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Abstract 

An estimation of distribution algorithm utilizing opposition-based learning is firstly proposed in this paper. In the proposed 

algorithm, opposite population is generated from the current population by calculating opposite numbers, and the best 

individuals in the population with the current population and the opposite population are selected to form the next population 

based on fitness values. Then, demixing system of the blind sources separation with post-nonlinear mixture is modeled using a 

multi-input multi-output wavelet neural network whose parameters can be determined under the criterion of independence of its 

outputs. A criterion of independence based on higher order moments is used to measure the statistical dependence of the outputs 

of the demixing system, and the proposed algorithm is utilized to minimize the criterion. Finally, the proposed algorithm is 

compared with the version of the original estimation of distribution algorithm on some well-known benchmarks, and used to a 

post-nonlinear blind sources separation problem with two independent random signals. The relative experimental results 

demonstrate that the algorithm outperforms the original estimation of distribution algorithm, and is effective for post-nonlinear 

blind source separation. 
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1. Introduction 

The problem of blind source separation (BSS) has been 

intensively studied during the last twenty years, mainly in the 

case of linear instantaneous mixtures, and more recently for 

linear convolutive mixtures. Generally, the mixing process of 

multiple sensors contains some nonlinear transformation such 

as the saturation distortion of sensors. The study of nonlinear 

BSS is more realistic and important than linear BSS in 

practice. However, blind separation of the original signal in 

nonlinear mixtures has rarely been addressed. Thought it is 

difficulty in separating independent sources from nonlinear 

mixtures, several effective models and methods were 

proposed recently for nonlinear BSS such as Jordi et al. [1], 

Leonardo et al. [2], Amit et al. [3], David et al. [4-5], 

Sprekeler et al. [6], Ehsandoust et al. [7-8]. These methods are 

mostly developed based on gradient-based optimization to 

avoid computing some unknown quantities in an unsupervised 

manner. Therefore, they are susceptible to the local minima 

problem during the learning process and are thus limited in 

many practical applications. 

Evolutionary algorithms have been introduced to solve 

nonlinear optimization problems. Estimation of distribution 

algorithms (EDA) [9] are evolutionary algorithms that use 

probabilistic models to represent relevant information about the 

search space. The idea is to capture, in the form of probabilistic 
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dependencies between the variables, information about 

promising areas of the search space that can be used to improve 

the search for better solutions. Machine learning techniques are 

used to learn the probabilistic models and sample new solutions 

from them. EDA have been widely applied in combinatorial 

optimization and continuous optimization domains. It has been 

proven that EDA has some special characteristics of concise 

concept, good global searching ability. The performance of an 

EDA highly depends on how well it estimates and samples the 

probability distribution. Much research in EDA focuses on 

different approaches to probabilistic modeling and sampling, 

such as directed graphical models (Bayesian networks) 

[10-12], undirected graphical model (Markov Random Field) 

[13-14], etc. 

In this paper, an estimation of distribution algorithm utilizing 

opposition-based learning [15] is proposed, and is applied to 

post-nonlinear blind source separation. The proposed algorithm 

employs opposition-based learning for population initialization 

and next population generation in the classical estimation of 

distribution algorithm. Opposite population is generated from 

the current population by calculating opposite numbers. 

Population with the current population and the opposite 

population is sorted based on fitness values, and the best 

individuals in the population are selected to form the next 

population. Then, demixing system of the post-nonlinear blind 

sources separation is modeled using a multi-input multi-output 

wavelet neural network whose parameters can be determined 

under the criterion of independence of its outputs. A criterion of 

independence based on higher order moments is used to 

measure the statistical dependence of the outputs of the 

demixing system, and the estimation of distribution algorithm 

utilizing opposition-based learning is utilized to minimize the 

criterion. The proposed algorithm is compared with the version 

of the original estimation of distribution algorithm on some 

well-known benchmarks, and used to a post-nonlinear blind 

sources mixture with two independent random signals. The 

relative experimental results demonstrate that the algorithm 

outperforms the original estimation of distribution algorithm, 

and is effective for post-nonlinear blind source separation. 

2. EDA Utilizing 
Opposition-Based Learning 

2.1. Estimation of Distribution Algorithm 

Estimation of distribution algorithms differ from traditional 

evolutionary algorithms. Instead of applying genetic operators 

like mutation and crossover to the parents, it estimates a 

probability distribution over the search space, and then 

samples the offspring individuals from this distribution. Let 

P(t) be the population of solutions at generation t. EDA work 

in the following iterative way: 

Step 1: Selection. Select M promising solutions from P(t) to 

form the parent set Q(t) by a selection method (e.g., truncation 

selection); 

Step 2: Modeling. Build a probabilistic model p(x) based on 

the statistical information extracted from the solutions in Q(t); 

Step 3: Sampling. Sample new solutions according to the 

constructed probabilistic model p(x); 

Step 4: Replacement. Fully or partly replace solutions in P(t) by 

the sampled new solutions to form a new population P(t+1); 

One of the major issues in estimation of distribution 

algorithms is how to select parents. A widely-used selection 

method in estimation of distribution algorithms is the 

truncation selection. In the truncation selection, individuals 

are sorted according to their objective function values. Only 

the best individuals are selected as parents. 

Another major issue in estimation of distribution algorithms is 

how to build a probability distribution model p(x). In 

estimation of distribution algorithms for the global continuous 

optimization problem, the probabilistic model p(x) can be a 

Gaussian distribution model [16], a Gaussian mixture [9, 17], 

a histogram [18]. 

In Gaussian distribution model with diagonal covariance 

matrix, the joint density function of the k-th generation is 

written as follows: 
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In (1), the n-dimensional joint probability distribution is 

factorized as a product of n univariate and independent normal 

distributions. There are two parameters for each variable 

required to be estimated in the t-th generation: the mean, 

)(tdµ , and the standard deviation, )(tdσ . They can be 

estimated as follows: 
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where nd ,...,2,1= , ))(),...,(),(( ,2,1, txtxtx niii  
are values 

of the i-th variable of the selected M parent solutions in the 

t-th generation. 
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EDA perform better than some other evolutionary algorithms 

due to its ability to utilize the global statistical information 

collected from the previous search. 

2.2. Opposition-Based Learning 

The scheme of opposition-based learning was first introduced 

by H. R. Tizhoosh [15]. The opposition-based learning is 

general enough and can be utilized in a wide range of learning 

and optimization fields to make algorithms faster. Opposite 

numbers are defined as follows: 

Let x∈[a, b], then the opposite number x′ is defined as 

xbax −+=′                                  (5) 

The above definition can be extended to higher dimensions as 

follows: 

Let ),...,,( 21 nxxx=x  be an n-dimensional vector, where 

nibax
iii

,...,1],,[ =∈ . Opposite vector of ),...,( 1 n
xx=x  is 

defined by ),...,( 1 n
xx ′′=′x  where iiii xbax −+=′ , 

Assume f(x) is a fitness function which is used to measure 

candidate’s optimality. According to the opposite point 

definition, ),...,( 1 n
xx ′′=′x  is the opposite of ),...,( 1 n

xx=x . 

Now, if )()( xx ff ≥′ , then point x can be replaced with 

x′ ; otherwise we continue with x. Hence, the point and its 

opposite point are evaluated simultaneously to continue with 

the fitter one [15]. 

2.3. EDA utilizing Opposition-Based 
Learning 

There are two important steps in estimation of distribution 

algorithms which are explicitly modeling the probability 

distribution of the good solutions found so far and sampling 

new solutions by use of the constructed model. We incorporate 

the opposition-based learning mechanism into the estimation 

of distribution algorithms in order to improve the convergence 

performances of estimation of distribution algorithms. The 

opposite numbers are used in population initialization and also 

for generating new populations during the evolutionary 

process. We consider the following unconstrained global 

optimization problem: )(min xf , ),...,( 1 n
xx=x , and 

)(xf  is a continuous real value function defined on the 

hypercube [ ] [ ]
nn

babaD ,...,
11

××= . n is dimensional number 

of search space. Estimation of distribution algorithms using 

opposition-based learning as follows: 

Step 1 Initialize a population Q(0) randomly and calculate 

opposite population (0)Q′
 by the opposite vector; 

Step 2 Select the fittest individuals from the initial population 

Q(0) and the opposite population (0)Q′  as the initial 

population P(0); 

Step 3 Build a probabilistic model p(x) based on the statistical 

information extracted from the individuals in P(t); 

Step 4 Sample individuals according to the constructed 

probabilistic model p(x) to form population Q(t+1); 

Step 5 Calculate opposite population 1)(Q +′ t  by the opposite 

vector; 

Step 6 Select the fittest individuals from the set 

as the next generation population 

P(t+1); 

Step 7 If the given stopping condition is not met, goto Step 3; 

The pseudocode for EDA using opposition-based learning is 

presented as follows: 

Initialize a population Q(0) randomly 

FOR i=1 to N, d=1 to n 

Initialize individual xi,d randomly within [ ]dd ba , ; 

END FOR 

Calculate opposite population (0)Q′ by the opposite vector 

FOR i=1 to N, d=1 to n 

didddi xbax ,, −+=′  

END FOR 

Select N fittest individuals from { }(0)QQ(0) ′∪  as initial 

population P(0) 
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Generate population Q(t+1) 

FOR i=1 to N, d=1 to n 

)1(, +tx di
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END FOR 
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Generate opposite population 1)(Q +′ t  

FOR i=1 to N, d=1 to n 

)1()1( ,, +−+=+′ txbatx didddi
 

END FOR 

Select N fittest individuals from  as 

P(t+1) 

END WHILE 

3. EDA utilizing 
Opposition-Based Learning 

for Nonlinear BSS 

A generic nonlinear mixture model for blind source separation 

can be described as 

))(()( tt sFx =                                 (6) 

Where 
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(9) called the independent source vector, and (10) called 

vector of observed random variables. 

Especially, the post-nonlinear mixture model for blind source 

separation can be described as: 

))(()( tt Asfx =                              (11) 

Where A is a mixing matrix. 

T
21 )](,),(),([ ⋅⋅⋅= nfff ⋯f                  (12) 

 
Figure 1. Post-nonlinear mixture model. 

 
Figure 2. Separating system of post-nonlinear mixture model. 

Figure 1 shows the post-nonlinear mixture model described in 

(11), and Figure 2 shows blind source separation system of 

post-nonlinear mixture model. According to Figure 1 and 

Figure 2, the output of the post-nonlinear separating system 

can been written as 

))(()( tt xWgy =                              (13) 

Substituting (11) into (13), we can obtain 

)))((()( tt AsfWgy = , If )()( 1 ⋅=⋅ −fg  and PDWA= , then this 

means that the components of the outputs y are independent. 

Where P  is a permutation matrix and D is a nonsingular and 

diagonal matrix. 

For the nonlinear mixing transform function f , we assume it 

has the inverse function 1−
f . ))(()( tt xWgy =  is a 

multi-input multi-output system, a wavelet neural network 

[19] of Figure 3 is used to approximate the unknown 

multi-input multi-output system. 

 
Figure 3. Wavelet neural network model. 

Where nt R)( ∈x , nt R)( ∈y , )(xψ  is an orthonormal 

wavelet basic function. The outputs of the wavelet neural 

network showed in Figure 3 can been written as 
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(14) can be the following matrix form 
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),,1L,,,1(, njib ji ⋯⋯ ==  are scale factors, ),,1( njj ⋯=τ are 

location factors, )L,,1,,,1(, ⋯⋯ == jnijiθ  are network weights, 

L is the number of wavelet neuron, H  is set of the parameters 

of wavelet neural network, and it is consists of 

),,1L,,,1(, njib ji ⋯⋯ == , ),,1( njj ⋯=τ  and 

)L,,1,,,1(, ⋯⋯ == jnijiθ . 

It is possible to recover the source from the post-nonlinear 

mixture (11) using only the source statistical independence 

assumption [20]. In order to separate the independent sources 

from their post nonlinear mixtures, the outputs of the 

separation system is expected to be mutually statistically 

independent. For this purpose, a measure of independence 

between random variables must be utilized. Indeed, if the 
iy  

are independent, one has [21] 
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Thus, a cost function for post nonlinear blind sources 

separation is defined: 
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Where H  is set of the parameters of wavelet neural network. 

The minimization of the cost function in (21) can give the 

correct separation results for post nonlinear mixtures. In this 

section, we present the particle swarm optimization-based 

method to fulfill the search of the optimal parameter set of the 

separation model based on the cost functions specified in (21). 

The EDA using opposition-based learning for post-nonlinear 

blind source separation can be implemented as the following 

iterative procedure: 

1) Set the iteration number t to zero, an initial population 

Q(0) are created from a random initial set of parameters; 

2) Calculate opposite population (0)Q′  by the opposite 

vector; 

3) Evaluate individuals in{ }(0)QQ(0) ′∪ , and select N fittest 

individuals as initial population H(0); 

4) Build Gaussian probabilistic distribution p(x) from the 

individuals in H(t) by estimating mean and standard 

deviation; 

5) Generate population Q(t+1) by sampling Gaussian 

probabilistic distribution p(x); 

6) Calculate opposite population 1)(Q +′ t  by the opposite 

vector; 

7) Evaluate individuals in{ }1)(Q1)Q( +′+ tt ∪ , and select N 

fittest individuals as population H(t+1); 

8) Let t=t+1; 

9) Go to step 4), and repeat until convergence. 

10) Output the individual with the best fitness value in H and 

compute the separated signals. 

4. Computer Simulation Results 

In the section, the performance of the estimation of 

distribution algorithm utilizing opposition-based learning 

(EDAOL) is compared with that of the original estimation of 

distribution algorithm (EDA). The following some 

well-known benchmark functions have been used to test. 
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All test functions have a global minimum with a fitness value 

of 0. Population size N=100. All functions were implemented 

in 20 dimensions except for the two-dimensional function 6. 

The initial population was generated from a uniform 

distribution in the ranges specified below. All experiments 

were repeated for 50 runs. The maximum number of iterations 

is set to 1000 in each running. Tables 1 listed the mean fitness 

value and standard deviation of the best solutions averaged 

over 50 trails on f1~f6 functions. According to Table 1, It can 

be known that the proposed algorithm can reach a better 

solution with a quicker speed and a higher precision. Clearly, 

the algorithm outperforms the standard EDA for the 

benchmark functions. 

Table 1. The best fitness values with the standard deviation for f1~f6 function. 

 Algorithm Dim Mean Standard Deviation 

f1 
EDA 20 0.4649e-6 0.7988e-6 

EDAOL 20 0.8469e-10 0.7517e-10 

f2 
EDA 20 107.9121 91.4011 

EDAOL 20 93.3420 80.9838 

f3 
EDA 20 0.9043 0.9201 

EDAOL 20 0.1087 0.5073 

f4 
EDA 20 89.0113 160.9315 

EDAOL 20 0.7079e-7 0.4893e-6 

f5 
EDA 20 0.7820e-5 0.5387e-5 

EDAOL 20 0.2131e-5 0.2496e-5 

f6 
EDA 2 0. 4515e-8 0.3873e-8 

EDAOL 2 0. 2487e-9 0.1426e-9 

And a simulation was conducted to test the algorithm to blind 

separation of independent sources from their post-nonlinear 

mixture. Nonlinear function 1 ( )h ⋅  and 2 ( )h ⋅  in (21) is selected as 

3
1( )h x x= , 2( ) tanh( )h x x x= − . Consider the mixing case of two 

independent random signals. The mixing matrix A was randomly 

generated, nonlinear function 3
1 )( xxf = , 3

2( )f x x= . Sources 

signals 1 ( ) 0 .5 * [1 sin(6 )] cos(100 )s t t tπ π= +  and 

2 ( ) sin(20 )s t tπ=  are shown in Figure 4, mixtures are shown 

in Figure 5, Figure 6 are separated signals. 

 

 

Figure 4. Source signals. 

 

 

Figure 5. Mixture signals. 

 

 

Figure 6. Separated signals. 

5. Conclusions 

In this paper, an estimation of distribution algorithm utilizing 

opposition-based learning and a method to blind source 

separation in post-nonlinear mixtures is presented. In the 

proposed algorithm, opposite population is generated from the 

current population by calculating opposite numbers, and the 

best individuals in the population with the current population 

and the opposite population are selected to form the next 

population based on fitness values. The demixing system of 

the post-nonlinear mixtures is modeled using a multi-input 

multi-output parameterized wavelet neural network whose 

parameters can be determined under the criterion of 
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independence of its outputs. A criterion of independence 

based on higher order moments is used to measure the 

statistical dependence of the outputs of the demixing system, 

and the proposed algorithm is utilized to minimize the 

criterion. The proposed algorithm is compared with the 

version of the original estimation of distribution algorithm on 

some well-known benchmarks, and used to a post-nonlinear 

blind sources separation problem with two independent 

random signals. Simulation results show that the algorithm 

outperforms the original estimation of distribution algorithm, 

and is capable of separating independent sources from their 

post-nonlinear mixtures. 
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