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Abstract 

The paper presents the task of recognizing environmental sounds for audio surveillance and security applications. A various 

characteristics have been proposed for audio classification, including the popular Mel-frequency cepstral coefficients (MFCCs) 

which give a description of the audio spectral shape. However, it exist some temporal-domain features. These last have been 

developed to characterize the audio signals. Here, we make an empirical feature analysis for environmental sounds 

classification and propose to use the log-Gabor-filters algorithm to obtain effective time-frequency characteristics. The Log-

Gabor filters-based method utilizes time-frequency decomposition for feature extraction, resulting in a flexible and physically 

interpretable set of features. The Log-Gabor filters-based feature is adopted to supplement the MFCC features to yield higher 

classification accuracy for environmental sounds. Extensive experiments are performed to prove the effectiveness of these joint 

features for environmental sound recognition. Besides, we provide empirical results showing that our method is robust for 

audio surveillance Applications. 

Keywords 

Environmental Sounds, MFCC, Log-Gabor Filters, Spectrogram, SVM Multiclass 

Received: April 24, 2015 / Accepted: July 1, 2015 / Published online: July 10, 2015 

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license. 

http://creativecommons.org/licenses/by-nc/4.0/ 

 

1. Introduction 

Many previous works have focused on the recognition of 

speech and music while research on environmental sounds 

recognition has received little attention. Some efforts have 

been emerged toward systems which investigate 

environmental classification [1-2]. 

Besides, the courant life sounds are very versatile, that 

composed of sounds generated in domestic, business, and 

outdoor environments. 

The high variability of sounds makes such model difficult to 

manipulate, the majority of works concentrate on specific 

classes of sounds. 

There is system that is able to classify environmental sounds. 

This system possesses a great importance for surveillance 

and security applications [2]. The aim is the identification of 

some current life sounds class. Among the eventual 

applications [3-4-5-6], we quote: the cars classification 

according to their noise, the fire arms sounds identification to 

warn the police, the distress sounds identification for the 

remote monitoring systems and medical security [7]. 

In this paper, the system elaborated is adapted for the 

classification of a few number of environmental sounds 

classes and is interested by a sound-based surveillance 

application. 

In standard sound classification methods [8-9], the 

classification of a sound is usually composed of two phases. 

First, a set of features is generated using various techniques 

to characterizing the signal to be classified. 

Then, for these feature vectors, a classifier is used to assign a 
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pattern to a class. The select of proper features is necessary to 

obtain an effective system performance. 

In this work, our focus is to characterize the environmental 

sounds types. Generally, audio signals have been 

characterized by the popular Mel-frequency cepstral 

coefficients (MFCCs) or time-frequency representations like 

the wavelet transform.  

In the literature, the filter bank used for MFCC computation 

possesses some significant properties of the human auditory 

system. The use of MFCCs for structured sounds in particular 

speech and music have been obtained a good performance to 

characterizing signal, but their performance degrades in the 

presence of noise. 

We can conclude also that MFCCs are not capable to 

analyzing signals that possessed a flat spectrum. 

Most of environmental sounds have a broad flat spectrum 

that may not be effectively modeled by MFCCs. 

Courant life sounds form a large and diverse variety of 

sounds, like explosions and gunshots which have a strong 

temporal domain signatures, these sounds have a broad flat 

spectrum which are sometimes not effective to model by 

MFCCs. 

In this work, we propose to use the Log-Gabor filters (LGF) 

in addition to MFCCs coefficients to analyze environmental 

sounds. Log-Gabor filters (LGF) offer a way to extract time-

frequency domain features that can classify sounds. They 

provides an excellent simultaneous localization of spatial and 

frequency information [10]. The process contains finding the 

decomposition of a signal from spectro-temporal components, 

which would yield the best set of functions to obtain an 

approximate representation. The log-Gabor filters 

coefficients contain relevant and effective information. They 

consist in signal decomposition into spectro- temporal atoms, 

which are efficient to form an approximate representation. 

The log-Gabor filter has been used in a variety of 

applications, such as speech detection [11] and Stress 

emotion classification [10]. Log-Gabor filter has also been 

used in image genre classification [12].  

In [13] Gabor filters have been proposed, as the face 

identification techniques. Other works have used Gabor 

wavelets in the elastic comparison graphs [14] and in the 

correlation of Gabor filter representations [15]. 

Other studies have used Gabor filters for the fingerprint 

identification [16], for the segmentation of the texture [17], 

for identification of the iris [18] and identification of face 

[19].  

In our proposed approach,  the log-Gabor filter is used for 

feature extraction in the context of environmental sound [20]. 

We investigate a combination of features and ensure an 

empirical evaluation on ten environment classes. 

 It is demonstrated that the most frequently-used features do 

not always efficient with environmental sounds while the 

Log-Gabor filters-based features can be added to frequency 

domain features (MFCC) to produce higher classification 

accuracy for courant life sounds. 

This paper is organized as follows. Some interesting previous 

work is discussed in Section 2. Section 3 presents a review of 

different audio feature extraction methods. The log-Gabor 

filter algorithm is described and the combination of the log-

Gabor filters based features and MFCCs is presented in 

Section 4. Section 5 describes experimental evaluation of 

selected features. Finally conclusions and perspectives are 

presented in Section 5. 

2. Background Review 

A major problem in construction of an automatic audio 

classification system is the choice of signal characteristics 

which may lead an effective discrimination between various 

environmental sounds.  

Unlike music or speech, generally environmental sounds 

possess unstructured data including of contributions from a 

variety of sources. In this case, it is difficult to constitute a 

generalization to quantify unstructured data.  

Because of the variety and diversity sound, it exist many 

features that can be used, to describe environmental sound.  

Generally, acoustic characteristics can be divided into two 

domains: time-domain and frequency-domain.  

In order to construct a robust classification system, the 

suitable choice of these features is essential.  

For each type of environmental sound, it exist some 

underlying structures, so we used log-Gabor filters to 

discover them [20]. 

Various types of courant life sounds possess their own unique 

characteristics, which enables to notice that the 

decomposition into sets of basis vectors to be noticeably 

different from one another. 

We have demonstrated in [20] that the log-Gabor filters 

constitute an efficient way of selecting a small group of basis 

vectors that promotes the production of meaningful features 

in order to characterize an environmental sound [21]. 

The log-Gabor filters algorithm was originally applied to 

reassigned spectrogram of environmental sounds [22].We are 

used time-frequency representations in particular sound 

spectrogram, which offers new opportunities for promising 

parameterization [23]. 
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The advantage of the time-frequency representation is the 

ability to bring out the useful structure of each type of sound 

[10]. 

In order to improve the readability and eliminate interference 

of spectrogram we proposed to apply the reassignment 

method. This method relies on the intervention of an 

adequate field of vectors which moves the values of the time-

frequency distribution so that at the end, reading becomes 

simplified [24]. 

The reassignment approach refocuses spectrogram energy 

components and corrects the low concentration time-

frequency [22]. 

Log-Gabor filters: 

The log-Gabor filters consist in signal decomposition into 

spectro- temporal atoms. They have many useful and 

important properties, in particular the capacity to decompose 

an image into its underlying dominant spectro-temporal 

components [25-26]. The log-Gabor function in the 

frequency domain can be presented by the transfer function
 ���, �� with polar coordinates [10]: 

���, �� � ��	
�	����. �	����	� 	���	                (1) 

Where 	��	
�	���� � ������� ��⁄ �� ����⁄ , is the frequency 

response of the radial component and 	�	����	���� �
��� � �� �!⁄ �� 2#$�⁄ �, represents the frequency response of 

the angular filter component. 

We note that ��, ��  are the polar coordinates, %!	represents 

the central filter frequency, �!  is the orientation angle, 

#�	 and 	#$	 represent the scale bandwidth and angular 

bandwidth respectively.  

The log-Gabor feature representation |'��, (�|),�  of a 

magnitude spectrogram *��, (�  was calculated as a 

convolution operation performed separately for the real and 

imaginary part of the log-Gabor filters: 

+��'��, (��),� � *��, (� ∗ +�-���), ���.            (2) 

/0�'��, (��),� � *��, (� ∗ /0-���) , ���.           (3) 

��, (�	 represent the time and frequency coordinates of a 

spectrogram, and 0 � 1,… ,3� � 2  and 	4 � 1,… , 3$ �
6	where	3�  devotes the scale number and 3$ the orientation 

number. This was followed by the magnitude calculation for 

the filter bank outputs: 

|'��, (�| � 67+�-'��, (�.),�	8
� 9 /0�'��, (��),�	    (4) 

The feature vectors are calculated by an averaged operation 

for each 12 log-Gabor filter appropriate. The purpose being 

to obtain a single output array [10]: 

:';��, (�: � <
=�	=>∑ |'��, (�|),�=�,=>)@<�@<

   m            (5) 

We processed three approaches. In the first approach, a 

reassigned spectrogram is generated from sound. Next, it 

goes through single log-Gabor filter extraction with 2 scales 

�1,2� and 6 orientations�1,2,3,4,5,6� . Then, we apply mutual 

information in order to get an optimal feature. This feature is 

finally used in the classification (figure 1). 

The second approach consists of the same steps as first one, 

but with an averaged 12 log-Gabor 

filters D�<<, �<�, … , �<E, ��<, … , ��F, ��EG , instead of single 

log-Gabor filter (figure 2).  

In the third approach the idea is to segment each spectrogram 

into 3 patches. Intuitively, for each patch, averaged 12 log-

Gabor filters are calculated. After that we apply a mutual 

information selection to pass then in the classifier. In the 

classification phase, we use SVM, in One-Against-One 

configuration with the Gaussian kernel (figure 3). For more 

information we can see [22]. 

 

Figure 1. Feature extraction using single log-Gabor filter. 

 

Figure 2. Feature extraction using 12 log-Gabor filters 
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Figure 3. Feature extraction using 3 spectrogram patches with 12 log-Gabor filters. 

3. Features Extraction with 
Log-Gabor Filter and MFCCs 

In order to have a better classification, the good choice of 

feature is essential. The used features should be robust, stable, 

and physically interpretable.  

In this paper we will show that the use of log-Gabor filters 

added to MFCCs is very efficient for classification system. 

The advantages of the combination of Log-Gabor filters and 

MFCCs are the ability to capture the inherent structure within 

each type of environmental sounds.  

Our aim is to use log-Gabor filters added to MFCCs as a tool 

for feature extraction for classification. Nevertheless, the 

combination of Log-Gabor filters and MFCCs provides an 

excellent improvement in the recognition results compared to 

results obtained when using only log-Gabor filters. 

We chose to use the concatenation of 12 log-Gabor filters. 

This choice is justified in our previous work [20], where we 

have shown that the concatenation of 12 log-Gabor filters is 

obtained the best classification rate. 

In the literature, we remarked that among the suitable audio 

features for combination are the Mel-frequency cepstral 

coefficients (MFCC). 

In [21], the addition of MFCC to Matching Pursuit achieved 

the best classification rate compared to other audio features 

such as the short-time energy, the zero crossing rate and the 

spectral flux. 

We remarked also in [27] that the use of MFCC in addition 

with temporal and wavelet based features improve the system 

performance. 

Log-Gabor filters are parameterized in frequency and 

orientation. They have the advantage of extracting localized 

and oriented frequency information. [28], [29]. They provide 

an excellent simultaneous spatial and frequency localization 

of information. They have several important properties, 

particularly the ability to decompose a spectrogram into its 

dominant spectral and spatial components [30]. 

However, we chose the log Gabor filter to extract relevant 

descriptors for two reasons. First, the log-Gabor functions 

don’t have continuous component, which helps to improve 

the contrast of edges, and the borders of spectrograms. 

Second, the transfer function of the log-Gabor function has a 

long tail on the extremity of high frequency, which allows us 

to obtain wide spectral information with localized spatial 

extent and contributes, thus, to preserve the true structures of 

edges of spectrograms [29]. 

The important aspect of the function of log-Gabor is that, 

contrary to the Gabor function, the frequency response of the 

log Gabor is symmetric on a logarithmic axis. 

Log-Gabor filters can be constructed with a given bandwidth. 

This bandwidth can be optimized to produce a filter with 

minimal spatial extent. 

It was shown that the functions of log-Gabor has extensive 

queues at high frequency extremities should be able to 

encode spectrogram more effectively through better 

representation of high frequency components. 

4. Experimental Evaluation 

4.1. Experimental Setup 

We examined the performance of the features and make an 

experimental evaluation on ten different types of current life 
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sounds as shown in table 1. 

The corpus sound samples used derived from different sound 

libraries available [31-32]. Otherwise, using several sound 

collections is important and very necessary to create a 

representative, large, and enough diverse databases. 

The used database contains impulsive and harmonic sounds 

for example phone rings (Pr) and children voices (Cv). All 

signals have a resolution of 16 bits and a sampling frequency 

of 44100 Hz that is characterized by a good temporal 

resolution and a wide frequency band, which are both 

necessary to cover harmonic as well as impulsive sounds.  

Table 1. Classes of sounds and number of samples in the database used for 

performance evaluation. 

Classes Train Test Total 

Door slams (Ds) 208 104 312 

Explosions (Ep) 38 18 56 

Glass breaking (Gb) 38 18 56 

Dog barks (Db) 32 16 48 

Phone rings (Pr) 32 16 48 

Children voices (Cv) 54 26 80 

Gunshots (Gs) 150 74 224 

Human screams (Hs) 48 24 72 

Machines (Mc) 38 18 56 

Cymbals (Cy) 32 16 48 

Total 670 330 1000 

 

 

 

Figure 4. Audio waveform and Spectrograms of 8 classes environmental sound. 
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The ten environment types considered were: Door slams, 

Explosions, Glass breaking, Dog barks, Phone rings, 

Children voices, Gunshots, Human screams, Machines, 

Cymbals. 

In addition, we remark the presence of some classes sound 

very similar to human listeners such as explosions (Ep) are 

pretty similar to gunshots (Gs) (figure 4), hence, it is 

sometimes not obvious to discriminate between them. They 

are deliberately differentiated to test capacity of the system in 

separating very similar classes of sounds. 

A type of sounds is required by the application, sounds are 

non-still, mainly of short durations, mainly impulsive audio 

signals, and presenting a big diversity intra-classes and a lot 

of similarity inter-classes. Most of the impulsive signals 

introduced into the base have duration of 1s, but some sounds 

possess much superior durations which can achieve 6s (for 

certain samples of explosions and the Human screams).  

We examined the performance of 12 log-Gabor filters 

features, MFCC (12), a concatenation of the log-Gabor filters 

features and MFCCs. 

We adopted the Gaussian Mixture Model (GMM) and the 

Support Vector Machines (SVM) and in the classification 

phase.  

We begin with GMMs which for each data class was 

modeled as a mixture of several Gaussian clusters. The 

conditional probabilities were computed with formula below:  

��� ∖ IJ� � K��� ∖ L�M�L�
)N

O@<
 

where IJ is the data points for each class, 0J is the number 

of components, M�L� is the prior probability, and ��� ∖ L� is 

the mixture component density. Then, the EM algorithm [33] 

was generated to obtain the maximum likelihood parameters 

of each class. 

We used also a Support Vector Machine, in One-against-One 

and One-against-All configuration [34].  

The idea is to employ a kernel function 	P-�� , �O. , where 

P-�� , �O. satisfies the Mercer conditions [35]. We chose a 

Gaussian RBF kernel:  

Q(�, �R) = ��� S�TU�UVT
�

��� W.                         (6) 

Where .  indicates the Euclidean norm in	ℜ
. 

Ω allows to perform a mapping of a large space in which the 

linear separation of data is possible [36]. 

Ω:ℜ
 ⟶\ 

-�� , �O. ⟼ Ω(��)Ω-�O. = Q-�� , �O.             (7) 

The \  space reproduces kernel Hilbert space (RKHS) of 

functions. Thus, the dual problem is presented by a 

Lagrangian formulation as follows: 

maxa(b) =Kb� − <
�

)

�@!
K (�(Ob�bOQ-�� , �O.|�@<,…,)
)

�,O@<
 

Under the following constraints:  

 ∑ b�(� = 0)�@< , 0 ≤ b� ≤ e.           (8) 

The b�
	

are called Lagrange multipliers and f  is a 

regularization parameter which is used to allow classification 

errors. The decision function will be formulated as follows: 

%(�) = *g4(∑ b�)�@< (�Q(�, ��) + h)        (9) 

We adopted One-against-One and One-against-All 

approaches [37]. 

4.2. Experimental Results 

In this section we begin by the presentation of classification 

results which obtained when using only one feature in the 

feature vector. 

The MFCC feature [38] is computed from each frame of the 

reassigned spectrogram. We used the Hamming analysis 

window, with length 25 ms and 50% overlap.  

Concerning the computation of log-Gabor filters, a 

concatenation of 12 filters was applied to the reassigned 

spectrogram. The 12 log Gabor filters are derived from 2 

scales and six orientations. In order to improve the time-

frequency representation and eliminate interferences 

reassigned spectrogram is used [22]. 

Table 2. Recognition Rates Using Various Features Applied to GMMs, and 

M-SVMs- Based Classifiers. 

Features 
Recognition Rate % 

GMM  M-SVM(1-vs-1) M-SVM(1-vs-all) 

12MFCCs   81.52  83.87 81.82 

12 Log-Gabor 

filters 
 83.98 92.07 86.23 

12MFCCs +12 

log-Gabor filters 
 91.68 94.55 92.82 

Evaluations of the M-SVM-based system using a Gaussian 

RBF kernel with individual features are compared to the 

results obtained by the GMM-based classifier. 

Table II contains the results. We performed a comparison 

using GMMs, M-SVM(1-vs-1), and M-SVM(1-vs-all). 

According to the results, presented in table 2, the 1-vs-1 
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classifier performs better than 1-vs-all and GMM classifiers.   

We remark also that none of the individual features are able 

to attain very high performance. In this case, the use of 

features combination is a solution, as presented in the next 

subsection. 

Table 3 presented results obtained with feature combinations. 

Reference [21] shows that adding spectral features can 

improve the classification performance. Thus, we added 

MFCCs to log-Gabor filters. 

Table 3. Recognition Rates for Various Features Applied to 1-vs-1 SVMs-

Based Classifier. 

Classes 

Features 

MFCCs% 
12Log Gabor 

filters % 

MFCC+12 Log-Gabor 

filters % 

Ds 75.78 99.35 99.76 

Ep 86.45 62.50 88.66 

Gb 88.63 78.57 92.37 

Db 84.56 87.50 90.68 

Pr 88.94 83.33 91.87 

Cv 88.64 87.50 93.38 

Gs 76.58 98.21 99.35 

Hs 85.36 94.11 96.75 

Mc 79.88 89.28 94.83 

Cy 83.89 95.83 97.85 

In our previous work [22-20], we have shown that the 

concatenation of 12 log-Gabor filters is achieved the best 

classification rate compared to using a single filter and the 

three patches spectrogram with the concatenation of 12 log-

Gabor filters. This justifies the use of the concatenation of 12 

log-Gabor filters in addition to 12 MFCCs. 

The results for the combination of 12 MFCCs and 12 log-

Gabor filters are evaluated by the M-SVM-based classifier 

and HMM-based classifier. 

As shown in Fig, we compare the overall classification rate 

using log-Gabor filters, MFCC and their combination for 10 

classes of environmental sounds.  

We notice that MFCC features obtain better results than log-

Gabor features in four of the examined classes while 

performing poor results in the case of six other classes; like 

Door slams (Ds), Dog barks (Db), Gunshots (Gs), Human 

screams (Hs), Machines (Mc) and Cymbals (Cy). 

Log-Gabor filters features achieve better overall, with the 

exception of two classes (Explosions (Ep) and Glass breaking 

(Gb) they have the lowest classification rate at 62.50%. 

It exist some example in particular the explosion and 

gunshots classes, which are very similar and contains higher 

frequencies. According Tab. we note that MFCCs obtain the 

classification rate 83.87% of this category, log-Gabor filters 

features were able to yield a classification of rate of 92.07%.  

In order to better characterize these sounds, it is preferable to 

use narrow spectral peaks. MFCC is insufficient to encode 

narrow-band structure, but log Gabor filters features are 

effective in doing so. 

By adding together Log-Gabor filters and MFCC features, 

we were able to reach an averaged accuracy rate of order 

94.55% in discriminating ten classes.  

Besides, there are eight classes that have a recognition rate 

higher than 90%. We notice that MFCC and Log-Gabor 

filters features complement each other to obtain the best 

overall performance. 

For classification, we used SVM multi-class: one-versus one.  

We can note that the information of MFCCs coefficients is 

very efficient and suitable to be added to log-Gabor filters. 

Our experiments confirm this conclusion.  

As shown in [27], the fundamental frequency may be similar 

for different classes for environmental sounds; for this raison 

and the low dimension of the tested temporal features (ZCR 

and the average energy) and the frequency features (SRF and 

SC), these features fail to represent data information. This 

justifies the use of MFCCs. 

The results presented in Table 3 show that log-Gabor filters 

features are not able to discriminate between classes 

successfully when used alone like Explosions (Ep) Glass 

breaking (Gb).The combination of MFCCs and log-Gabor 

filters separate some classes very well. 

Generally, combinations including spectro -temporel domain 

are useful, because they combine information of the two 

complementary domains. 

MFCCs are spectral features, they characterize the frequency 

contents. Nerveless, log-Gabor filters features provide 

temporal and spectral information and also are mostly 

informative for high frequencies. This justifies the use of 12 

MFCCs in addition to 12 log- Gabor filters. As can be shown 

in table 3, this combination improves the discrimination 

ability. 

Using One -Against-One SVMs based classifier provides 

high classification accuracy for the feature combinations. 

Moreover, the most informative feature combinations have a 

large dimension that does not allow the use of GMMs 

approach, while SVMs are less sensitive to the dimension of 

the data space. 

4.3. Comparison of State-of-the-Art 

Methods 

Our experimental result was compared to the state-of-the-art 

methods results. 
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By comparison with classic descriptors of environmental 

sounds system already established, we find that the proposed 

features which based on combination of 12 log-Gabor filters 

and 12 MFCCs is positioned in the first ranks (92.82%). 

Indeed, as illustrated in table 4 , the combination between 13 

MFCCs, 1 RASTA-PLP, 5 Amplitude Descriptor (AD), 1 

Spectral Flux (SF), 1 Loudness [39] has given an average 

classification rate of the order 88.2%. 

In [7], the classification system used as features 16 MFCCs+ 

energy+∆ 9 ∆∆, achieves a recognition rate is of the order 

89.3%. 

Moreover, the system of Chu et al. [21] provided a 

combination of matching pursuit (MP) and MFCCs features. 

The obtained averaged classification rate is of order 83.9 %. 

Other work [27] used a combination between MFCCs, energy, 

Log energy, SRF (SpectralRoll-Off-Point and SC (Spectral 

Centroide). The averaged classification rate is of the order 

90.64%. 

The comparison with these works proves the advantageous of 

combining the MFCCs and the 12 log-Gabor filters for 

environmental sound recognition. 

Experimental results show that our features are efficient and 

suitable in spite of their limited number. This can be partly 

explained by the fact that the spectro-temporal features have 

the advantage to combine two complementary domains 

spectral and temporal. 

Table 4. Comparison of state-of-the-art methods. 

Features 
Classification 

Rate(%) 

13 MFCCs, 1 RASTA-PLP, 5 Amplitude Descriptor 

(AD), 1 Spectral Flux (SF), 1 Loudness [39] 
88.20 

16 MFCCs+energy+∆ 9 ∆∆ [7] 89.30 

Matching Pursuit (MP) + MFCCs [21] 83.14 

MFCCs+energy+Log energy+SRF(SpectralRoll-Off-

Point+SC(Spectral Centroide) [27] 
90.64 

Adopted Descriptors using 12 log-Gabor filters+ 

12MFCCs 
92.82 

5. Conclusion 

The paper provides a feature extraction method that uses log-

Gabor filters to choose a set of spectro-temporel features, 

which is efficient and physically interpretable. 

Log-Gabor filters features can classify sounds where time 

and frequency features, are not able to capture discriminative 

properties of the sounds, features of high complexity, such as 

spectro-temporal coefficients, are well suitable for the 

environmental sounds classification. 

Our experiments proved the advantages of the log-Gabor 

filters and MFCCs combination in environmental sound 

classification. The combination with MFCCs ensures more 

discrimination performance. 

The use of SVMs provides a robust system in high 

dimensions. They are well based mathematically to get good 

generalization while retaining high classification accuracy.  

Using spectro-temporel features as well as the supervised 

classification method (SVM) gives the best discrimination 

between specific sound classes. 
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