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Abstract 

Ontology similarity calculation is important research topics in information retrieval and widely used in science and engineering. 

By analyzing the technology of fused lasso signal approximator, we propose the new algorithm for ontology similarity measure 

and ontology mapping. Via the ontology sparse vector learning, the ontology graph is mapped into a line consists of real numbers. 

The similarity between two concepts then can be measured by comparing the difference between their corresponding real 

numbers. The experiment results show that the proposed new algorithm has high accuracy and efficiency on ontology similarity 

calculation and ontology mapping. 

Keywords 

Ontology, Similarity Measure, Ontology Mapping, Sparse Vector, Fused Lasso Signal Approximator 

Received: April 2, 2015 / Accepted: April 17, 2015 / Published online: May 8, 2015 

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license. 

http://creativecommons.org/licenses/by-nc/4.0/ 

 

1. Introduction 

As a conceptual shared and knowledge representation model, 

ontology has been used in knowledge management, image 

retrieval and information retrieval search extension. 

Furthermore, acted as an effective concept semantic model, 

ontology is employed in other fields except computer science, 

including medical science, social science, pharmacology 

science, geography science and biology science (see Przydzial 

et al., [1], Koehler et al., [2], Ivanovic and Budimac [3], 

Hristoskova et al., [4], and Kabir et al., [5] for more detail). 

The ontology model is a graph G = (V,E) such that each vertex 

v expresses a concept and each directed edge e=vivj denote a 

relationship between concepts vi and vj. The aim of ontology 

similarity measure is to get a similarity function Sim: V×V →
{0} such that each pair of vertices is mapped to a 

non-negative real number. Moreover, the aim of ontology 

mapping is to obtain the link between two or more ontologies. 

In more applications, the key of ontology mapping is to get a 

similarity function S to determine the similarity between 

vertices from different ontologies.  

In recent years, ontology similarity-based technologies were 

employed in many applications. By virtue of technology for 

stable semantic measurement, a graph derivation 

representation based trick for stable semantic measurement is 

presented by Ma et al., [6]. Li et al., [7] determined an 

ontology representation method which can be used in online 

shopping customer knowledge with enterprise information. A 

creative ontology matching system is proposed by 

Santodomingo et al., [8] such that the complex 

correspondences are deduced by processing expert knowledge 

with external domain ontologies and in view of novel 

matching technologies. The main features of the food 

ontology and several examples of application for traceability 

aims were reported by Pizzuti et al., [9]. Lasierra et al., [10] 

pointed out that ontologies can be employed in designing an 

architecture for taking care of patients at home. More ontology 

+
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learning algorithms can refer to [11-22]. 

In this paper, we present the new ontology similarity 

computation and ontology mapping algorithms relied on 

sparse vector learning and fused lasso signal approximator. In 

terms of the sparse vector, the ontology graph is mapped into a 

real line and vertices are mapped into real numbers. Then the 

similarity between vertices is measured by the difference 

between their corresponding real numbers. 

2. Basic Idea 

Let V be a instance space. For any vertex in ontology graph G, 

its information (including its attribute, instance, structure, 

name and semantic information of the concept which is 

corresponding to the vertex and that is contained in its vector) 

is denoted by a vector with p dimension. Let v= 1{ , , }pv v⋯  be 

a vector which is corresponding to a vertex v. For facilitating 

the expression, we slightly confuse the notations and denote v 

both the ontology vertex and its corresponding vector. The 

purpose of ontology learning algorithms is to get an optimal 

ontology function f: V → ℝ , then the similarity between two 

vertices is determined by the difference between two real 

numbers which they correspond to. The essence of such 

algorithm is dimensionality reduction, that is to say, use one 

dimension vector to represent p dimension vector. From this 

point of view, an ontology function f can be regarded as a 

dimensionality reduction map f: 
p
ℝ → ℝ . 

In the real implement, the sparse ontology function can be 

denoted as 

( )f vβ =
1

p

i i

i

v β
=
∑ ,             (1) 

where β = 1( , , )pβ β⋯  is a sparse vector. For determining the 

ontology function f, we should get the sparse vector β  first. 

3. Main Ontology Algorithms 

In this section, we present our main ontology sparse vector 

learning algorithms for ontology similarity measuring and 

ontology mapping by virtue of fused lasso signal 

approximator. 

The one-dimensional fussed lasso signal approximator is 

defined by 

1

1
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where ( , )l y β =
1

( , )
p

i

i

l y β
=
∑ . By introducing the auxiliary 

variables 
i

θ  , i = 2,…, p, the following linearly constrained 

problem is trivially equivalent to (2), 

1
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s. t. 
i

θ =
1i i

β β −− , i = 2,…, p. 

Set c>0, the augmented Lagrangian is defined by 

( , , )
c

L xβ θ =
1
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where 2( , , )px x x= ⋯  is the Lagrange multiplier. 

Considering the following saddle-point problem, 

* * *Search   , , ,xβ θ  

* * * * *s. t. ( , , ) ( , , )c cL x L xβ θ β θ≤  
*( , , )cL xβ θ≤ , , , xβ θ∀ . (3) 

By the duality theory, 
*β  is a solution of (2) if and only if 

* * *( , , )xβ θ  is a solution of (3) for some *θ  and *
x . 

 The popular algorithm for searching the saddle point is 

described as follows: 

Initialize 0
x , arbitrarily. 

For k=1,2,… 

( , )k kβ θ =
1

,

arg min ( , , )k

cL x
β θ

β θ −
 

k

ix =
1

1( )k k k k

i i i ix c θ β β−
−+ − + , i=2,…, p. 

In general, it is difficult to minimize ( , , )k

cL xβ θ  over β  

and θ  simultaneously, but it might be easier to minimize 

over β  when fixing θ  and vice versa. In this case, we can 

alternate these two steps until convergence. It turns out that we 

can update β  and θ just once when the other is fixed, 

resulting in the following algorithm (raised by [23]) 

Initialize 0
x  and 0θ , arbitrarily. 

For k=1, 2,… 

kβ =
1 1arg min ( , , )k k

cL x
β

β θ − −
, 

kθ = 1arg min ( , , )k k

cL x
θ

β θ − , 
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k

ix =
1

1( )k k k k

i i i ix c θ β β−
−+ − + , i=2,…, p. 

For example, apply the second algorithm to (2) with quadratic 

loss, the augmented Lagrangian is given by 

( , , )
c

L xβ θ =
2
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If 
1

λ =0, fixed 1kθ −  and 1k
x

− , the minimization over β  is a 

quadratic problem and all components of β  can be found 

simultaneously by solving a linear system B bβ = . 

For 
1

λ > 0, it is more difficult to update β directly. 

Fortunately, for quadratic loss, solution for FLSA with 
1

λ > 0 

can be obtained by thresholding the solution for FLSA with 

1
λ = 0, and thus we only consider 

1
λ = 0. 

With β =
kβ  and x= 1k

x
−  fixed, the minimization over θ  is 

a lasso regression with orthogonal design and thus we have the 

simple component-wise soft thresholding updating rule 

k

iθ = 2ˆ ˆ( )( )
2

i isign
λθ θ +− ,           (4) 

where ˆ
iθ =

1

1

k

k k i

i i

x

c
β β

−

−− −  and ( )a +  expresses the positive 

part of a. 

For quadratic loss, the example shows that both update for β
and for θ  can be computed efficiently for 

1
λ = 0. However, 

for more general loss for 
1

λ > 0, it is difficult to update β 

directly and thus in ontology implementation we do not use 

the first and the second Algorithms. By introducing another 

set of auxiliary variables iγ , i=1,…,p, the optimizing 

problem (2) can be expressed as 

1
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s. t. i iγ β= , i =1,…, p. 

jθ = 1j jβ β −− , j= 2,…, p. 

The corresponding (doubly) augmented Lagrangian is 
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With the newly defined Lagrangian in (5), it can similarly 

modify the saddle-point problem (3) in an obvious way and it 

can be shown that the saddle-point problem is the same as the 

original FLSA problem (2). Accordingly, the following 

algorithms for finding the saddle point which directly extends 

the first Algorithm and the second Algorithm respectively 

(raised by [23]). 

Initialize 0
x , arbitrarily. 

For k=1, 2,… 

( , , )k k kγ β θ =
1 1

, ,

arg min ( , , , )k k

cL x
γ β θ

γ β µ − −
 

k
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1( )k k k k
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k
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1 ( )k k k

i i icµ γ β− + − , i=1,…, p. 

Initialize 0
x , 

0β  and 0θ , arbitrarily. 

For k=1, 2,… 

kγ  =
1 1 1 1arg min ( , , , , )k k k k

cL x
γ

γ β θ µ− − − −
 

kβ =
1 1 1arg min ( , , , , )k k k k

cL x
β

γ β θ µ− − −
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kθ = 1 1arg min ( . , , , )k k k k

cL x
θ

γ β θ µ − − , 

k

ix =
1

1( )k k k k

i i i ix c θ β β−
−+ − + , i=2,…, p, 

k

iµ =
1 ( )k k k

i i icµ γ β− + − , i=1,…, p. 

4. Experiments 

Two simulation experiments on ontology similarity measure 

and ontology mapping are designed in this section. For detail 

implement, we first obtain the optimal sparse vector using the 

algorithm raised in our paper, and then the ontology function 

is yielded by (1). 

4.1. Experiment on Biology Data 

The “Go” ontology O1 was constructed by http: //www. 

geneontology. org. (Fig. 1 presents the graph structure of O1). 

We use P@N (defined by Craswell and Hawking [24]) to 

determine the equality of the experiment result. 

Beside our ontology algorithm, ontology algorithms in Huang 
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et al., [12], Gao and Liang [13] and Gao and Gao [14] are also 

acted to “Go” ontology. Then, we compare the precision ratio 

which we have deduced from the four tricks. Some parts of 

experiment results can be seen in Table 1. 

Table 1. The experiment data for ontology similarity measure 

 P@3 average precision ratio P@5 average precision ratio 
P@10 average precision 

ratio 

P@20 average precision 

ratio 

Our Algorithm  47.18% 54.48% 64.81% 84.98% 

Algorithm in [12] 46.38% 53.48% 62.34% 74.59% 

Algorithm in [13] 43.56% 49.38% 56.47% 71.94% 

Algorithm in [14] 42.13% 51.83% 60.19% 72.39% 

 

As we can see in the Table 1, when N= 3, 5, 10 or 20, the 

precision ratio in view of our algorithm is higher than that got 

by tricks which has been determined in Huang et al., [12], Gao 

and Liang [13] and Gao and Gao [14]. 

 

Figure 1. “Go” ontology 

4.2. Experiment on Physical Education Data 

For our second experiment, we use physical education 

ontologies O2 and O3 (the graph structures of O2 and O3 are 

raised in Fig. 2 and Fig. 3 respectively). The purpose of this 

experiment is to construct the ontology mapping between O2 

and O3. Again, P@N criterion is applied to measure the 

equality of the experiment results. 

Furthermore, ontology technologies in Huang et al., [12], Gao 

and Liang [13] and Gao et al., [16] are employed to “physical 

education” ontology. At last, we compare the precision ratio 

that we have obtained from four tricks. Table 2 present several 

results for this experiment. 

 

Figure 2. “Physical Education” Ontology O2 

 

Figure 3. “Physical Education” Ontology O3. 

Table 2. The experiment data for ontology mapping 

 P@1 average precision ratio P@3 average precision ratio P@5 average precision ratio 

Our Algorithm  67.74% 78.49% 90.32% 

Algorithm in [12] 61.29% 73.12% 79.35% 

Algorithm in [13] 69.13% 75.56% 84.52% 

Algorithm in [16] 67.74% 77.42% 89.68% 



18 Yun Gao and Wei Gao:  Ontology Similarity Measuring and Ontology Mapping Algorithms Based on Fused Lasso  

Signal Approximator 

 

From what we have obtained in Table 2, we find it more 

efficient to use our Algorithm than algorithms determined by 

Huang et al., [12], Gao and Liang [13] and Gao et al., [16], 

especially where N is sufficiently large. 

5. Conclusions 

In our article, a new algorithm for ontology similarity measure 

and ontology mapping application is presented by virtue of 

fused lasso signal approximator. Furthermore, experiment 

results reveal that our new algorithm has high efficiency in 

both biology and physics education. The ontology algorithm 

presented in our paper illustrates the promising application 

prospects for ontology use. 
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