0(r1c8), .pgo(r2c9));

 black ir1c7(.pg(r1c7), .pg0(r1c6), .pgo(r2c7));

 black ir1c5(.pg(r1c5), .pg0(r1c4), .pgo(r2c5));

 black ir1c3(.pg(r1c3), .pg0(r1c2), .pgo(r2c3));

 gray ir1c1(.pg(r1c1), .pg0(Cin), .pgo(r2c1));

 // Second row

 wire [1:0] r3c15, r3c11, r3c7;

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 82

 wire r3c3;

 black ir2c15(.pg(r2c15), .pg0(r2c13), .pgo(r3c15));

 black ir2c11(.pg(r2c11), .pg0(r2c9), .pgo(r3c11));

 black ir2c7(.pg(r2c7), .pg0(r2c5), .pgo(r3c7));

 gray ir2c3(.pg(r2c3), .pg0(r2c1), .pgo(r3c3));

 // Third row

 wire [1:0] r4c15;

 wire r4c7;

 black ir3c15(.pg(r3c15), .pg0(r3c11), .pgo(r4c15));

 gray ir3c7(.pg(r3c7), .pg0(r3c3), .pgo(r4c7));

 // Fourth row

 wire r5c15, r5c11;

 gray ir4c15(.pg(r4c15), .pg0(r4c7), .pgo(r5c15));

 gray ir6c11(.pg(r3c11), .pg0(r4c7), .pgo(r5c11));

 // Fifth row

 wire r6c13, r6c9, r6c5;

 gray ir5c13(.pg(r2c13), .pg0(r5c11), .pgo(r6c13));

 gray ir5c9(.pg(r2c9), .pg0(r4c7), .pgo(r6c9));

 gray ir5c5(.pg(r2c5), .pg0(r3c3), .pgo(r6c5));

 // Sixth row

 wire r7c14, r7c12, r7c10, r7c8, r7c6, r7c4, r7c2;

 gray ir6c14(.pg(r1c14), .pg0(r6c13), .pgo(r7c14));

 gray ir6c12(.pg(r1c12), .pg0(r5c11), .pgo(r7c12));

 gray ir6c10(.pg(r1c10), .pg0(r6c9), .pgo(r7c10));

 gray ir6c8(.pg(r1c8), .pg0(r4c7), .pgo(r7c8));

 gray ir6c6(.pg(r1c6), .pg0(r6c5), .pgo(r7c6));

 gray ir6c4(.pg(r1c4), .pg0(r3c3), .pgo(r7c4));

 gray ir6c2(.pg(r1c2), .pg0(r2c1), .pgo(r7c2));

 // Finaly produce the sum

 xor16

ixor16(.A({r5c15,r7c14,r6c13,r7c12,r5c11,r7c10,r6c9,r7c8,r4

c7,r7c6,

r6c5,r7c4,r3c3,r7c2,r2c1,Cin}), .B({r1c16[1],r1c15[1],r1c14[

1],

r1c13[1],r1c12[1],r1c11[1],r1c10[1],r1c9[1],r1c8[1],r1c7[1],r

1c6[1],

 r1c5[1],r1c4[1],r1c3[1],r1c2[1],r1c1[1]}), .S(S));

 // Generate Cout

 gray gcout(.pg(r1c16), .pg0(r5c15), .pgo(Cout));

endmodule

//

module brent_test;

 reg [15:0] a,b; // numbers to add

 reg cin; // carry in

 wire[15:0] s; //sum

 wire cout; //cout

 Brent_Kung16 bk16(a, b, cin, s, cout);

 initial

 begin

 a=16'b1010101010101010;

 b=16'b0101010101010101;

 cin=1'b1;

 #10 b=16'b1010101010101010;

 #20 a=16'b0101010101010101;

 #30 cin=1'b0;

 end

endmodule[8]

Carry-Select adder

83 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

module fulladder(s,cout,a,b,cin);

 input a,b,cin;

 output s,cout;

 assign s = ((a ^ b) ^ cin);

 assign cout = ((a & b)| (cin & (a ^ b)));

endmodule

///

 module adder4(s, cout, a, b, cin);

 input [3:0] a;

 input [3:0] b;

 input cin;

 output [3:0] s;

 output cout;

 fulladder fulladder0(s[0],cout0, a[0], b[0], cin);

 fulladder fulladder1(s[1],cout1, a[1], b[1], cout0);

 fulladder fulladder2(s[2],cout2, a[2], b[2], cout1);

 fulladder fulladder3(s[3],cout, a[3], b[3], cout2);

 endmodule

///

 module csa (s, cout, a, b, cin, c0, c1);

 input [15:0] a;

 input [15:0] b;

 input cin,c0,c1;

 output [15:0] s;

 output cout ;

 wire [8:0] x0 ;

 wire [8:0] x1;

 wire [4:0] w1;

 wire [4:0] w2;

 wire [3:0] w3;

 wire [3:0] w4;

 wire [4:0] w7;

 wire [4:0] w8;

 wire [4:0] w9;

 wire [4:0] w10;

 wire [4:0] w11;

 wire [8:0] w12;

 wire cout1 ;

 wire w5 ;

 wire w6 ;

 adder4 a1(s[3:0], cout1, a[3:0], b[3:0], cin);

 adder4 a2(w1[3:0], w1[4], a[7:4], b[7:4], c0);

 adder4 a3(w2[3:0], w2[4], a[7:4], b[7:4], c1);

 adder4 a4(w3[3:0], w5, a[11:8], b[11:8], c0);

 adder4 a5(w4[3:0], w6, a[11:8], b[11:8], c1);

 adder4 a6(w7[3:0], w7[4], a[15:12], b[15:12], c0);

 adder4 a7(w8[3:0], w8[4], a[15:12], b[15:12], c1);

assign w9[4:0]= cout1 ? {w2[4:0]} : (~ cout1) ?

{w1[4:0]} : 5'b00000;

assign w10[4:0]= w6 ? {w8[4:0]} : (~ w6) ? {w7[4:0]} :

5'b00000;

assign w11[4:0]= w5 ? {w8[4:0]} : (~ w5) ? {w7[4:0]} :

5'b00000;

 assign x0 [8:4] = w10 [4:0] ;

 assign x0 [3:0] = w3 [3:0] ;

 assign x1[8:4] = w11 [4:0] ;

 assign x1[3:0] = w4 [3:0] ;

 assign w12[8:0]= w9[4] ? {big_in_1} : (~ w9[4]) ? {x0} :

9'b0_0000_0000;

 assign s[7:4] = w9[3:0];

 assign s[15:8] = w12[7:0];

 American Journal of Circuits, Systems and Signal Processing Vol. 1, No. 3, 2015, pp. 69-85 84

 assign cout = w12[8];

 endmodule

 module test_csa;

 reg [15:0] a;

 reg [15:0] b;

 reg cin,c0,c1;

 wire [15:0] s;

 wire cout;

 csa csa1 (s, cout, a, b, cin, c0,c1);

 initial

 begin

 a=16'b1010101010101010;

 b=16'b0101010101010101;

 cin=1'b1;

 c0 = 1'b0;

 c1 = 1'b1;

 #10 b=16'b1010101010101010;

 #20 a=16'b0101010101010101;

 #30 cin=1'b0;

 end

 endmodule[9]

Carry-Skip adder

module padder(carry,sum,po,a,b,c);

 output carry;

 output sum;

 output po;

 input a;

 input b;

 input c;

 assign sum=a^b^c;

 assign po=a|b;

 assign carry=a&b|c&po;

endmodule

//

module csblock(cout,Sum,A,B,cin);

 output cout;

 output [3:0] Sum;

 input [3:0] A;

 input [3:0] B;

 input cin;

 wire [3:0] P,C;

padder a0 (C[0],Sum[0],P[0],A[0],B[0],cin);

padder a1 (C[1],Sum[1],P[1],A[1],B[1],C[0]);

padder a2 (C[2],Sum[2],P[2],A[2],B[2],C[1]);

padder a3 (C[3],Sum[3],P[3],A[3],B[3],C[2]);

assign cout=C[3]|(cin&P[0]&P[1]&P[2]&P[3]);

endmodule

///

module csa(cout,Sum,A,B,cin);

 output cout;

 output [15:0] Sum;

 input [15:0] A;

 input [15:0] B;

85 Negin Mahani: High Level Modeling and Relative Comparison of Different Full Adder Structures

 input cin;

 wire [3:0] carries;

csblock b0 (carries[0],Sum[3:0],A[3:0],B[3:0],cin);

csblock b1 (carries[1],Sum[7:4],A[7:4],B[7:4],carries[0]);

csblock b2 (carries[2],Sum[11:8],A[11:8],B[11:8],carries[1]);

csblock b3 (cout,Sum[15:12],A[15:12],B[15:12],carries[2]);

endmodule

///

 module csa_test;

 reg [15:0] A;

 reg [15:0] B;

 reg cin;

 wire [15:0] Sum;

 wire cout;

 csa csa1 (cout,Sum,A,B,cin);

 initial

 begin

 a=16'b1010101010101010;

 b=16'b0101010101010101;

 cin=1'b1;

 c0 = 1'b0;

 c1 = 1'b1;

 #10 b=16'b1010101010101010;

 #20 a=16'b0101010101010101;

 #30 cin=1'b0;

 end

 endmodule[10]

References

[1] B. Gilchrist et al., “Fast Carry Logic for Digital Computers,”
IRE Trans. EC-4, pp. 133-136, 1955.

[2] B. Gilchrist, J. H. Pomerene and S. Y. Wong, “Fast Carry Logic
for Digital Computers”, IRE Trans. Elec. Comp., Vol. EC-4, no
4, pp. 133-136, 1955.

[3] J. F. Kruy, “A Fast Conditional Sum Adder Using Carry Bypass
Logic,” AFIPS Con5 Proceedings, Vol. 27, FJCC, pp. 695-703,
1965

[4] M. Lehman, and N. Burla, “Skip Techniques for High-speed
Carry-Propagation in Binary Arithmetic Units,” IRE Trans.
EC-10, No. 4, pp. 691-698, 1961.

[5] H. Ling, “High-speed Binary Parallel Adder,” IEEE Trans.
Comp., EC-15, No.5, pp. 799-802. 1966.

[6] Mi Lu John ,“Arithmetic and logic in computer systems” Wiley
& Sons, Ap - Computers - 246 Pages Pp 61-63, 2005

[7] Sarika A. Parate, Prof- R. N. Mandavgane , “Review of delay
and power efficient Carry-Select adder using pipeline”,
International Engineering Journal For Research &
Development, Volume 2 Issue 1, pp. 16-22, 2012.

[8] Chan, P.K. Schlag, M.D.F.; Thomborson, C.D.; Oklobdzija,
V.G.,” Delay optimization of carry-skip adders and block
carry-lookahead adders” Computer Arithmetic, 1991.
Proceedings., 10th IEEE Symposium, pp 154 - 164 Grenoble
1991

[9] EE 5324–VLSI Design II Kia Bazargan University of
Minnesota Part II: Adders Pp 68, retrieved from
http://www.ece.umn.edu/users/kia/Courses/EE5324/index.html
adders. pdf, 2014.

[10] High Speed Adder, retrieved from :
http://l3.elfak.ni.ac.rs/viewvc/int_sab_two_level_cl/doc/backg
round/HighSpeedAdder.pdf?revision=1.1, 2014.

[11] Brent-Kung Adder, retrieved from :http://en. academic. ru
/dic.nsf/enwiki/1292234, 2014.

