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Abstract

Fault prediction of wind turbine could greatly reduce its operation and maintenance cost. A fault prediction method combining
Principal Component Analysis (PCA) and Back Propagation Neural Network (BPNN) is proposed. Using only BPNN to predict
the turbine fault, one has to pick out proper attributes for training and that can be a troublesome work. With PCA revealing the
hidden relationship between attributes, we no longer need to select attributes by experience thus saving cost. Also, PCA largely
reduce the dimension of attributes so that the curse of dimensionality can be avoided. The proposed PCA-BPNN method can
improve the accuracy by 3% compared BPNN method, so that abnormal state of the mechanical faults can be determined more

precisely, again reduce the maintenance cost.
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1. Introduction

The market forecasts that by 2018 the wind energy cumulative
gigawatts (GW) will be 43% higher than of 2015's GW [1]. For
wind turbines the maintenance costs are high because of their
remote location, and this can amount to as much as 25 to 30% of
the total energy production [2]. The most effective way to
reduce maintenance costs is to continuously monitor generators’
status and predict the malfunction of wind turbine. Then the
system degradation problems can be found and responded in
time. Maintenance can be carried out ahead of time before the
system crash and excess maintenance is avoided. Therefore,
fault prediction could maximize the normal production of wind
power plant and greatly reduce maintenance costs.

The main methods of wind turbine fault diagnosis include these
types such as the fault mode analysis based on statistical data,
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the fault diagnosis based on time series prediction, model-based
fault diagnosis of control system, the fault diagnosis based on
vibration analysis, and other auxiliary diagnosis methods like
acoustic emission technique and ultrasonic capacitance liquid
level detection [3, 4]. These methods did not combine different
characteristic data such as vibration, power, start stop record,
which could be more informative.

Up to now, as more and more monitoring data, e.g. the
temperature data, the driving power, the swing in the direction
of the tower, the average wind speed, the angle of blade and
the average generator speed are available, many data mining
methods are utilized in fault prediction, for instance, graphical
model-based approach proposed by Aloraini A and
Sayed-Mouchaweh M [5], SVM-based solution by Santos P et
al. [6], GA optimization method by Odofin Sarah et al. [7] and
Neural Network used by Lan Q et al. [8] probabilistic neural
network by Malik H and Mishra S [9], k-means and neural
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network by Xu Liu et al. [10]. These methods mainly focus on
predicting directly with original data or data selected by
experience instead of preprocessing data. Take BPNN as a
sample. The researchers always input original data or select
the data by experience. It leads to an inefficient data analysis
because of the redundancy of data or unrevealed internal
relationship of the data.

The proposed method in this paper aims to reduce the
redundancy of the attributes by utilizing PCA to preprocess
the data. After that, a part of those data are used to train the
BPNN and the rest of the data are predicted. The D-value of
the actual value and the predicted value indicates the symptom
of fault. The experiment led up to the fact that the prediction
accuracy can be actually improved with the principal
component analysis method.

2. Methods
2.1. The Principal Component Analysis
(PCA)

PCA is a dimension reduction method based on statistical
analysis [11, 12]. Assume that there are n samples and every
sample has p attributes. They form a nxp data matrix as
following.
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We note a column vector of X as X, =, x, - x,

.
i=1,2,---,p. When the original attributes are large, we

have to replace them with a few mutually orthogonal
comprehensive components. The new column vector is
respectively called the first, second... m-th principal
component, and represents new attributes that has the largest
variance in order.
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Where is the eigenvector corresponding to the i-th eigenvalue
by quantity of matrix X’s covariance matrix or correlation
matrix. There are six steps to achieve principal components.

Step 1. The data which are n samples with attributes form a
matrix with column vectors.

Step 2. Each element of matrix subtracts the mean of its

column.
Step 3. Compute the covariance matrix of the above matrix.

Step 4. Calculate the eigenvalues and eigenvectors of the
covariance matrix.

Step 5. Rank the eigenvalues from the highest to the lowest
in order to choose the top corresponding m eigenvectors. The
rest eigenvectors are dropped.

Step 6. Calculate the m principal components according to
formula (2).

The typical goal of a PCA is to reduce the dimensionality of
the original feature space by projecting it onto a smaller
subspace, where the eigenvectors will form the axes. The
eigenvectors with the lowest eigenvalues bear the least
information about the distribution of the data.

2.2. The Error Back Propagation Neural
Network Algorithm

The BPNN algorithm is extensively used in prediction. It is
expert in approximating any nonlinear function, so it is
especially suitable for the issues of complex internal
mechanism. Its self-learning ability and parallel fast
computation also make it practical. Generally, the BPNN has
two stages, training and testing.

During the training phase, training data including the input
and the expected output are given to the neutral network. For
example, the input might be an encoded picture of an animal,
and the output could be a code that represents the category of
the animal. Figure 1 shows the topology of the BPNN that
includes an input layer, one hidden layer and an output layer. It
should be noted that it can have more than one hidden layer.

Suppose there are D inputs, K outputs, M hidden layer nodes.
are the input variables, are the hidden layer’s variables, and
are the output variables, and are the weight parameters
between and, and. and are the bias vectors of the hidden layer
nodes and the output layer nodes.

hidden units

UK

outputs

Figure 1. Three-layer neural network.
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Take node as example. Its output is and its bias is, which is one
conponent of bias vector. Its output is determined by its bias, the
outputs of its former layer nodes and its activation function.

S = éwikzi*ZOk (3)
Yy = f(Sk) (4)
where f is the activation function and it is usually the sigmoid
function f(x)= L —.
l+e

The expected output is then compared with the actual output
value, and an error signal is computed.

e=23 (5 —d,) ®

The training stage is a learning process and composed of two
steps, which are input signal forward propagation and error
signal back propagation. When the error exceeds its
allowable scope, the BPNN will change over to the error
signal back propagation step. The output error signals are
transmitted backwards from the nodes of the output layer to
each node in the immediate hidden layer to modify their
connection weights and the bias of the nodes of the output
layer proportion to the error signal, partial derivative of the
output node activation function and the output of the
connected node, where ¢ is the learning rate.
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This mechanism is also applied to its bias and the weights

and biases of hidden layer nodes. There are five steps in the
training stage.

Step 1. An input sample is applied to the input layer.

Step 2. The signal propagates layer by layer through the
hidden layers until an output is produced according to formula
(3) and (3).

Step 3. For each of the output nodes, the actual output value is
compared with the expected output according to formula (5).

Step 4. Modify the weights and the bias of each node
according to formula (6) and (7).

Step 5. The learning process will keep working and the above
steps repeat for every input samples until the total error of the
output of the network gradually reduced to the degree that can
be accepted or to the set number of learning.

3. Experiments and Result

The proposed method has been tested on the wind turbine
gearbox bearing condition monitoring using MATLAB.
Among all wind turbine faults, gearbox bearing faults are
relatively common [1, 3]. When the gearbox is out of order,
it’s bearing temperature would arise. Thus among the
numerous parameters contained by wind turbine status data,
the gearbox bearing temperature is the predicted target. The
data was provided by New Energy Institute of China Electric
Power Research Institute, from March 17 to April 17 in 2015,
taking one month every 10 minutes to log data for test, with a
total of 4500 data points.

Figure 2. Data partion for training validation and testing.

The data was separated into 3 parts, first 65% of data for
Neural Network training, next 25% for validation and last 10%
for testing as figure 2 shows. The actual temperature will rise
when wind turbine faults. We define D-value here to
determine wind turbine fault (discussed in detail in part 4.1).
Let T,= actual gearbox oil temperature, Tp= predict gearbox
oil temperature

D-value =T,-T, (8)

The fault happened after data point 4430, i.e. in the testing
dataset. So unlike most of the prediction problem, we are
expecting the predict value not fitting the actual ones in the
testing set. The prediction accuracy we be represent by the
mean square error of the validation set.

3.1. BPNN Method with 38 Attribute

Figure 3 shows the last 1000 point of actual and predicted
value of gearbox hearing temperature applying BPNN method
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with 38 attribute. The prediction result fit very well but the
fault data was also tracked, the D-value is small all the time in
this case we can’t tell the turbine fault.

3.2. BPNN Method with 9 Attribute

Because too much features can lead to data overfit when
applying BPNN, we selected 9 attributes of wind turbines, part
of them are listed in Table 1. And the BPNN prediction result
is shown Figure 4 (a), with the blue line representing the
actual gearbox bearing temperature and orange for prediction
value. Compared to Figure 3, the prediction is less accurate
but in the last about 80 point the prediction line deviate from
the actual one obviously, also see figure 4 (b) the D-value rise
indicates turbine fault.
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Figure 3. Actual and predicted value of gearbox bearing temperature
applying BPNN method with 38 attribute.
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Figure 4. (a) Actual and predicted value of gearbox bearing temperature
applying BPNN method with 38 attribute (b) the corresponding D-value.

Table 1. Part of normalized data of 9 attributes of wind turbines selected by experience*.

id Att_1 Att_2 Att_3 Att_4 Att 5 Att_6 Att_7 Att_8 Att 9

1362 -0.2033 0.3450 0.8640 1.3042 0.5394 -0.2743 0.5775 -0.0836 0.7651
1363  -0.2033 0.3229 0.8651 1.3109 0.3073 -0.2743 0.0793 -0.2187 0.7651
1364  -0.2033 0.3110 0.8628 1.3325 0.3184 -0.2743 0.3515 -0.0913 0.7648
1365  -0.2033 0.3007 0.8616 1.3459 0.4038 -0.2743 0.4195 -0.0991 0.7654
1366 -0.2033 0.2803 0.8876 1.3230 0.5294 -0.2743 0.1643 -0.1791 0.7653
1367  -0.2033 0.2582 0.8640 1.3122 0.0476 -0.2743 0.2421 -0.0936 0.7655

* Att_1: Swing amplitude of driving chain [%]; Att_2: Ambient temperature [°C]; Att_3: Variable plasma motor temperature [°C] Att_4: Cabin temperature [°C];
Att_5: Active power [KW]; Att_6: Swing amplitude of drive direction tower [%]; Att_7: mean wind speed [m/s]; Att_8: angle of Blade 1 [°]; Att_9: Generator

mean speed [rpm];

3.3. PCA-BPNN Method

Selecting attributes by experience is sometimes a troublesome
work, but with PCA we can avoid selecting features by hand.
The main difference between our proposed PCA-BPNN
method and BPNN method is that we are now running PCA to
all attribute to reduce the dimensions before sending data to
the neural net. We employ PCA to reduce the dimension, but it
is notable that generally we calculate the variance to decide

how many dimension we want. One commonly use value is
variance=0.95 meaning that 95% of the information of the
original data is retained. The PCA process tells that with 7 new
features we achieve 0.95 variance as shown in figure 5.

By setting variance we can decide which dimension to reduce
to. Setting variance to 0.95 in fact reduce the dimension to 7 as
in figure 5, by engineer experience we choose 9 features to
make prediction. The number of features are relatively close,
showing the effectiveness of PCA process in another way.
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Figure 5. Variance of each new feature adding up to 0.95.
Table 2. Part of PCA process output data by setting variance=0.95.
id Pcal Pca 2 Pca 3 Pca 4 Pca 5 Pca 6 Pca7 Pca 8 Pca9
1336 0.5155 -2.4869 0.9243 0.8254 0.6375 -0.2749 0.0447 -0.0952 0.5094
1337 0.0288 -2.8181 0.8864 0.9192 -0.3510 1.2242 0.1111 0.0726 0.0542
1338 0.3218 -2.5282 1.0117 0.7937 0.6525 -0.0845 0.0344 -0.1446 0.1896
1339 0.4693 -2.2445 1.0060 0.6798 0.7091 -0.2400 0.1860 -0.2416 0.3606
1340 1.5239 -1.1056 0.9546 -0.0980 0.8182 -0.5173 0.8853 -0.6393 0.6373
1341 2.4739 -0.8746 0.8512 -1.2886 1.1101 -0.5316 0.8119 -0.6925 0.6061
1342 3.7948 -0.4611 0.2985 -2.3830 0.1185 0.8588 1.0181 -0.6600 0.1866
The prediction alone with the actual value are shown in 2
figure 6 (a), if no fault occurs i.e. before about point 4430
that prediction is closer to the actual, and when fault happens 15} N
the two lines obviously separated. Also see figure 6 (b) the ;
overall fluctuation is smaller than that in figure 4 (b) which ! ,;lﬁ,_
mean less prediction error. | I
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Figure 6. (a) Actual and predicted value of gearbox bearing temperature

applying PCA- BPNN method i(b) the corresponding D-value.

4. Discussion
4.1. D-value and Turbine Fault

Using steady state working D-Value

of proposed
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PCA-BPNN method, we set four warning lines as in figure 7.
The red line and purple line stands for upper and lower
bound of temperature respectively, if the D-value keeps
exceeding for a set time, the machine will halt. The orange
line and light blue green are used for warning, notify people
earlier before the turbines have fault. We can find the
D-value goes beyond the up or down alarm line for several
times, this are some impulses which disappear quickly so
that the alarm won’t be triggered.
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Figure 7. Using steady state working D-value to set warning lines.

Put the four warning together with the last 500 point in figure
8, we can see that the D-value keeps exceeding the up alarm
line after point 4430, thus the fault can successfully be
predicted with PCA-BPNN method.
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Figure 8. D-value and four critical line for fault warning.

4.2. PCA-BPNN Method and BPNN Method
Comparison

For X; represent the actual temperature of i-th point and Y for
the prediction, the MSE is calculated by the formula (8). Note
again that we do not use the MSE of prediction result because
our test data set contains the fault data and that will affect the
result. The MSE and corresponding accuracy are listed in table
3, compared to BPNN method, PCA-BPNN increase the
accuracy by 3%.

Table 3. CV MSE of two different experiment.

Method BPNN Method PCA-BPNN Method
MSE 0.0687 0.0368
Accuracy 93.13% 96.32%

Also we can see in table 4 that the prediction accuracy
increased by about 3% from 96.15% to 99.08% with respect to
the mean predictive value and mean actual value, just like that
of MSE value.

Table 4. Mean predictive value of two different experiment.

Method Mean predictive value Mean actual value Accuracy
PCA-BPNN  60.37 60.93 99.08%
BPNN 58.59 60.93 96.15%

5. Conclusions

According to the results of data comparison, it can be seen that
the prediction given by PCA-BPNN method is closer to the
actual values than that without using PCA. The forecast error
is smaller and most important, no need to select attributes by
experience. The PCA-BPNN method can improve the learning
accuracy at about 3% and promote the timeliness of the
machine fault diagnosis. Combining PCA and neural network
is efficient to pick up representative attributes of samples thus
realize the redundancy reduction of attributes. That is, to
achieve better operation and maintenance effects, the
prediction accuracy of the proposed method is better than that
of the neural network algorithm, it is more timely and accurate
to determine the abnormal condition of the gearbox. The
method can also be extended to the operation and maintenance
of other machine faults, which has good practical value.
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