
 
American Journal of Information Science and Computer Engineering  

Vol. 3, No. 4, 2017, pp. 52-55 

http://www.aiscience.org/journal/ajisce 

ISSN: 2381-7488 (Print); ISSN: 2381-7496 (Online) 
 

 

 

* Corresponding author 

E-mail address: shahidshaikh62@yahoo.com (M. Shahid), awaistasneem@gmail.com (K. A. Tasneem) 

Impact of Avoiding Non-functional Requirements 
in Software Development Stage 

Muhammad Shahid1, *, Khawaja Awais Tasneem2 

Centre of Excellence in Science and Applied Technologies (CESAT), Islamabad, Pakistan 

Abstract 

Non-functional requirements such as security, performance, usability, scalability and maintenance define the quality attributes 

or constraints of software to be developed. During the development of software, they are as critical as their counterpart 

functional requirements because they ensure the quality of software product. Avoiding non-functional requirements or 

constraints during the requirements engineering process could lead to the failure of software projects. In order to investigate 

this problem, we have reviewed several published research papers. Based on the study of previously published research this 

paper gives an overview of impact of avoiding nonfunctional requirements of software project during requirements engineering 

process. In this research we will also give our recommendations for the improvement of requirements engineering practices. 

Keywords 

Non-functional Requirements, Requirements Engineering, Software Development models, Security, Scalability, 

Maintainability 

Received: March 21, 2017 / Accepted: April 7, 2017 / Published online: June 14, 2017 

@ 2017 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. 

http://creativecommons.org/licenses/by/4.0/ 

 

1. Introduction 

During the software development both functional 

requirements and nonfunctional requirements have to be 

taken into consideration. Software’s functional requirements 

[1] are the services that the intended software must deliver. It 

simply defines that how the intended software must response 

and act to specific inputs and conditions. Nonfunctional 

requirements are the restraints on the functionalities provided 

by the intended software like usability; flexibility, efficiency, 

availability and portability. These are applied on the software 

in general, rather than separate software functionalities. Good 

quality software product can be produced by applying the 

optimum mixture of functional and nonfunctional 

requirements. Also, achievement of the quality attributes of 

the intended software is linked with software architecture for 

that system [2]. Requirements engineering can be subdivided 

into requirements eliciting, requirements analyzing, 

requirements documentation, requirements validating and 

requirements management. Though nonfunctional 

requirements are often more important than functional 

requirements [1], but it has been observed that most of the 

requirements management artifacts emphasis on the desired 

functionality of software project. Real-time software’s are 

mainly quality driven than functionality concerned. 

Numerous researches stress the definition, grouping and 

representation of nonfunctional requirements but they lack in 

providing a framework for the proper consideration and 

management of software’s nonfunctional requirements. 

We will discuss the impacts of ignoring the software’s 

nonfunctional requirements during software development 

process. 

This paper is organized as follows: Section 2 will provide a 

brief description of the requirements engineering process and 

its sub-activities. Sections 3 will discuss the various available 

requirements engineering process models. Section 4 will give 



53 Muhammad Shahid and Khawaja Awais Tasneem:  Impact of Avoiding Non-functional  

Requirements in Software Development Stage 

the comparison of the already available models. At last, in 

Section 5 we will conclude the paper and give our 

suggestions for further improvement of software 

development process. 

2. Requirements Engineering 

Requirements are the foundation of a software project. Since 

requirements gathering are the first step of the 

softwaredevelopment lifecycle, therefore it sets sensible 

objectives to be attained. Requirements engineering process 

consists of some sub-processes like requirements elicitation, 

requirements analysis and negotiation, requirements 

specification, requirements modeling, requirements 

verification and validation, requirements traceability and 

requirements management. 

Errors produced at starting level of software development 

may lead to failures and canincrease the cost of maintenance 

during the maintenance phase of the software. According to 

the Standish Group's CHAOS Reports from 1994 and 1997 

[STA97], the maximum contribution in the failure of a 

software project is due to poor software requirements 

engineering. Another research [COM97] of five hundred 

Information Technology managers in the U.S.A and United 

Kingdom stated that about seventy-six percent of the managers 

experienced project failure throughout their jobs, and the major 

source of project failure was "changing user requirements. During 

the process of requirements management, both types of 

requirements should be given importance in order to produce 

quality software but literature [15] shows that NFRs have not 

been given their due importance as compared to functional 

requirements during the requirements engineering process. 

3. Software Development 
Models 

Waterfall Model 

Waterfall model is a sequential model which works like a 

flowing water fall. This model was presented by W. W. 

Royce [14]. Waterfall model of software development 

consists of following phase’s i.e. Requirements analysis, 

software requirements specification, Software design, 

Implementation, Testing, Integration, Deployment, 

Maintenance. In this model each phase has a separate starting 

and ending point. Code is written after the complete 

understanding of requirements therefore it ensures timely 

delivery of software to the clients. Errors could be corrected 

during the design phase of model but it become difficult with 

the passage of time. With the passage of time after 

integration of different modules, the code becomes more and 

more complex due to which change become very difficult 

and costly [3]. 

 

Figure 1. Waterfall Model. 

Prototyping Model 

Prototyping model talks about creating the prototypes of 

software applications, for example, incomplete versions of 

the software program being developed. It helps to envision 

different components of software under development to bind 

the gap of confusion to the end user’s requirements by the 

development team. Moreover, it reduces the number of 

iterations that may occur in the waterfall model and tough to 

implement because of rigidity of waterfall model. So, after 

the development of final prototype, software requirement is 

considered as locked [4]. 

Spiral Model 

It is the union of components of design and prototyping in 

phases. It was developed by taking the best features of top 

down and bottom up approaches. This process model unites 

the functionality of prototyping process model and waterfall 

process model. Spiral process model is preferred for large, 

costly, high risk and mission critical projects [17]. It uses 

some of the stages of waterfall process model, in effect with 

the similar order, divided into project planning, project risk 

assessment, and construction of prototypes & simulations [5]. 

Extreme Programming (XP) 

It is based on iterative and incremental development, where 

requirements and solutions evolve through collaboration 

between cross-functional teams. It can be used with any type 

of the project, but it needs more involvement from customer 

and to be interactive. Also, it can be used when the customer 

needs to have some functional requirement ready in less than 

three weeks. It decrease the time required to avail some 

system features. Face to face communication and continuous 



 American Journal of Information Science and Computer Engineering Vol. 3, No. 4, 2017, pp. 52-55 54 

 

inputs from customer representative leaves no space for 

guesswork. The end result is the high quality software in 

least possible time duration and satisfied customer. Extreme 

programming favors simple designs, common metaphors, 

collaboration of programmers and users, frequent 

communication and feedback. XP needs special skills for the 

team [6]. 

V-Model 

V-Model was published in “Development Standards for IT 

Systems of the Federal Republic of Germany in1997” [9]. 

The phases of V-Model were organized in a serial that dorms 

a VShape. V-Model is designed into a particular project 

because V-Model is independent of project. V-Model 

includes three stages: the life-cycle process model, the 

distribution of methods and functional tool requirements. At 

each stage the standards are organized according to the areas 

of functionality. There are four sub-methods: project 

management, quality assurance, system development and the 

configuration management [7]. 

Volere 

The Volere requirements engineering model is a complete 

requirements engineering process model with detailed 

guidance to collect the requirements of software system. The 

process model delivers a rigorous guideline to categorize and 

improve requirements, both non-functional & functional. 

Volere also suggested a method for taking requirements of 

agile projects and then determining requirements with the 

help of prototypes and deviances by testing mock up projects 

for user’s work. This process model would be taken as being 

iterative [9]. 

Web Site Design Method (WSDM) 

Website design method was developed by [13] and reflected 

as one of the latest methods for the web application software 

design & development. Using WSDM, new and creative 

websites could be developed. Website design method is end 

user driven method due to the fact that it uses requirements 

of the end users to determine and run the process of website 

development. Moreover, it uses the idea “Audience Class” to 

mention each end user(s) who is stakeholder and have his 

specific requirements. 

SCRUM 

SCRUM is an agile based approach in which software is 

developed by dividing it into small set of functionality called 

sprints which typically span into four weeks. It is managed 

by scrum master who arrange meetings on daily progress and 

review of activities of the last day. This method was 

documented by Pittman and after him it was further extended 

upon by Booch. It may use the same roles for project staff as 

outlined by Graham [11], but it organizes and manages the 

team process in a new way. SCRUM is a management, 

enhancement and maintenance methodology for an existing 

system or production prototype. It assumes existing design 

and code which is virtually always the case in object-oriented 

development due to the presence of class libraries. 

RUP 

Rational unified process model is architecture and use case 

driven model [10]. Every use case can be comprised of 

different scenario(s) which is considered as an effective 

method of taking software requirements. It is also iterative 

method. RUP was created for addressing particular software 

development requirements and its design. As a descendent of 

Object oriented process model, it was created in 1990s by the 

Rational Software. Therefore, it is generally recognized as 

Rational Unified Process model. IBM developed Rational 

Software back in 2003 and continued to produce & market 

the process model as part of different SDLC tool. The 

Rational Unified Process provides six guidelines to 

implement successful projects. These are outlined in below 

Figure 2. 

 

Figure 2. The Principles of RUP. 

4. Comparison of 

Requirements Engineering 

Models with Respect to NFRs 
Management 

Following Table 1 is the comparison of the selected software 

development lifecycle models with respect to their ability to 

manage NFRs during the process of requirements 

engineering. Note that here “Y” represents yes i.e. the model 

manages NFRs during the particular phase of requirements 

engineering, 

“N” represents that the model does not manage NFRs at that 

particular phase of the model and similarly “P” represents 

that model partially manages NFRs. Here comparison has 

been done between the requirements models and the various 

phases of SDLC models during the process of requirements 

engineering. 

 



55 Muhammad Shahid and Khawaja Awais Tasneem:  Impact of Avoiding Non-functional  

Requirements in Software Development Stage 

Table 1. Comparison of Software Life Cycle Models. 

RE Activities WF Model Prototyping Model Spiral Model XP V Model Volero WSDM SCRUM RUP 

Elicitation Y Y Y N P P P N P 

Analysis Y N N N P P P N P 

Specification Y N N N P Y P N N 

Modeling Y P N N N N N N N 

V & V P P Y N P P P N P 

Management Y Y Y N P P P N P 

Traceability N N N N P P N N N 

 

On the basis of above comparison results, we conclude that 

none of the selected process models completely mange 

nonfunctional requirements. 

5. Conclusion and Future Work 

The key objective of writing this paper was to assess 

different available requirements engineering process models 

with respect to their capability to entirely consider NFRs and 

the effects of ignoring the important NFRs. An evaluation 

measures associated to the various stages of requirements 

engineering (to check the ability of process model to manage 

the NFRs during requirements engineering phase) was 

identified by doing a comprehensive literature review. Using 

the above criteria nine process models, Waterfall model, 

prototyping model, spiral model, rational unified process 

model, Volere model, V-Model, XP, Scrum methodology and 

Website design method were assessed by debating on how 

NFRs are dealt during the execution of major tasks of 

requirements engineering by evaluating the results. The 

results show that none of the selected process models 

completely mange NFRs, though nonfunctional requirements 

are the critical kind of software system features. This 

introduces the complexity in the developed software and can 

cause a system failure because of ignoring the nonfunctional 

requirements during the development phase. It has already 

been observed that mostly system failures occur due to the 

absence of nonfunctional requirements support [16]. 

Moreover, cost of incorporating the nonfunctional 

requirements during the developments early stages is far more 

less than the cost it takes during the maintenance phase. 

However, there is an existing work emphasizes on one 

individual or some tasks of the RE as stated in the introduction 

section of this paper. Not considering NFRs will increase the 

level of software failure risk and reduce the level of software 

quality, hence we will propose a new model in future that 

combines the concepts stated and reviewed in this paper. 

References 

[1] Somerville, I. (2015). Software Engineering, Addison Wesley, 
Harlow, England, 10th edition. 

[2] Kazman, R., & Bass, L. (1994). Toward deriving software 

architectures from quality attributes (No. CMU/SEI-94-TR-
10). CARNEGIE-MELLON UNIV PITTSBURGH PA 
SOFTWARE ENGINEERING INST. 

[3] Boehm, Barry. "Anchoring the software process." IEEE 
software 13.4 (1996): 73-82. 

[4] Doyle, William P. "Business modeling, software engineering 
and prototyping method and apparatus." U.S. Patent No. 
5,233,513. 3 Aug. 1993. 

[5] Boehm, Barry. "A view of 20th and 21st century software 
engineering." Proceedings of the 28th international 
conference on Software engineering. ACM, 2006. 

[6] Paulk, Mark C. (2001) Extreme programming from a CMM 
perspective. IEEE software 18(6), 19-26. 

[7] Cysneiros, Luiz Marcio, and Julio Cesar Sampaio do Prado 
Leite. (2004) "Nonfunctional requirements: From elicitation to 
conceptual models." IEEE Transactions on Software 
Engineering 30(5), 328-350. 

[8] Somerville, I. (2010). Software Engineering, Addison Wesley, 
Harlow, England, 9 Edition. 

[9] Deutschland, B. (2004). V-Modell® XT. 

[10] S. Robertson and J. Robertson, (1999), Mastering the 
Requirements Process (Addison-Wesley). 

[11] De Troyer, O. M. F., & Leune, C. J. (1998). WSDM: a user 
centered design method for Web sites. Computer Networks 
and ISDN systems, 30(1-7), 85-94. 

[12] Schwaber, Ken. (1997), Scrum development process. Business 
Object Design and Implementation. Springer London, pp.117-
134. 

[13] Karmokar, S., H., & Tan, F. B. (2016), Using 
Multidisciplinary Design Principles to improve the Website 
Design Process. Pacific Asia Journal of the Association for 
Information Systems, 8(3). 

[14] W. W. Royce (1987), Managing the Development of Large 
Software systems: Concepts and Techniques, Proceedings of 
the 9th International Conference on Software Engineering 
(ICSE), pp. 328-338. 

[15] Alashqar, A. M., Elfetouh, A. A., &El-Bakry, H. M. (2015). 
Evaluating User Interface Management Systems based on 
Quality Attributes and Unit Operations. International Journal 
of Computer Applications 116(9). 

[16] Trupti Suryawanshi (2016), Modeling of Nonfunctional 
Requirements for Agile Development Processes, Vol-4, IJITE, 
2016. 

[17] Chandra, V. (2015), Comparison between Various Software 
Development Methodologies, International Journal of 
Computer Applications, 131(9), 7-10. 


