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Abstract 

With the rapid development of the information age, people are no longer satisfied with outdoor location-based services, and 

indoor localization has become a hot topic of discussion. Related technical personnel have also actively explored indoor 

positioning technology. At present, many indoor localization scenes are no longer a single single-layer environment, and 

position estimation is also required in a multi-layer environment. However, the existing work shows certain limitations to the 

problem of floor localization accuracy and computational complexity. This paper proposes a localization system capable of 

floor recognition. The system is divided into offline phase and online phase. In the offline phase, we deploy the Bluetooth APs 

to collect RSS signal strength values at the planned collection points and establish a local fingerprint database. Then use linear 

discriminant analysis to establish a floor recognition model. In the online stage, the floor location is determined first, and then 

the specific location of the target is obtained through the improved KNN algorithm. We collected real experimental data on two 

floors. Experimental results show that we can quickly and accurately locate a floor through a small amount of AP fingerprint 

information, reduce the complexity of localization calculations, and accurately locate the target's specific location on the floor. 
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1. Introduction 

Most of the life of modern urban people is indoor activities. 

As the GPS localization system is interfered by obstacles 

such as walls [1], indoor localization services cannot be 

realized. Indoor localization and navigation service LBS [2, 3] 

has become the focus of current market demand competition. 

The service quality of indoor LBS depends to a large extent 

on the localization accuracy of users [4]. In this context, 

Wi-Fi localization, Bluetooth localization, RFID localization, 

UWB (Ultra-Wideband) localization, infrared technology, 

ultrasonic and other technologies have entered the market 

one after another, contributing many effective location 

service solutions to the indoor localization needs of different 

industries. 

Wi-Fi indoor localization technology [5, 6] is a relatively 

mature and widely used technology at present, and locates by 

collecting Wi-Fi signal values. The Wi-Fi localization 

technology is applied to small-scale indoor localization, and 

has low cost, but it is easily affected by many environmental 

factors. Bluetooth technology [7, 8] is not very different from 

Wi-Fi, and it is also greatly interfered by noise signals. 

However, its advantages are the small size, short distance, 

low power consumption, and easy integration in mobile 

devices such as mobile phones. The basic principle of RFID 

localization [9, 10] is to read the characteristic information of 

the target RFID tag through a set of fixed readers, and then 

determine the position of the tag through the nearest 
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neighbour method, multilateral localization method, etc. 

However, RFID localization technology cannot achieve 

real-time tracking. UWB localization technology [11, 12] has 

strong multipath resolution and high accuracy, and the 

localization accuracy can reach sub-meter level. UWB pulse 

signals are analysed and positioned by multiple sensors using 

TDOA and AOA localization algorithms. However, its cost is 

relatively high and cannot be universally covered and used. 

Infrared technology [13] is used for indoor localization with 

high accuracy, but infrared can only spread through 

line-of-sight, with very poor penetration, so the cost is high 

and the localization effect is limited. Ultrasonic indoor 

localization technology [14, 15] mainly adopts reflective 

ranging method, with high localization accuracy and simple 

structure. However, it is greatly affected by multipath effects 

and non-line-of-sight propagation, and the frequency of the 

supersonic wave is affected by the Doppler effect and 

temperature. 

However, most indoor localization research is based on a 

two-dimensional plane, that is, a single-story environment. 

For the localization of multi-storey buildings, only 

two-dimensional space technology cannot meet the demand. 

Since shopping malls, hospitals, airports, factories, etc. are 

all multi-story environments, floor localization is also crucial. 

At present, some methods have been proposed for floor 

recognition, such as Bayesian classifiers, artificial neural 

networks, and so on. However, some of these methods have 

high computational complexity and will affect the real-time 

performance of localization. Of course, some people directly 

use the barometer in the mobile phone for floor recognition. 

But as far as we know, quite a few mobile phones do not 

have a barometer. Therefore, we designed a two-story 

building recognition model based on Bluetooth fingerprint 

and LDA. In the offline phase, we collect the Bluetooth 

signal values of the two floors and train the floor recognition 

model through linear discriminant analysis. In the online 

phase, we first locate the floor through the trained model, and 

then locate the specific location using the improved KNN 

algorithm. Our main contributions are as follows: 

We analysed the average RSS error between two floors of the 

same AP, and found that the classification model method to 

distinguish floors is feasible. We used the linear discriminant 

analysis method, and only selected 2 APs to complete the 

distinction between the two floors, and established a 

recognition model. The accuracy of floor recognition is 98% 

to 100%. 

After localization the floor, we used the improved KNN 

algorithm to locate the specific location, and the localization 

accuracy was about 2.45m. Compared with the localization 

accuracy of 3.89m without floor localization, an increase of 

about 37%. 

The model we designed has low cost, low computational 

complexity and high localization accuracy. 

2. Method and Model 

Our experiment is divided into two phases: offline phase and 

online phase. The offline phase is responsible for collecting 

data and training the model, and the online phase realizes the 

output of the target localization position. 

2.1. Offline Phase 

(1) Establish a local fingerprint database 

Assume that N APs are placed in a multi-story building 

environment, and the signal values of these N APs can be 

received in all areas of all floors. In each floor, we set M 

sampling points to collect the RSS signal strength value of 

the AP. The locations of the sampling points on the upper and 

lower floors correspond to each other vertically, that is, the 

coordinates of the sampling points on each floor are the same. 

The collected RSS values are saved in the local database. The 

label structure of each sampling point in the database is 

���, ���, where �� represents the i-th floor and �� represents 

the j-th sampling point. The fingerprint structure is 

�	

�, 	

�, … , 	

��, where 	

� represents the collected 

signal strength value of the n-th AP. 

(2) LDA-based identification of two-story building 

First, we deployed 4 APs in a two-story experimental 

environment, and measured the average error of the same AP 

between adjacent floors. The average RSS difference 

between adjacent floors of the same AP is between 9.25 dBm 

and 23.11 dBm. Therefore, based on the difference of RSS 

values in each floor, it is feasible to distinguish the number of 

floors through classification model. In this article, we use a 

classic method "Linear Discriminant Analysis" (LDA) as the 

floor classification method. 

LDA is a supervised dimensionality reduction technology. 

The idea of LDA can be summarized in one sentence: after 

projection, the intra-class variance is the smallest, and the 

inter-class variance is the largest. It means to project the label 

data set at low latitudes. After projection, it is hoped that the 

projection points of the same category of data are as close as 

possible, and the distance between the category centre points 

of different categories of data is as large as possible. For 

example, for a two-dimensional feature data set, the 

two-dimensional data set is projected onto a straight line. For 

this reason, we derive and calculate the "generalized 

Rayleigh quotient" according to the idea of LDA. The result 

of the best classification is the projection result when the 

generalized Rayleigh quotient obtains the maximum, that is, 

the distance within the class is the smallest and the distance 
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between the classes is the largest. Then when classifying the 

new sample data, the samples will be projected onto the same 

straight line. We determine the category based on the 

distance from the projection point to the centre point of the 

category. In the indoor multi-floor experiment, the greater the 

number of APs, the higher the computational complexity, so 

we choose the AP with the best classification performance as 

the attribute of floor classification. 

For the application of this article, we use LDA for binary 

classification. In detail, suppose that in a two-story building, 

we deploy N APs and M sampling points on each floor. Our 

data set D = ����, ���, ���, ���, … , ��� , ���� , where any 

sample �� is an N-dimensional vector, �� ∈ �0,1�,	� = � ×
 . Since there are two types of data, we only need to project 

the data onto a straight line. Our projection line is a vector !, 

for any sample �� and the category centre point "��# = 0,1�, 
they are projected as $%��  and $%"� here. LDA needs to 

make the distance between the category centres of different 

categories of data as large as possible, so we maximize 

‖$%"' − $%"�‖��. At the same time, we need to make the 

projection points of the same type of data as close as possible, 

that is, to minimize the covariance of the projection points of 

the same sample, which is to minimize $% ∑ $ +' $% ∑ $�  

(∑ 	� is the covariance matrix of the i-th sample). Therefore, 

we need to find a projected straight line so that it meets the 

above conditions. The formula is as follows: 

+,-	max	1 	 2 =	
314567145839

9

14 ∑ 1:6 14∑ 18
           (1) 

where $ is the projection vector, " is the category centre, 

and ∑ 		 is the covariance matrix. 

Transform (1) to get: 

+,-	max	1 	 2 =	
14�56758��56758�41

14�∑ :6 ∑ �6 1
        (2) 

We set the intra-class divergence matrix S1  and the 

inter-class divergence matrix S<: 

	S1 = ∑ +' ∑ = ∑ �� − "'�=∈>6� �� − "'�% +∑ �� −=∈>8
"�� �� − "��%                 (3) 

	S< = �"' − "���"' − "��%	            (4) 

So we continue to transform (2) to get: 

+,-	max	1 	 2 =	
14?@1

14?A1
              (5) 

where J is called the generalized Rayleigh quotient. The 

larger the generalized Rayleigh quotient, the better the two 

categories can be distinguished. According to the properties 

of the generalized Rayleigh quotient, we get S1
7�S<$ =

	B$. Since the directions of S<$ and "' − "� are always 

parallel, let us set: S<$ = B�"' − "��. The two formulas are 

combined to obtain the calculation formula of $: 

ω = S1
7��"' − "��               (6) 

LDA uses the data set D to find the projection ! when J takes 

the maximum value to obtain the best floor two classification 

result. 

Obviously, the number of APs is the number of sample 

attributes, which largely determines the amount of 

calculation for floor classification. Therefore, we decided to 

select only two APs as features. While reducing the amount 

of calculation, we found through experiments that the 

classification effect of 2 APs is also very good. There are 

currently N Aps. We can choose two different APs as a group, 

and there are N × �N − 1�/2 groups in total. According to 

the two APs of each group, calculate the best projection ! 

and the generalized Rayleigh quotient J for this group. There 

are N × �N − 1�/2 groups $ and J. The larger the value of 

J, the better the classification effect of the two floors. 

Therefore, we select the group of APs with the largest J value 

as the characteristic attributes of the two floors, and the 

projection vector $  corresponding to this J is the best 

classification result of the two floors. 

2.2. Online Phase 

We measure the RSS value of the AP and input it into the floor 

classifier to obtain the floor location result. Then we perform 

specific location based on the improved KNN algorithm. We 

have n APs and m sampling points. The RSS sequence we 

measured is �	

�, 	

�, 	

G, … , 	

��. Find the Euclidean 

distance between this sequence and each coordinate point 

�H�, H�, … , HI� . We set the three points with the smallest 

distance ���, ���, ���, ���, ��G, �G� , and the distances are 

H�, H�, HG respectively. From this, we calculate the weight: 

	B� =
8
JK

8
J8
: 8J9

: 8JL

	� = 1,2,3             (7) 

According to (7), we calculate the final localization result 

��, ��: 

��, �� = B����, ��� + B����, ��� + BG��G, �G�      (8) 

3. Experiment and Analysis 

3.1. Experiment Environment 

The experimental environment is the two-story building of 

our school. We selected 300 square meters for each floor, a 

total of 600 square meters as the experimental area. The 

adjacent sampling points of each layer are separated by 1m, 

that is, there are 4 sampling points on a 1m × 1m grid. 
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There are 300 sampling points on each floor, and a total of 

600 sampling points on two floors. Measure the RSS value of 

1 minute at each sampling point, and then average the RSS 

value of this minute as the fingerprint of the sampling point. 

In actual measurement, not all areas can receive the signal 

value of all APs. Therefore, we set the RSS signal of the AP 

not received to -100dBm. At the same time, we found that the 

received RSS signal value is less than -100dBm, indicating 

that the AP signal is particularly weak. We set the value less 

than -100dBm to -100dBm. 

3.2. Analysis of the Experimental Results of 

Floor Recognition 

We first arranged 4 APs in two floors and measured the RSS 

values of these 4 APs at each sampling point. We train the 

model. Then we group the 4 APs in pairs, a total of 6 groups. 

For each group of AP, we calculate the generalized Rayleigh 

quotient J and its corresponding projection vector $. Table 1 

shows the values of the generalized Rayleigh quotient for 6 

groups of AP. 

According to Table 1, we can see that the combination of 

AP1 and AP4 has the largest generalized Rayleigh quotient. 

These two APs are the attributes of the optimal classification 

result. 

Table 1. J between two Aps. 

 AP2 AP3 AP4 

AP1 32.94 35.34 49.89 

AP2 X 42.23 24.39 

AP3 X X 28.68 

Using the combination of AP1 and AP4, we randomly 

selected 90 test points on the two floors, a total of 180 test 

points. The test result is shown in Figure 1. There are three 

prediction errors, and the recognition accuracy is 98.33%. 

 

Figure 1. The result of test. 

3.3. Localization Experiment Result Analysis 

After obtaining the location of the floor, we continue to 

locate the specific location on that floor. We select the AP on 

the floor and use the improved KNN algorithm to obtain the 

specific location of the target. For each prediction point, we 

selected the nearest 3 sampling points from the map and gave 

each sampling point a weight. The localization result is 

shown in Figure 2. The average localization error after floor 

recognition is 2.45m, while the average localization error 

without floor recognition is 3.89m. 

 

Figure 2. Comparison with or without floor localization. 
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4. Conclusion 

In a multi-floor, if you want to know where you are, floor 

recognition is the first step in localization. Based on 

theoretical analysis and experimental testing, this paper 

proposes a two-story building recognition model based on 

LDA. We first group the arranged APs in pairs and calculate 

their generalized Rayleigh quotient J respectively, and then 

select the group of APs with the largest J value as the 

attributes of the two floors. Then, we collected the fingerprint 

data of the two floors, which proved that the model we built 

can reduce the calculation cost while ensuring the high 

accuracy of floor recognition. After determining the floor 

location, we use an improved KNN algorithm to obtain 

specific location results. We compare the localization 

accuracy with floor recognition and the localization accuracy 

without floor recognition. The experimental results show that 

the localization accuracy through floor recognition is higher 

and the calculation cost is lower. 

Our research needs further expansion. When the floor area 

becomes larger, a small number of APs cannot meet the 

classification requirements. We need to increase the 

deployment of APs and the selection of attribute APs. When 

there are more floors, we need to build a new and more 

complex floor recognition model. In addition, we can also 

add motion recognition to it to trigger localization for 

real-time tracking when going up and down or taking an 

elevator. 
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