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1. Introduction 

The viscous fluid flow is a subject of growing interest. Since 

the Pressure-driven or shear driven flows through achannels 

have many applications, the investigation on it is most 

important. It has many applications in soil mechanics, oil 

field operations, in transpiration cooling, lubrication of 

porous bearing and water purification etc. Nield and Bejan 

[2], have discussed such applications and many others. 

Instability of Poiseuille flow in a fluid overlying fluid 

saturated porous medium layer is investigated by Chang, 

Chen and Straughan [3]. Hill and Straughan [4], numerically 

investigates the instability of Poiseuille flow in a fluid 

overlying a porous medium saturated with the same fluid. 

Beavers and Joseph [5], examined the boundary conditions at 

a naturally permeable wall. The boundary condition at the 

surface of a porous medium is discussed by Saffman [6]. 

Ochoa-Tapia and Whitaker [7, 8], have investigated about 

Momentum transfer at the boundary between a porous 

medium and a homogeneous fluid. 

The study of viscous fluid flow and heat transfer in channels 

filled or partially filled with a porous medium is important 

due to their recent technological improvement in engineering. 

David [9] have discussed in flow at the interface of a model 

fibrous medium. Chauhan and Shekhawat [10] examined heat 

transfer in couette flow of a compressible Newtonian fluid in 

the presence of a naturally permeable boundary. The similar 

geometry with partly filled by a porous medium and a 

transverse sinusoidal injection velocity is investigated by 

Chauhan and Vyas [11]. Analytical investigation was 

presented by Kuznetsov [12] of fluid flow in the interface 

region between a porous medium and a clear fluid in 

channels partially filled with a porous medium. Also 

Kuznetsov [13, 14] examined couette flow and heat transfer 
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effects in a composite channel partially filled with a porous 

medium and partially with a clear fluid. Alkam et al. [15] 

investigated forced convection in channels partially filled 

with porous substrates. 

Most of the investigations dealing with the First Law of 

thermodynamics. From the experimental studies it is cleared 

that when heat energy is transferred, only a partial energy is 

converted to work. Bejan [17] studied entropy generation in 

thermal systems and investigated the importance of entropy 

minimization in improving their performance. Chen et al. 

[18], discussed effects of thermal radiation on entropy 

generation due to flow along wavy or flat plate. 

The aim of this paper is to analyse the mathematical 

expressions of the entropy generation in Poiseuille flow of a 

fluid overlying a porous medium under thermal radiation. 

The approximateanalytical expressions of the dimensionless 

velocity profiles, dimensionless temperature profiles, 

dimensionless entropy generation number and the 

dimensionless Bejan number are derived using the Homotopy 

analysis method and discussed by graphically. 

2. Mathematical Formulation of 
the Problem 

We consider the flow of fluid with temperature dependent 

viscosity through a horizontal parallel channel of width ꞌdꞌ. 

The upper wall of the channel is impermeable, while the 

lower wall is a naturally permeable medium of very small 

permeability and saturated with fluid at constant 

temperatureꞌT0ꞌ. 

 

Figure 1. Schematic diagram for fluid flow. 

The flow in the bounding porous medium wall is modelled 

by the Darcy’s equation therefore in the absence of any 

external pressure gradient, the filter velocity in the porous 

matrix of very small permeability is assumed to be zero. The 

effect of the porous matrix is, thus to introduce a velocity slip 

at the lower bounding wall of the channel and its 

permeability affects flow in the channel through Saffman slip 

boundary condition [6]. The flow in the parallel wall channel 

is driven by a constant pressure gradient applied at the mouth 

of the channel. The upper impermeable channel wall is 

assumed to have a negligible thickness and its upper face is 

in contact with another fluid at temperatureꞌT1ꞌ. The upper 

wall is thus heated by convection from external hot fluid 

which provides a convection heat transfer coefficient ꞌhꞌ. 

Further it is assumed that property variations of the viscous 

fluid in the channel because of temperature are limited to 

only, which is assumed to vary as an inverse linear function 

of temperature, following Lai and Kulacki [31], as follows 

viscosity: 

( ) ( )
0

01
T

T T

µµ
λ

=
+ −

                          (1) 

where 0µ , is the viscosity of the fluid at the temperature 0T , 

and λ is the viscosity variation parameter. The governing 

equations for the present problem are given by 
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The corresponding boundary conditions are given by 

0, 0
u

u T T when y
y K

α∂ = = =
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            (5) 

( )10,
T

u k h T T when y d
y

∂= − = − =
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            (6) 

where, u  is the velocity in the x-direction; T  is the 

temperature; ρ , the density; PC , the specific heat at the 

constant pressure; k , the thermal conductivity; 

p

x

∂−
∂

, the pressure gradient; and ( )Tµ , the temperature 

dependent viscosity of the fluid; K , the permeability of the 

porous medium; and α , the dimensionless constant 

depending on the local geometry of interstices of the porous 

matrix. 

In this study, the Rosseland diffusion flux model is taken to 

simulate radiative heat transfer which is suitable for an 

optical thick fluid and gray, absorbing-emitting, but not 

scattering medium. Following Siegel and Howell [32], it 

takes the form 

4

1

4

3
r

T
q

k y

σ ∂= −
∂

                               (7) 

where σ , the Stefan-Boltzmann constant; and 1k , the mean 
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absorption coefficient. The term 4T  can be expanded for 

small temperature differences in a Taylor series about 0T  as 

follows ( )4 4 3 3 4
0 0 0 0 04 4 3T T T T T T T T= + − = − , and 

neglecting higher terms: 

Thus, we have 

3
0

1

16

3
r

T T
q

k y

σ ∂= −
∂

                               (8) 

Let us introduce the dimensionless quantities are as follows: 

( )
2

0
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T Tu x y d P K

u x y P K a T T
U d d T T U dx

θ λ
µ

 − ∂= = = = = − = = −  − ∂ 
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Substituting the eqns. (1), (7) and (8) intothe eqns. (2)-(5), 

we obtain the governing eqns. in dimensionless form are as 

follows: 

0
du

dx
=                                         (10) 
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1

1

d du
P
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 
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22

2
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R

R

Nd Br du
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The corresponding boundary conditions are given by 

, 0
du

u
dy K

α θ= = when 0y =                 (13) 

( )0, 1
d

u Bi
dy

θ θ= = − − when 1y =           (14) 

where, P  is the dimensionless axial pressure gradient;U , the 

flow characteristic velocity;a nd a , the variable viscosity 

parameter. For constant viscosity case we have 0a = ; and for 

0a > , the viscosity ofthe fluid decreases with rise in 

temperature. 

Here RN , represents the Stark number; Br , isthe Brinkman 

number; Bi , is the Biot number, K , is the Permeability 

parameter. 

The dimensionless entropy number [1] can be defined as 

follows: 

2 2
4 3

3 (1 )

R r

R

N Bd du
NS

N dy a dy

θ
θ

    +
= +    Ω +    

        (15)

1 2NS NS NS= +                         (16) 

where 
'

T

T

∆Ω = , the dimensionless temperature difference;

1NS  is the dimensionless entropy generation due to heat 

transfer in the presence of radiation; and 2NS , the 

dimensionless entropy generation due to fluid friction.  

The dimensionless Bejan number (Be)[1] can be defined by 

1NS Entropy generation due to heat transfer
Be

NS Total Entropy generation
= =  (17) 

3. Solution of the Problem 
using the Homotopy 

Analysis Method 

This section deals with a basic strong analytic tool for non-

linear problems, namely the Homotopy analysis method 

(HAM) which was generated by Liao [19], is employed to 

solve the nonlinear differential eqns. (10) – (12). The 

Homotopy analysis method is based on a basic concept in 

topology. Unlikeperturbation techniques like [20], the 

Homotopy analysis method is independent of the small/large 

parameters. Unlike all other reported perturbation and non-

perturbation techniques such as the artificial small parameter 

method [21], the δ -expansion method [22] and Adomian’s 

decomposition method [23], the Homotopy analysis method 

provides us a simple way to adjust and control the 

convergence region and rate of approximation series. The 

Homotopy analysis method has been successfully applied to 

many nonlinear problems such as heat transfer [24], viscous 

flows [25], nonlinear oscillations [26], Thomas-Fermi’s atom 

model [27], nonlinear water waves [28], etc. Such varied 

successful applications of the Homotopy analysis method 

confirm its validity for nonlinear problems in science and 

engineering. The Homotopy analysis method is a good 

technique when compared to other perturbation methods. The 

existence of the auxiliary parameter h in the Homotopy 

analysis method provides us with a simple way to adjust and 

control the convergence region of the solution series. 

3.1. Basic Concepts of the Homotopy 

Analysis Method 

Consider the following differential equation: 

( ) 0N u t  =                                          (18) 

where N is a nonlinear operator, t  denotes an independent 

variable, ( )u t  is an unknown function. Forsimplicity, 

weignore all boundary or initial conditions, which can be 

treated in the similar way. By means of generalizing the 

conventional Homotopy method, Liao constructed the so-
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called zero-order deformation equation as: 

( ) ( ) ( ) ( ) ( )01 ; ;p L t p u t p h H t N t pφ φ   − − =     (19) 

where [ ]0,1p ∈  is the embedding parameter, 0h ≠  is a 

nonzero auxiliary parameter, ( ) 0H t ≠  is an auxiliary 

function, L  an auxiliary linear operator, ( )0u t  is an initial 

guess of ( ) ( ), ;u t t pφ  is an unknown function. It is 

important to note that one has great freedom to choose 

auxiliary unknowns in HAM. Obviously, when p = 0 and p 

=1, it holds: 

( ) ( ) ( ) ( )0; 0 ;1t u t and t u tφ φ= =                     (20) 

respectively. Thus, as p increases from 0 to 1, the solution 

( );t pφ  varies from the initial guess ( )0u t  to the solution

( )u t . 

Expanding ( );t pφ  in Taylor series with respect to 

p, we have: 

( ) ( ) ( )0

1

; m
m

m

t p u t u t pφ
+∞

=

= +∑                     (21) 

( ) ( );1

!

m

m m

t p
u t

m p

φ∂
=

∂
                    (22) 

If the auxiliary linear operator, the initial guess, the auxiliary 

parameter h , and the auxiliary function are so properly 

chosen, the series eqn. (19) converges at 1p =  then we have: 

( ) ( ) ( )0

1

m

m

u t u t u t

+∞

=

= +∑                              (23) 

Differentiating the eqn. (17) for m times with respect to the 

embedding parameter p , and then setting 0p =  and 

finallydividing them by m!, we will have so-called m th  

order deformation equation as: 

( )1
1

m m m m
m

L u u h H t uχ
→

−
−

 − = ℜ    
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And 

0, 1,

1, 1.
m

m
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                           (26) 

Applying 1L−  on both side of eqn. (22), we get 

( ) ( ) ( )1
1

1
m m m m

m
u t u t h L H t uχ

→
−

−
−

  
= + ℜ  

  
 (27) 

In this way, it is easily to obtain mu for 1m ≥ , at thM  order, 

we have 

( ) ( )
0

M

m

m

u t u t

=

=∑                           (28) 

when M → +∞ , we get an accurate approximation of the 

original eqn. (16). For the convergence of the above method 

we refer the reader to Liao [19]. If the eqn. (16) admits 

unique solution, then this method will produce the unique 

solution. 

3.2. Approximate Analytical Expressions of 

the Non-linear Differential Eqns. (10) 

and (11) using Homotopy Analysis 
Method 

( )
1

1

d du
P

dy a dyθ
 

=−  + 
                    (29) 
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4 3 1
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N a dydy

θ
θ

   
+ =   + +   

(30) 

We construct Homotopy for the eqns. (27) and (28) are as 

follows: 

( ) ( ) ( )
2 2

2 2
1 1 0

d u d u du d
p P hw a a P

dy dydy dy

θθ
   

− + − + + − + =         
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22 2

2 2

3
1 1 0

4 3

R

R

Nd d du
p hp a Br

N dydy dy

θ θ θ
      
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                               (32) 

The approximate solution of the eqns. (29) and (30) are as follows: 
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2 3
0 1 2 3 ...........u u pu p u p u= + + + +                                                             (33) 

2 3
0 1 2 3 ..........p p pθ θ θ θ θ= + + + +                                                              (34) 

The initial approximations areas follows:  

0
0 0

(0)
(0), (0) 0

du
u

dy K

α θ= =                                                                      (35) 

(0)
(0), (0) 0, 1, 2,3.....i

i i
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( )0
0 0
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d
u Bi
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i i

d
u Bi i
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Substituting the eqns. (33) and (34) into the eqns. (31) and (32) we get, 
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Comparing the coefficients of 0 1,p p  in the eqns. (39) and (40) we get the following eqns. 

2
0 0

2
: 0

d u
p P

dy
+ =                                                                                 (41) 

2
0 0

2
: 0

d
p

dy

θ
=                                                                                 (42) 

2 2 22
1 0 0 0 0 01

02 2 2 2
: 0

d u d u d u du dd u
p P h a a P

dy dydy dy dy dy

θθ
 

− − − + − + + = 
  

                    (43) 

22 2 2
1 0 0 0 0

02 2 2

3
: 0

4 3

R

R

d d d duN
p h a Br

N dydy dy dy

θ θ θθ
    
 − − + + =   +    

                       (44) 

Solving the eqns. (41) – (44) with the help of the eqns. (35)-(38), we get the following results: 
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According to the HAM, we can conclude that 
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Using the eqns. (45) and (46) into an eqn. (49) and using the eqns. (47) and (48) into an eqn. (50) we get the following: 
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Substituting the eqns. (53) and (54) into the eqn. (15), we get the analytical expression of entropy generation number NS . 
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Substituting the eqns. (55) and (56) into the eqns. (16) we get 

the analytical expression of entropy generation number NS . 

And substituting the eqn. (55) and the entropy generation 

number NS into the eqn. (17) we get the analytical expression 

of the Bejan number Be. 

4. Results and Discussion 

Figure 1 shows geometry of the problem. Figures 2-4 

represents dimensionless velocity u(y) versus dimensionless 

distance y. From Figure 2, it is noted thatthe velocity 

increases when the Permeability parameter K increases, and 

in some fixed values of the other dimensionless parameters. 

From Figure 3, it is inferred that when the variable viscosity 

parameter a increases the corresponding velocity also 

increases in some fixed values of the other parameters. From 

Figure 4, it is depict that when the Biot number Bi increases 

the corresponding velocity also increases, in some fixed 

values of the other dimensionless parameters. 

Figures 5-9 represents the dimensionless temperature θ (y) 

versus the dimensionless distance y. From Figure 5, it is 

noted that the temperature increases when the Permeability 

parameter K increases, and in some fixed values of the other 

dimensionless parameters. From Figure 6, it is inferred that 

when the variable viscosity parameter a increases, the 

corresponding temperature also increases in some fixed 

values of the other dimensionless parameters. From Figure 7, 

it is depicting that when the Brinkman number Brincreases. 

thecorresponding temperature also increases, in some fixed 

values of the other dimensionless parameters. From Figure 8, 

it is noted that the temperature increases when the Stark 

number NR increases, and in some fixed values of the other 

dimensionless parameters. From Figure 9, it is inferred that 

when the Biot number Bi increases, the corresponding 

temperature also increases in some fixed values of the other 

dimensionless parameters. 

Figures 10-13 represents dimensionless entropy generation 

NS versus dimensionless distance y. From Figure 10, it is 

noted that the entropy generation increases, the permeability 

parameter K increases, and in some fixed values of the other 

dimensionless parameters. From Figure 11, it is inferred that 

when the Biot number Bi increases, the corresponding 

entropy generation also increases in some fixed values of the 

other dimensionless parameters. From Figure 12, it is 

inferred that when the temperature difference Ωincreases the 

corresponding entropy generation decreases in some fixed 

values of the other dimensionless parameters. From Figure 

13, it is depict that when the axial pressure gradient 

Pincreases, the corresponding entropy generation also 

increases in some fixed values of the other dimensionless 

parameters. 

Figures 14-18 represents Bejan number (Be) versus 

dimensionless distance y. From Figure 14, it is noted that the 

when the Bejan number Be increases, the Permeability 

parameter K increases, and in some fixed values of the other 

dimensionless parameters. From Figure 15, it is inferred that 

when the Brinkman number Br increases, the corresponding 

Bejan number decreases in some fixed values of the other 

dimensionless parameters. From Figure 16, it depicts that 

when the Biot number Bi increases, the corresponding Bejan 

number also increases in some fixed values of the other 

parameters. From Figure 17, it is inferred that when the 

temperature difference Ω increases, the corresponding Bejan 

number also increases in some fixed values of the other 

dimensionless parameters. From Figure 18, it is depict that 

when the axial pressure gradient P increases, the 

corresponding Bejan number decreases in some fixed values 

of the other dimensionless parameters. 
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Figure 2. Dimensionless velocity u(y) versus the dimensionless distance y. The curves are plotted using the eqn. (51) for various values of the Permeability 

parameter K, and in some fixed values of the other dimensionless parameters , , , , , .r RB N P Bi aα  

 

Figure 3. Dimensionless velocity u(y) versusdimensionless distance y. The curves are plotted using the eqn. (51) for various values of the variable viscosity 

parameter a , and in some fixed values of the other dimensionless parameters , , , , , .r RB N P Bi Kα  
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Figure 4. Dimensionless velocity u(y) versus dimensionless distance y. The curves are plotted using the eqn. (51) for various values of the Biot number Bi, and 

in some fixed values of the other dimensionless parameters , , , , ,r RB N P a Kα . 

 

Figure 5. Dimensionless temperature θ (y) versus dimensionless distance y. The curves are plotted using the eqn. (52) for various values of the permeability 

parameter K, and in some fixed values of the other dimensionless parameters , , , , ,RP N Br Bi aα . 



58 Vembu Ananthaswamy et al.:  An Analytical Study on Entropy Generation in the Poiseuille Flow of a  

Temperature Dependent Viscosity Through a Channel 

 

Figure 6. Dimensionless temperature θ (y) versus dimensionless distance y. The curves are plotted using the eqn. (52) for various values of the variable 

viscosity parameter a , and in some fixed values of the other dimensionless parameters , , , , ,RP N Br Bi Kα . 

 

Figure 7. Dimensionless temperature θ (y) versus dimensionless distance y. The curves are plotted using the eqn. (52) for various values of the Brinkman 

number Br, and in some fixed values of the other dimensionless parameters , , , , ,RN P a K Biα . 



 American Journal of Information Science and Computer Engineering Vol. 5, No. 2, 2019, pp. 47-65 59 

 

 

Figure 8. Dimensionless temperature θ (y) versus dimensionless distance y. The curves are plotted using the eqn. (52) for various values of the Stark number 

NR, and in some fixed values of the other dimensionless parameters a, Br, P, K, Bi, α . 

 

Figure 9. Dimensionless temperature θ (y) versus dimensionless distance y. The curves are plotted using the eqn. (52) for various values of the Biot number 

Bi, and in some fixed values of the other dimensionless parameters a, Br, P, K, NR, α . 
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Figure 10. Dimensionless entropy generation NS versus dimensionless distancey. The curves are plotted using the eqns. (15), (56) and (16) for various values 

of the Permeability parameter K, and in some fixed values of the other dimensionless parameters a, Br, P, Bi, NR,α , Ω . 

 

Figure 11. Dimensionless entropy generation NS versus dimensionlessdistance y. The curves are plotted using the eqns. (55), (56) and (16) for various values 

of the Biot number Bi, and in some fixed values of the other dimensionless parameters a, Br, P, Bi, NR,α , Ω . 
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Figure 12. Dimensionless entropy generation NS versus dimensionless distance y. The curves are plotted using the eqns. (55) (56) and (16) for various values 

of the dimensionless temperature difference Ω , and in some fixed values of the other dimensionless parameters a, Br, K, P, Bi, NR,α . 

 

Figure 13. Dimensionless entropygeneration NSversus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and 16) for various values of 

the non dimensional axial pressure gradient P, and in some fixed values of the other dimensionless parameters a, Br, K, θ , Bi, NR,α . 
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Figure 14. Bejan number (Be) versus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and (17) for various values of the Permeability 

parameter K, and in some fixed values of the other dimensionless parameters a, Br, P, Ω , Bi, NR,α . 

 

Figure 15. Bejan number (Be) versus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and (17) for various values of the Brinkman 

number Br, and in some fixed values of the other dimensionless parameters a, K, P, Ω , Bi, NR,α . 
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Figure 16. Bejannumber (Be) versus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and (17) for various values of the Biot number 

Bi, and in some fixed values of the other dimensionless parameters a, K, P, Ω , Br, NR,α . 

 

Figure 17. Bejan number (Be) versus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and (17) for various values of the 

dimensionless temperature difference Ω , and in some fixed values of the other dimensionless parameters a, K, P, Bi, Br, NR,α . 



64 Vembu Ananthaswamy et al.:  An Analytical Study on Entropy Generation in the Poiseuille Flow of a  

Temperature Dependent Viscosity Through a Channel 

 

Figure 18. Bejan number (Be) versus dimensionless distance y. The curves are plotted using the eqns. (55), (56) and (17) for various values of the non 

dimensional axial pressure gradient P, and in some fixed values of the other dimensionless parameters a, K, Ω , Bi, Br, N Randα . 

5. Conclusion 

In this paper the Homotopy analysis method is employed to 

get the analytical expression for theentropy generation in the 

Poiseuille flow of a temperature dependent viscosity through 

a channel. The approximate analytical expressions of the 

dimensionless velocity and dimensionless temperature 

profiles are derived mathematically and graphically using the 

Homotopy analysis method. The dimensionless entropy 

generation number and dimensionless Bejan number are also 

derived using the analytical expressions for the 

dimensionless velocity and dimensionless temperature 

profiles. We also derived the mathematical and graphical 

representations of the entropy generation number and the 

Bejan number. The Homotopy analysis method can be easily 

extended to solve the other non-linear boundary value 

problems in physical and chemical sciences. 

Nomenclature 

Symbols Meaning 

0T  Constant temperature 

1T  Temperature 

d Width of channel 

h Heat transfer coefficient 

0µ  Viscosity of the fluid at 0T  

λ  Viscosity variation parameter 

u  Velocity in the x-direction 

T  Fluid temperature 

ρ  Fluid density 

PC  The specific heat 

k  Thermal conductivity 

p

x

∂−
∂

 Pressure gradient 

( )Tµ  Temperature dependent viscosity of the fluid 

K  Permeability of the porous medium 

α  Dimensionless constant 

σ  Stefan-Boltz constant 

1k  Mean absorption coefficient 

P  Dimensionless axial pressure gradient 

U  Flow characteristic velocity 

a  Variable viscosity parameter 

'T  Reference temperature 

NS Dimensionless entropy generation number 

NS1 Dimensionless entropy generation due to heat transfer 

NS2 Dimensionless entropy generation due to fluid friction 

Be Bejan number 

NR Stark number 

Br Brinkman number 

Bi Biot number 

K Permeability parameter 

Ω  Dimensionless temperature difference 
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