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Abstract 

Fault prediction of wind turbine could greatly reduce its operation and maintenance cost. A fault prediction method combining 
Principal Component Analysis (PCA) and Back Propagation Neural Network (BPNN) is proposed. Using only BPNN to predict 
the turbine fault, one has to pick out proper attributes for training and that can be a troublesome work. With PCA revealing the 

hidden relationship between attributes, we no longer need to select attributes by experience thus saving cost. Also, PCA largely 

reduce the dimension of attributes so that the curse of dimensionality can be avoided. The proposed PCA-BPNN method can 
improve the accuracy by 3% compared BPNN method, so that abnormal state of the mechanical faults can be determined more 
precisely, again reduce the maintenance cost. 
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1. Introduction 
The market forecasts that by 2018 the wind energy cumulative 
gigawatts (GW) will be 43% higher than of 2015's GW [1]. For 
wind turbines the maintenance costs are high because of their 
remote location, and this can amount to as much as 25 to 30% of 
the total energy production [2]. The most effective way to 
reduce maintenance costs is to continuously monitor generators’ 
status and predict the malfunction of wind turbine. Then the 
system degradation problems can be found and responded in 
time. Maintenance can be carried out ahead of time before the 
system crash and excess maintenance is avoided. Therefore, 
fault prediction could maximize the normal production of wind 
power plant and greatly reduce maintenance costs. 

The main methods of wind turbine fault diagnosis include these 
types such as the fault mode analysis based on statistical data, 

the fault diagnosis based on time series prediction, model-based 
fault diagnosis of control system, the fault diagnosis based on 
vibration analysis, and other auxiliary diagnosis methods like 
acoustic emission technique and ultrasonic capacitance liquid 
level detection [3, 4]. These methods did not combine different 
characteristic data such as vibration, power, start stop record, 
which could be more informative. 

Up to now, as more and more monitoring data, e.g. the 
temperature data, the driving power, the swing in the direction 
of the tower, the average wind speed, the angle of blade and 
the average generator speed are available, many data mining 
methods are utilized in fault prediction, for instance, graphical 
model-based approach proposed by Aloraini A and 
Sayed-Mouchaweh M [5], SVM-based solution by Santos P et 
al. [6], GA optimization method by Odofin Sarah et al. [7] and 
Neural Network used by Lan Q et al. [8] probabilistic neural 
network by Malik H and Mishra S [9], k-means and neural 
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