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Abstract 

Self Organising Maps are among the most widely used unsupervised neural network approaches to clustering. They have been 

shown to be efficient in handling large and high dimensional data. The Bat Algorithm is a swarm intelligence based, meta-

heuristic optimisation algorithm. It is based on the echolocation behaviour of micro-bats with varying emission pulse rates and 

loudness. This paper gives a novel hybrid optimisation method which is here called the Bat Optimised Self-Organising Map. It 

combines the basic Self Organising Map learning algorithm with the Bat Algorithm. In this optimisation technique, the Bat 

Algorithm is used to initialise the weight vectors for a Self Organising Map to a near global optimum prior to the competition. 
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1. Introduction 

A Self Organising Map (SOM) is a type of an Artificial 

Neural Network (ANN) that is trained using unsupervised 

learning methods [5]. An ANN is a collection of highly 

interconnected neurons that transform a set of inputs to a 

desired set of outputs. It is inspired by the mammalian 

biological nervous system [11]. Fundamental concepts of 

SOMs were first introduced by Malsburg [12] and later 

extended by Kohonen [10] as an attempt to mimic the 

apparent actions of a small class of biological neural 

networks that are responsible for sensory processing. The 

idea was to create an ANN that could learn without 

supervision, an abstract representation of some sensory input. 

In unsupervised ANN learning, the connection weight 

adjustments are not made by comparison to some target 

output as there is no teaching signal to control the weight 

adjustments. The network, instead, is trained by being shown 

the patterns that are to be classified, and it is allowed to 

produce its own output representation for the classification. 

The network must discover patterns, regularities, features, 

clusters and adjust its parameters simultaneously. This 

property is known as ‘self-organisation’. 

SOMs are different from regular ANNs in that they apply 

undirected learning methods as opposed to directed learning 

methods such as the back-propagation algorithm, and the 

reinforcement learning method [14]. The most common 

learning method used in SOMs is the competitive learning 

algorithm. Generally, output neurons are in competition with 

one another over input patterns [4]. The competitive learning 

algorithm is motivated by the anatomical and physiological 

evidence of lateral interaction between neurons in 

mammalian nervous systems [10]. In the competitive 

learning algorithm, those neurons which respond strongly to 
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input stimuli have their weights updated. When an input 

pattern is presented to a SOM running under competitive 

learning, all neurons in the input layer compete and the 

winning neuron undergoes weights adjustment for all its 

connections. The decision of whether only one neuron shall 

have its connection weights adjusted (winner takes all), or 

whether a group of neighbouring neurons shall also have 

their connection weights adjusted, lies with a particular 

model of the competitive learning process. SOMs work by 

increasing the specialisation of each neuron in the network, 

thus they are well suited to finding clusters within data [13]. 

One of the limitations of SOMs, as noted by Ajith et al. [1], is 

that SOM training often results in topologically twisted maps. 

The learning process sometimes takes multi-stable states 

within which the map is trapped to an undesirable disordered 

state, resulting in topological defects on the map [2]. Multi-

stability is a serious problem in the learning process [6]. 

When the learning process is trapped in these states, the map 

seems to have practically converged to the final state. The 

existence of the topological defect critically aggravates the 

performance of SOMs. Once a topological defect appears in a 

map during the learning process, it tends to remain there for a 

long time and slows down the ordering process of a SOM [9]. 

The presence of a topological defect in a SOM has an effect 

of making the map settle on a local optimum, hence limiting 

its practical applicability. One of the main reasons why SOM 

learning tends to get stuck at a local optimum, is because of 

the initial weight vector. Generally, the initial weight vector 

is comprised of random weights. In this work, we propose a 

novel hybrid optimisation technique by combining the basic 

competitive learning algorithm with the Bat Algorithm. This 

hybrid optimisation technique is used to initialise the weight 

vectors for a SOM. The objective is to push the SOM to 

begin its competition near a global optimum. 

2. The Basic SOM Algorithm 

A basic SOM consists of two layers, the input layer (a holding 

point for the input data), and the mapping layer as shown in 

Figure 1. The input layer has as many neurons as there are input 

variables. The two layers are fully connected to each other and 

each of the neurons in the mapping layer has an associated 

weight vector iw ,
�

 
with one weight for each connection with the 

input layer. The aim of the SOM is to group like input vectors, 

ix ,
�

together on the mapping layer, jy
 
[3]. Therefore the 

method is topology preserving as items which are close in the 

input space are also close in the mapping space. During training 

the input vectors, ix ,
�

 
are presented to the SOM through the 

input layer in time steps, t . 

 
Figure 1. A sample SOM with a 2-D mapping layer (adapted from Gurney 

[8]). 

The neurons in the mapping layer compete for the input 

vector. The winner is the mapping neuron whose vector of 

incoming connection weights most closely resembles the 

components of the input vector. The winner has its weight 

vector adjusted to relatively move towards the input vector. 

In hard competition (winner-takes-all), only the winner's 

weight vector is updated. In soft competition, the winning 

neuron and its neighbours within the cut-off radius of 

excitation, *r ,  are updated in relation to their position, with 

the winning neuron receiving the most update. In general, the 

radius r  is calculated based on the Euclidean distance. For 

the neurons within the cut-off radius, *r r ,≤  the learning 

signal is excitatory, connections are strengthened. For the 

neurons beyond the cut-off radius, *r > r ,  the learning signal 

becomes inhibitory, connections are weakened. As more 

input vectors are passed through the network, the weight 

vectors of the mapping layer neurons self-organise. By the 

end of the training process, different parts of the mapping 

layer respond strongly to specific regions of the input space 

(clusters). Once the training of the network is complete, the 

clusters obtained can be examined in order to gain better 

insight into the underlying data-set. 

3. The Basic Bat Algorithm 

The Bat Algorithm (BA) is a swarm intelligence algorithm 

proposed by Xin-She Yang [15], inspired by the echolocation 

phenomenon in bats. Based on the behaviour of bats, the Bat 

Algorithm updates the velocity and position iteratively. In 

Yang's derivation [15], the frequency if ,of every bat, with 

velocity iv ,  at location ix ,  and wavelength λ,  of signals 

are given by: 

/λ = v f,                   (1) 

( )i min max minf = f + f f β,−           (2) 
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( )t t 1 t 1
i i i * iv = v + x x f ,

− − −            (3) 

t t 1 t
i i ix = x + v ,−               (4) 

where λ,  is the wavelength of the emitted pulse signals, 

maxf ,
 

is the maximum possible frequency of pulse 

emissions, minf ,  is the minimum possible frequency of 

pulse emissions, *x , is the current global best location (or 

solution), and [ ]0,1β ∈  is a random vector drawn from a 

uniform distribution. The Bat Algorithm and its pseudo-code 

are presented by Yang and Gandomi [16]. In their work, they 

presented a reduction of the bat biological nature and its 

hunting processes into a computer implementable algorithm. 

They make a number of assumptions in this reduction which 

render it limited, however, the algorithm has been shown to 

be effective for computational purposes. 

4. The Proposed SOM 
Optimisation Method 

The proposed SOM Optimisation method is a fusion of the bat 

algorithm and SOM, herein referred to as Bat Optimised Self-

Organising Map (BOSOM). In this method there are three stages: 

i. all connections to neurons in a SOM are initialised to 

some random weight ijw , such that, ( )0,1=w;w ijij ℜ∈  

ii. the bat algorithm is used to adjust the weights seeking a 

global optimum set of weights using equations (2) to (4), 

and 

iii. the competitive learning method is then used to train the 

network starting off with this set of bat algorithm 

optimised weights. 

For the Bat Algorithm to work successfully, it needs an 

objective function that defines an acceptable solution. In this 

study, the following was used: 

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ,

|| ||

2
j j j j

j 2
j j j j

w t +γ x t w t w y
f w t +1 =

w t +γ x t w t w y

− −

− −

� � �

�

� � �

  (5) 

where γ  is the learning rate, ( )jw t
�

 is the weight vector on 

neuron j  at some time t,  and jy  is the output of neuron 

j  calculated as j ij ii
y = w x∑ . The objective function 

( )jf w
�

 is normalised such that the weight vector can be 

controlled. In the experiments, the input data did not need to 

be normalised in turn because real-life data may not always 

be normalisable before use. An acceptable solution is 

determined at either 1% , or 5% , or 10%  confidence 

intervals; that is, ( ( ( 1)) ( ( ))) 0.01j jf w t f w t+ − ≤� �

 or

( ( ( 1)) ( ( ))) 0.05j jw wf t f t+ − ≤� � or ( ( ( 1)) ( ( ))) 0.10j jw wf t f t+ − ≤� � , 

respectively. The pseudo-code for the proposed optimisation 

method, BOSOM, is given in Algorithm 1. In Algorithm 1, 

sub-numbering for the standard SOM is not used because the 

standard SOM is found in literature. 

Table 1. Listing of BOSOM Algorithm. 

Algorithm 1: Pseudo-code for our proposed BOSOM Method 

BEGIN 

1. 
Initialise jw

�

randomly for all j , where j  is a neuron; such that 

( )0,1=w;w jj ℜ∈  

2. Set BAT parameters, and topological parameters 

3. 
Define the objective function ( )ijf w  and set acceptable confidence 

threshold e.g. 0.05φ =  

4. FOR (EPOCHS < MAX) 

 WHILE ( ( )( ) ( )( )( (1ij ijf w t + f w t > φ− ) DO 

 
4.1 Generate new solutions by adjusting frequency, updating 

velocities, and locations of virtual bats using equations (2) 

to (4). 

 4.2 Generate new weights using; ( ) ( )1ij ij ijw t + = w t + ∆w ,  

 where: ( )2
ij i j j ij∆w = γx y y w ,−  

 and: ij i

i

y = w x∑  

 END WHILE 

 END FOR 

5. RUN STANDARD SOM COMPETITION: 

 WHILE(< EPOCHS | ERROR CONVERGED >) DO 

 FOR (Each input vector, x
�

) 

 FOR (each neuron j,  compute ) 

 ( ) 2( )ij

i

D j = w x−∑  

 END FOR 

 Find neuron *j  such that ( )*D j  is minimum 

 
FOR (all neurons j  in specified neighbourhood of *j  and  

for all i ) 

 Compute new competitive weights: ( ) ( ) ( )( )1ij ij i ijw t + = w t +γ x w t−  

 END FOR 

 Update learning rate, γ ; 

 Reduce radius r  of topological neighbourhood at specified times 

 END FOR 

 END WHILE 

END 

5. Experiments and Results 

In order to assess the utility of the BOSOM method, one 

clustering problem from the University of California, Irvine 
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(UCI) Machine Learning Repository, was examined. 

Experiments were conducted using the Iris data-set. 

Comparisons were then made between the standard SOM and 

BOSOM. Both the standard SOM and the BOSOM were 

trained using a standard square lattice structure for a self 

organising network. Figure 2 shows a generalised structure of 

the network used in this study. 

 

Figure 2. SOM Lattice structure used in this study. 

5.1. The Iris Data-Set 

The data-set we used to train and test SOM and BOSOM 

performance for clustering is of known parameters and 

expected outcomes. The Iris data-set is a small, well-

understood and known data-set that consists of the 

measurements of four attributes of 150 Iris flowers from 

three iris species. The four data dimensions are: the sepal 

length in centimetres, the sepal width in centimetres, the 

petal length in centimetres and the petal width in centimetres. 

The three iris species are Iris Setosa, Iris Versicolour and Iris 

Virginica. Each type of Iris has 50 samples as well as some 

properties about each flower. One flower species is linearly 

separable from the other two, yet these other two are not 

linearly separable from each other. 

Table 2. Data and Class Information. 

Data type Iris 

Input node 4 

Data Size 150 

Training Size 120 

Testing Size 30 

Number of Classes 3 

The typical tendency of researchers for the Iris data-set is to 

cluster Iris types based on the measurements. It is one of the 

most analysed data-sets in statistics, data mining, and 

multivariate visualisation. It was first published by Fisher [7], 

and is widely available. Table 2 shows a summary of the 

data-set class information. 

5.2. Performance Evaluation 

The goal of the conducted experiments was to investigate the 

performance of the proposed method. Comparisons were 

done between standard SOM and BOSOM. The results were 

validated in terms of Clustering Accuracy (CA) and 

Quantisation Error (QE) on the Iris data-set used universally 

as a machine learning data-set. QE is measured after a 

network's training and CA is the analysis for testing. The 

efficiency of the proposed method is validated accordingly; 

that is, if QE values are small and CA values high, then the 

results are promising to be good. QE is used for measuring 

the quality of the network. QE of an input vector is defined 

by the difference between the input vector and the closest 

codebook vectors. QE describes how accurately the neurons 

respond to the given data-set. Thus the quantisation error is 

used for the computation of similarity of patterns. The QE 

calculation in this study was carried out as; 

( ) ( )( )
N

q k mk

k 1

1
E = x t w t

N −

−∑          (6) 

where mkw  is the best unit of weight at time t . On the 

other hand, the Clustering Accuracy (CA) indicates how 

well the classes are separated on the map. The CA of new 

samples measures the network's ability to generalise. In 

this study, the clustering accuracy calculation, as a 

percentage, is given by; 

n
P = 100,

N
×                (7) 

where n  is the number of correctly clustered patterns and 

N  is the total number of patterns in the testing data. 

5.3. Results and Discussion 

The network architecture used for both the BOSOM and 

standard SOM consist of 4 input nodes and a 5 5×  output 

lattice grid. One hundred and twenty data patterns were 

used to train the network. For bat optimisation; the 

parameters are, loudness A = 0.5, the pulse rate 0 0.5r = , 

minimum frequency 0.0,minf =  and maximum frequency 

0.1maxf = .  The bat population was set at 500 and problem 

dimension as 25 (a 5 5×  grid-structure) with maximum 

epochs of 2000. The input vectors ix
�

 were serially 

presented to the input layer. The number of input nodes 

corresponded to the number of data units in the input 

vectors that were fed into the network, while the number 

of nodes in the output layer represented the maximum 

number of possible classes. Table 3 shows the parameters 

that were used for both the SOM and BOSOM. 
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Table 3. Parameter Settings for both SOM and BOSOM. 

Parameter Iris 

Input vectors (Training) 120 

Input vectors (Testing) 30 

Input dimension 4 

Mapping Dimensions (X,Y) 5 5×  

Lattice structure Square Topology 

Learning rate 0.5 

Pulse rate (BOSOM only) 0.5 

Number of runs 10 times 

Epochs 2000 

Number of bats (BOSOM only) 500 

Minimum frequency 0.0 

Maximum frequency 0.1 

Stop condition (minimum error) 0.0000193 

The acceptable stopping condition, in the form of acceptable 

error, was arrived at from empirical trials. The topographic 

error value varies between 0 (good projection quality) and 1 

(poor projection quality). The topographic quality of the 

mapping in this study was equal to 0.05; which meant that all 

observations had a second best unit which was in the 

neighbourhood of the best matching unit.  

The quantisation error is an unbounded positive number. The 

closer it is to 0, the better the projection quality. As can be 

drawn from the results in Table 4, the quantisation error for 

BOSOM was 0.0171 and was closer to 0 than for SOM at 

0.0348. Also BOSOM had a 76.6667 clustering accuracy, 

statistically better than SOM with 74.3333 clustering 

accuracy. This led to the conclusion that BOSOM out 

performed SOM in the experiment. 

Table 4. Summary of SOM and BOSOM results. 

 SOM BOSOM 

Epochs 2000 2000 

Convergence Error 0.0318 0.0243 

Quantisation Error 0.0348 0.0171 

Classification (%) 74.3333 76.6667 

From Table 4, correct classification percentage shows that 

BOSOM results were better than SOM by a 2.334% margin. 

This margin is statistically significant in ANN training. For 

Iris learning, both algorithms converge using the maximum 

number of pre-specified iterations. 
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Figure 3. Convergence of SOM compared to BOSOM. 

For 2000 iterations, SOM converges at a minimum error of 

0.0318 while BOSOM converges at a minimum error of 

0.0243. Figure 3 shows a comparison of error convergence 

between the SOM and BOSOM under same empirical 

circumstances. Figure 3 (a) shows the behaviour of error 

during training until a stopping condition, or maximum 

number of epochs, is met. The results show that the 

quantisation error steadily declines with minimal sensitivity 

as the SOM approaches the stopping condition or maximum 

number of epochs at 2000 epochs. The standard SOM does 

not show sufficient sensitivity to input, and it is not clear why 

this is so. Figure 3 (b) shows the quantisation error for 

BOSOM. It clearly shows good sensitivity to new input and 

good error decline. It may be put forth that, in BOSOM the 

virtual bats work together to find the lowest error at each 

iteration and therefor consistently reduce the error at each 

iteration. 

6. Conclusion 

By only adjusting the initial weights of the standard SOM, 

the BOSOM shows interesting results that need to be 

investigated further. It appears that the performance of the 

BOSOM is statistically better than the standard SOM. This 

may be attributed to the fact that BOSOM initialises the 

initial weight vector near a global optimum. Further research 

needs to be done, to establish whether the BOSOM could be 

further improved by regulating the learning rate, γ . This 

regulation may contribute to BOSOM being smoother and 

faster. 
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