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Abstract 

Energy forecasting is a technique to predict future energy needs to achieve demand and supply equilibrium. This paper 

presents an overview on Big Data and machine learning technology in the context of energy forecasting. The overall objective 

of Big Data is to discover useful information and knowledge that might otherwise be overlooked or discounted. On the other 

hand, machine learning helps make complex energy systems more efficient as the systems can learn from a large volume of 

collected data, detect regular patterns, and optimize its own operations. The energy forecasting plays a vital role to predict 

energy consumption for large commercial customers. The electrical energy sector is now looking for ways to put a higher level 

of accuracy and reliability into forecasting electrical loads for the next day and for the next week. It is further complicated by 

the fact that this sector is dependent on other energy sectors including wind, solar, gas, and hydro, all of which are directly 

affected by weather events. Therefore, development of intelligent prediction systems based on Big Data as well as machine 

learning techniques is an emerging issue to pursue a sophisticated and highly tuned decision support system for energy 

forecasting and it involves integration of various large volume of data from numerical energy prediction models, statistical 

datasets, real time observations, and human intelligence to optimize forecasts for low-cost energy generation.  
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1. Introduction 

Big Data (BD) phenomenon has emerged as a result of vast 

amounts of data that are becoming available across a wide 

range of application domains across science, business and 

government. Research on big data and machine learning will 

be necessary for serving scientists, engineers, educators, 

citizens and decision makers who have unprecedented 

amounts and types of data available to them. 

BD is composed of text, image, video, audio, mobile or other 

forms of data collected from multiple datasets, and is rapidly 

growing in size and complexity. It has created a huge volume 

of multidimensional data within a very short time period. 

This raises several new challenges, including; how to classify 

BD for multiple datasets, how to analyze BD for different 

forms of data, and how to visualize BD without the loss of 

information. Large datasets allow for the development of 

better prediction models able to simulate energy systems at 

different levels. In the context of demand response, BD plays 

a pivotal role, as it allows electric utilities to allow a large 

amount of information and develop models as well as 

simulation tools that can guide the development of such 

initiatives [1].  

BD shows high potential for energy forecasting [2]. Partly, 

the credit goes to the roll-out of smart metering and the 

development of smart appliances, driving the Internet of 

Things and generating large volume of data compared to the 

analog meter device. This is reinforced by data availability of 
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other data types such as machine-to-machine transaction 

logs, GPS data, social media data and increasingly accurate 

weather data including their distributions per point in time. 

As a result, this enables utility companies to obtain far more 

knowledge about their customers consumption patterns.  

In energy industry, a true demonstration of the potential of 

BD is in developing more realistic forecasts of energy 

generation, for example by wind farms and fleets. A more 

accurate forecast of energy generation allows a utility to 

optimize operations. Specially, they can more closely match 

generation with demand and thus requires smaller reserves to 

be on standby. A good example of this is the work being 

done by National Center for Atmospheric Research and Xcel 

Energy [3, 4]. The two organizations have teamed up to use 

artificial-based software and sophisticated weather modeling 

techniques to analyze turbine wind speed and energy 

generation measurements and produce wind energy 

generation forecast. The forecasts have improved since more 

data has been incorporated into the analysis. For example, 

earlier the forecasts used data from just one or two weather 

stations per wind farm. Now the center collects information 

from nearly every wind turbine. As a result, the accuracy has 

improved significantly and the forecasts saved Xcel nearly as 

much as money as in the three previous years combined.  

The machine learning (ML), on the other hand, opens up 

significant opportunities for improving and refining forecast 

and prediction models, allowing managers to make decisions 

supported by data. Predictive analysis can help utilities to 

manage electricity production, transmission, distribution, 

supply and demand. They are capable of managing 

nondispatchable loads (such as renewable), sending the 

proper guiding signals to several independent customers, 

accommodating changing weather and grid conditions in 

real-time, etc.  

2. The Role of ML for Energy 
Forecasting 

Various machine learning techniques have been used to 

forecast electrical energy needs, including neural networks 

(NN) [5], support vector machines (SVM) [6]. Among them 

neural networks have been widely used for electricity 

forecasting and considered them suitable for industrial energy 

forecasting [7]. On the other hand, support vector regression 

(SVR) is considered as an emerging technique for energy 

forecasting. 

Neural networks (NN) are a family of machine learning 

models inspired by the human brain and used to approximate 

functions that are generally known. Like a human brain, 

neural networks consist of interconnected neurons. There are 

many types of neural networks such as radial basis function 

networks, Kohonen self-organizing networks, and recurrent 

networks; however, here the focus is on feed-forward neural 

networks (FFNN) because the FFNN is one of the most 

frequently used NNs used for energy forecasting [8].  

In the following, we briefly introduce the two machine 

learning techniques – FFNN and SVR – extensively used in 

energy prediction: 

2.1. Feed-Forward Neural Networks (FFNN) 

Figure 1 shows a three-layer FFNN that can be used to 

approximate non-linear functions without assuming 

relationships between inputs and outputs. The information in 

the FFNN moves in one direction, from the input layer 

through the hidden layers) to the output. In such a network, 

there are no connections between the neurons in the same 

layer. The number of neurons in the input layer is equal to the 

number of input features, and the number of neurons in the 

output layer is equal to the number of outputs. A FFNN can 

have more than one hidden layers and the number of neurons 

in each hidden layer are chosen by the user. 

 

Figure 1. Feed Forward Neural Networks [8]. 

The output of each neuron in the hidden layer is determined 

as follows:	 

		y� 	� � �� w	�x	 �	w	�		



	��
�                       (1) 

where the xi are neuron inputs, the wij are synaptic weights 

connecting the i-th neuron in the input layer to the j-th 

neuron in the hidden layer, and wij is a bias which shifts the 

decision boundary, but does not depend on any inputs. φ	 is an 

activation function which is usually modelled as a step or 

sigmoid function. The output of the neurons in the output 

layer is modelled in the same way, with the weights 

corresponding to connections between the hidden and output 

layers.  

FFNN weights are learned during the training phase, using 

back propagation in conjunction with an optimization method 
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such as gradient descent. To start the learning process, the 

weights are randomly initialized. Next, the input is applied 

and the output is calculated according to the feed forward 

process described earlier. The calculated output is then 

compared to the known output, and the calculated error is 

propagated backwards through the network. During this back 

propagation, the weights are adjusted according to the 

optimization method to reduce the error for that specific 

input. The process is repeated for all training examples, and 

the overall process is repeated until the error drops below a 

pre-defined threshold.  

2.2. Support Vector Regression (SVR) 

Support vector machines (SVM) are supervised learning 

models used for classification and regression problems; a 

version of SVM for regression is referred to as support 

regression (SVR). SVR is characterized by a high degree of 

generalization, which indicates the model’s ability to perform 

accurately on new, previously unseen data. In SVR, support 

vectors are training samples which lie on the �-tube bounding 

decision surface, as illustrated in Figure 2. Observations 

within the � -tube do not influence predictions; in other 

words, residuals less that ε do not get penalized.  

 

Figure 2. Nonlinear SVR [9]. 

Suppose that an output Y is modelled as a function of input 

variables X, given a training data set {(Xi, Yi)}i=1, N. The SVR 

approximates the relationship between input and output as: 

� � �.ϕ��� � �                                 (2) 

where ф (X) is a nonlinear kernel function which non-linearly 

maps from the input space X to the feature space. 

Coefficients W and b are determined by minimizing the 

following function: 

	��������	 � 		!" 			! + C
�
# 	∑ %&#&�� �	%&∗                 (3) 

subjects to constraints: 
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where W is a weight vector which needs to be as flat as 

possible to achieve good generalization. Terms %&  and %&∗ 
capture residuals beyond the	� boundary (see Figure 2), and 

cost C is the regularization parameter that determines the 

penalty for errors greater than ε. 

The radial basis function (RBF) is a widely used kernel for 

mapping the input space to a high-dimensional feature space. 

The RBF is also efficient to compute and has only one 

parameter that needs to be determined; hence, this work also 

uses the radial basis kernel, 

	.�/, /0� � exp�(3		!/ ( /0		! �                     (7) 

In eqn. (7), the parameter 3	specifies the influence of each 

data point. 

3. The Current Focus 

Here we discuss on the interesting developments in the area 

of deep data analytics known as deep learning, which is an 

emerging technique to access and manipulate really large 

datasets [10-12] to improve the energy prediction. Deep 

learning refers to a recently developed set of generative 

machine learning techniques that autonomously generate 

high-level representations from raw data sources, and using 

these representations can perform typical machine learning 

tasks such as classification, regression and clustering. Many 

of the most important deep learning techniques are 

extensions of neural network methods and a simple way to 

understand them is to think of multiple layers of neural 

networks linked together. Taking raw data input at the first 

layer the output of the next layer is a set of high level 

features which are passed to a further layer which in tune 

generates a set of higher level features. This continues for a 

number of layers until eventually output (e.g. a prediction) is 

produced. 

In contrast to more conventional machine learning 

algorithms, deep learning has an advantage of potentially 

providing a solution to address the data analysis and learning 

problems found in massive volumes of input data. More 

specifically, it assists in automatically extracting complex 

data representing from large volumes of unsupervised data. 

This makes it a valuable tool for Big Data Analytics, which 

involves data analysis from very large collections of raw data 

that is generally unsupervised and uncategorized. The 

hierarchical learning and extraction of different levels of 
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complex data abstractions in deep learning provides a certain 

degree of simplification for Big Data analytics tasks, 

especially for analyzing massive volumes of data, semantic 

indexing, data tagging, information retrieval, and 

discriminative tasks such as classification and prediction 

[13]. 

The main advantage of deep learning is referred to the 

drastically increased chip processing abilities, the lowered 

cost of computing hardware, and the recent advances in 

machine learning. Deep Neural Networks (DNNs) are 

multilayer networks with many hidden layers, whose weights 

are fully connected and often initialized or pretrained using 

stacked Restricted Boltzmann Machine (RBM) or Deep 

Belief Networks (DBNs) [14].  

The RBM is a generally probabilistic model between input 

units (visible), x, and latent units (hidden), h (see Figure 3). 

 

Figure 3. A 2-layer RBM for static data. The visible units are fully 

connected to the first hidden layer 4�[15]. 

The visible and hidden units are connected with a weight 

matrix, W and have bias vectors c and b, respectively. There 

are no connections among the visible and hidden units. The 

RBM can be used to model static data. The energy function 

and the joint distribution for a given visible and hidden 

vector is defined as: 

	5�6, 7� � 7896 + :87 � ;8<                       (8) 

	=�6, 7� � �
> exp�5�6, 7��                           (9) 

where Z is the partition function that ensures that the 

distribution is normalized. For binary visible and hidden 

units, the probability that hidden unit hj is activated given 

visible vector x and the probability that visible unit xi is 

activated given hidden vector h are expressed as: 

	=?4@|6B � C?�@ � ∑ �&@& /&B                        (10) 

	=�/&|7� � C?D& � ∑ �&@@ 4@B                      (11) 

where σ �∙�  is the activation function. The logistic 

function 	C�/� � �
�FGHI  is a common choice for activation 

function. The parameters W, b, and v are trained to minimize 

the reconstruction error using constructive divergence. The 

learning rule for the RBM is: 

 
JKLMN�6�
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where < ∙ > denotes the average value over all training 

samples.  

DBN is a pretraining, unsupervised step that utilizes large 

amount of unlabeled training data for extracting structures 

and regularities in input features [16, 17]. DBN not only uses 

a huge amount of unlabeled training data but also provides 

good initialization weights for DNN. Moreover, overfitting 

and underfitting problems can be tackled by using the 

pretraining step of DBN. Unlike ANNs, the DBNs have only 

one visible layer composed of input and output nodes, and all 

the remaining layers are hidden. The DBNs model the 

relation between the observation vector x and the variables h
l
 

of the l-th hidden layer, with l=1,…, M by the following joint 

distribution: 

	=�6, 7�, 7 , … , 7\� � ?∏ =�7�\^ ��_ |7�F��BP (7\^�|7\� (13) 

In eqn. (13), x=h°, P (h
M-1

|h
M

) is the top layer joint 

distribution in the top-level RBM and the computation of 

probability for the conditional distribution is P (h
j
|h

j+1
) (for 

the j-th layer). The general structure of a DBN is presented in 

Figure 4.  

  

Figure 4. The general structure of Deep Belief Network (DBN) [18].  

Due to the high complexity of the net, the training phase 

cannot be approached by adopting the same strategies applied 

for the ANNs, e.g. gradient descent or Lavenberg-Marquardt 

algorithm. So, a fast training method has been developed: the 

``greedy algorithm’’ [19]. The algorithm plans to train each 

hidden layer as an RBM that models the output data of the 

previous layer as its visible layer.  

For the first hidden layer, h
1
, the input vector x=h° is 

assumed as a visible layer, and used to tune the equivalent 

weight matrix W0. The representation of the input data for the 

training of the second hidden layer, h
2
, is obtained by 

mapping the input vector through the weight matrix W0
T 

(T 

stands for transpose). The procedure is repeated for each 

layer, each time propagating the mapped input vector.  

DNN has shown great performance in recognition and 

classification, and traffic flow detection [13]. However, DNN 
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has high computational cost and difficult to scale [20]. DSN 

addresses the scalability problem of DNN, simple classifiers 

are stacked on top of each other in order to construct more 

complex classifiers [21].  

4. Conclusion 

This paper provides an overview on Big Data and machine 

learning in the aspect of energy forecasting. Here, our aim is 

to introduce Big data and machine learning techniques useful 

for energy prediction rather than their applications. The Big 

Data and machine learning technology allow the information 

to be analyzed in more detail than with traditional 

technology, and the application of it to the energy sector is an 

innovative idea. The two most popular machine learning 

techniques –NN and SVR- which are extensively used for 

energy prediction, are presented first. Then the newly 

focused deep learning technique is introduced due to its vast 

potentiality in the predictive analysis for energy forecasting.  
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