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Abstract

With the rapid development of the information age, people are no longer satisfied with outdoor location-based services, and
indoor localization has become a hot topic of discussion. Related technical personnel have also actively explored indoor
positioning technology. At present, many indoor localization scenes are no longer a single single-layer environment, and
position estimation is also required in a multi-layer environment. However, the existing work shows certain limitations to the
problem of floor localization accuracy and computational complexity. This paper proposes a localization system capable of
floor recognition. The system is divided into offline phase and online phase. In the offline phase, we deploy the Bluetooth APs
to collect RSS signal strength values at the planned collection points and establish a local fingerprint database. Then use linear
discriminant analysis to establish a floor recognition model. In the online stage, the floor location is determined first, and then
the specific location of the target is obtained through the improved KNN algorithm. We collected real experimental data on two
floors. Experimental results show that we can quickly and accurately locate a floor through a small amount of AP fingerprint
information, reduce the complexity of localization calculations, and accurately locate the target's specific location on the floor.
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industries.

1. Introduction

Wi-Fi indoor localization technology [5, 6] is a relatively

Most of the life of modern urban people is indoor activities. ~ mature and widely used technology at present, and locates by

As the GPS localization system is interfered by obstacles
such as walls [1], indoor localization services cannot be
realized. Indoor localization and navigation service LBS [2, 3]
has become the focus of current market demand competition.
The service quality of indoor LBS depends to a large extent
on the localization accuracy of users [4]. In this context,
Wi-Fi localization, Bluetooth localization, RFID localization,
UWB (Ultra-Wideband) localization, infrared technology,
ultrasonic and other technologies have entered the market
one after another, contributing many effective location
service solutions to the indoor localization needs of different
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collecting Wi-Fi signal values. The Wi-Fi localization
technology is applied to small-scale indoor localization, and
has low cost, but it is easily affected by many environmental
factors. Bluetooth technology [7, 8] is not very different from
Wi-Fi, and it is also greatly interfered by noise signals.
However, its advantages are the small size, short distance,
low power consumption, and easy integration in mobile
devices such as mobile phones. The basic principle of RFID
localization [9, 10] is to read the characteristic information of
the target RFID tag through a set of fixed readers, and then
determine the position of the tag through the nearest
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neighbour method, multilateral localization method, etc.
However, RFID localization technology cannot achieve
real-time tracking. UWB localization technology [11, 12] has
strong multipath resolution and high accuracy, and the
localization accuracy can reach sub-meter level. UWB pulse
signals are analysed and positioned by multiple sensors using
TDOA and AOA localization algorithms. However, its cost is
relatively high and cannot be universally covered and used.
Infrared technology [13] is used for indoor localization with
high accuracy, but infrared can only spread through
line-of-sight, with very poor penetration, so the cost is high
and the localization effect is limited. Ultrasonic indoor
localization technology [14, 15] mainly adopts reflective
ranging method, with high localization accuracy and simple
structure. However, it is greatly affected by multipath effects
and non-line-of-sight propagation, and the frequency of the
supersonic wave is affected by the Doppler effect and
temperature.

However, most indoor localization research is based on a
two-dimensional plane, that is, a single-story environment.
For the localization of multi-storey buildings, only
two-dimensional space technology cannot meet the demand.
Since shopping malls, hospitals, airports, factories, etc. are

all multi-story environments, floor localization is also crucial.

At present, some methods have been proposed for floor
recognition, such as Bayesian classifiers, artificial neural
networks, and so on. However, some of these methods have
high computational complexity and will affect the real-time
performance of localization. Of course, some people directly
use the barometer in the mobile phone for floor recognition.
But as far as we know, quite a few mobile phones do not
have a barometer. Therefore, we designed a two-story
building recognition model based on Bluetooth fingerprint
and LDA. In the offline phase, we collect the Bluetooth
signal values of the two floors and train the floor recognition
model through linear discriminant analysis. In the online
phase, we first locate the floor through the trained model, and
then locate the specific location using the improved KNN
algorithm. Our main contributions are as follows:

We analysed the average RSS error between two floors of the
same AP, and found that the classification model method to
distinguish floors is feasible. We used the linear discriminant
analysis method, and only selected 2 APs to complete the
distinction between the two floors, and established a
recognition model. The accuracy of floor recognition is 98%
to 100%.

After localization the floor, we used the improved KNN
algorithm to locate the specific location, and the localization
accuracy was about 2.45m. Compared with the localization
accuracy of 3.89m without floor localization, an increase of
about 37%.

Indoor Multi-floor Localization Based on Bluetooth Fingerprint and LDA

The model we designed has low cost, low computational
complexity and high localization accuracy.

2. Method and Model

Our experiment is divided into two phases: offline phase and
online phase. The offline phase is responsible for collecting
data and training the model, and the online phase realizes the
output of the target localization position.

2.1. Offline Phase
(1) Establish a local fingerprint database

Assume that N APs are placed in a multi-story building
environment, and the signal values of these N APs can be
received in all areas of all floors. In each floor, we set M
sampling points to collect the RSS signal strength value of
the AP. The locations of the sampling points on the upper and
lower floors correspond to each other vertically, that is, the
coordinates of the sampling points on each floor are the same.
The collected RSS values are saved in the local database. The
label structure of each sampling point in the database is
[Fi, G]-], where F; represents the i-th floor and G; represents
the j-th sampling point. The fingerprint structure is
[RSSy,RSS,, ..., RSS, ], where RSS,, represents the collected
signal strength value of the n-th AP.

(2) LDA-based identification of two-story building

First, we deployed 4 APs in a two-story experimental
environment, and measured the average error of the same AP
between adjacent floors. The average RSS difference
between adjacent floors of the same AP is between 9.25 dBm
and 23.11 dBm. Therefore, based on the difference of RSS
values in each floor, it is feasible to distinguish the number of
floors through classification model. In this article, we use a
classic method "Linear Discriminant Analysis" (LDA) as the
floor classification method.

LDA is a supervised dimensionality reduction technology.
The idea of LDA can be summarized in one sentence: after
projection, the intra-class variance is the smallest, and the
inter-class variance is the largest. It means to project the label
data set at low latitudes. After projection, it is hoped that the
projection points of the same category of data are as close as
possible, and the distance between the category centre points
of different categories of data is as large as possible. For
example, for a two-dimensional feature data set, the
two-dimensional data set is projected onto a straight line. For
this reason, we derive and calculate the "generalized
Rayleigh quotient" according to the idea of LDA. The result
of the best classification is the projection result when the
generalized Rayleigh quotient obtains the maximum, that is,
the distance within the class is the smallest and the distance
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between the classes is the largest. Then when classifying the
new sample data, the samples will be projected onto the same
straight line. We determine the category based on the
distance from the projection point to the centre point of the
category. In the indoor multi-floor experiment, the greater the
number of APs, the higher the computational complexity, so
we choose the AP with the best classification performance as
the attribute of floor classification.

For the application of this article, we use LDA for binary
classification. In detail, suppose that in a two-story building,
we deploy N APs and M sampling points on each floor. Our
data set D = {(xy,v1), (X2, ¥2), ., (X, Vi)}, where any
sample x; is an N-dimensional vector, y; € {0,1}, k = M X
N. Since there are two types of data, we only need to project
the data onto a straight line. Our projection line is a vector w,
for any sample x; and the category centre point p;(j = 0,1),
they are projected as w”x; and w”p; here. LDA needs to
make the distance between the category centres of different
categories of data as large as possible, so we maximize
lwTug — wTuqll3. At the same time, we need to make the
projection points of the same type of data as close as possible,
that is, to minimize the covariance of the projection points of
the same sample, which is to minimize w” Yow + w’ ¥; w
(3; is the covariance matrix of the i-th sample). Therefore,
we need to find a projected straight line so that it meets the
above conditions. The formula is as follows:
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where w is the projection vector, u is the category centre,
and ) is the covariance matrix.

Transform (1) to get:
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We set the intra-class divergence matrix S, and the
inter-class divergence matrix Sy:
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So we continue to transform (2) to get:
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where J is called the generalized Rayleigh quotient. The
larger the generalized Rayleigh quotient, the better the two
categories can be distinguished. According to the properties
of the generalized Rayleigh quotient, we get S, 'S,w =
aw. Since the directions of S,w and py, — yy; are always

parallel, let us set: S,w = a(uy — 11). The two formulas are
combined to obtain the calculation formula of w:

w = Sw_l(llo — 1) (6)

LDA uses the data set D to find the projection w when J takes
the maximum value to obtain the best floor two classification
result.

Obviously, the number of APs is the number of sample
attributes, which largely determines the amount of
calculation for floor classification. Therefore, we decided to
select only two APs as features. While reducing the amount
of calculation, we found through experiments that the
classification effect of 2 APs is also very good. There are
currently N Aps. We can choose two different APs as a group,
and there are N X (N — 1)/2 groups in total. According to
the two APs of each group, calculate the best projection w
and the generalized Rayleigh quotient J for this group. There
are NX (N —1)/2 groups w and J. The larger the value of
J, the better the classification effect of the two floors.
Therefore, we select the group of APs with the largest J value
as the characteristic attributes of the two floors, and the
projection vector w corresponding to this J is the best
classification result of the two floors.

2.2. Online Phase

We measure the RSS value of the AP and input it into the floor
classifier to obtain the floor location result. Then we perform
specific location based on the improved KNN algorithm. We
have n APs and m sampling points. The RSS sequence we
measured is [RSS;, RSS,, RSSs, ..., RSS,]. Find the Euclidean
distance between this sequence and each coordinate point
1,1, ..., 1,,]. We set the three points with the smallest
distance (xq,y1), (x2,¥5), (x3,y3), and the distances are
l,,1,, 15 respectively. From this, we calculate the weight:

1
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According to (7), we calculate the final localization result

(x):

(x,y) = a1 (x1,¥1) + ax(x3,¥2) + az(x3,y3) ®

3. Experiment and Analysis

3.1. Experiment Environment

The experimental environment is the two-story building of
our school. We selected 300 square meters for each floor, a
total of 600 square meters as the experimental area. The
adjacent sampling points of each layer are separated by Im,
that is, there are 4 sampling points on a 1m X 1m grid.
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There are 300 sampling points on each floor, and a total of
600 sampling points on two floors. Measure the RSS value of
1 minute at each sampling point, and then average the RSS
value of this minute as the fingerprint of the sampling point.
In actual measurement, not all areas can receive the signal
value of all APs. Therefore, we set the RSS signal of the AP
not received to -100dBm. At the same time, we found that the
received RSS signal value is less than -100dBm, indicating
that the AP signal is particularly weak. We set the value less
than -100dBm to -100dBm.

3.2. Analysis of the Experimental Results of
Floor Recognition

We first arranged 4 APs in two floors and measured the RSS
values of these 4 APs at each sampling point. We train the
model. Then we group the 4 APs in pairs, a total of 6 groups.
For each group of AP, we calculate the generalized Rayleigh

Indoor Multi-floor Localization Based on Bluetooth Fingerprint and LDA

quotient J and its corresponding projection vector w. Table 1
shows the values of the generalized Rayleigh quotient for 6
groups of AP.

According to Table 1, we can see that the combination of
AP1 and AP4 has the largest generalized Rayleigh quotient.
These two APs are the attributes of the optimal classification
result.

Table 1. J between two Aps.

AP2 AP3 AP4
AP1 32.94 3534 49.89
AP2 X 42.23 24.39
AP3 X X 28.68

Using the combination of APl and AP4, we randomly
selected 90 test points on the two floors, a total of 180 test
points. The test result is shown in Figure 1. There are three
prediction errors, and the recognition accuracy is 98.33%.

Floor

«  First Floor
Second Floor

00 20 40 60 80

100 120 140 160 180

Position

Figure 1. The result of test.

3.3. Localization Experiment Result Analysis

After obtaining the location of the floor, we continue to
locate the specific location on that floor. We select the AP on
the floor and use the improved KNN algorithm to obtain the
specific location of the target. For each prediction point, we

selected the nearest 3 sampling points from the map and gave
each sampling point a weight. The localization result is
shown in Figure 2. The average localization error after floor
recognition is 2.45m, while the average localization error
without floor recognition is 3.89m.

Error/meter

—#— Predict with floor
—e— Predict without floor

16 20 24 28

Position

Figure 2. Comparison with or without floor localization.
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4. Conclusion

In a multi-floor, if you want to know where you are, floor
recognition is the first step in localization. Based on
theoretical analysis and experimental testing, this paper
proposes a two-story building recognition model based on
LDA. We first group the arranged APs in pairs and calculate
their generalized Rayleigh quotient J respectively, and then
select the group of APs with the largest J value as the
attributes of the two floors. Then, we collected the fingerprint
data of the two floors, which proved that the model we built
can reduce the calculation cost while ensuring the high
accuracy of floor recognition. After determining the floor
location, we use an improved KNN algorithm to obtain
specific location results. We compare the localization
accuracy with floor recognition and the localization accuracy
without floor recognition. The experimental results show that
the localization accuracy through floor recognition is higher
and the calculation cost is lower.

Our research needs further expansion. When the floor area
becomes larger, a small number of APs cannot meet the
classification requirements. We need to increase the
deployment of APs and the selection of attribute APs. When
there are more floors, we need to build a new and more
complex floor recognition model. In addition, we can also
add motion recognition to it to trigger localization for
real-time tracking when going up and down or taking an
elevator.
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