

American Journal of Information Science and Computer Engineering

Vol. 1, No. 1, 2015, pp. 10-20

http://www.aiscience.org/journal/ajisce

* Corresponding author

Email address: er.aakanksha24@gmail.com (A. Pandey), Jayant_shekhar@hotmail.com (J. Shekher)

Optimization the Test Suite of Regression Testing
Using Metaherustic Searching Technique

Aakanksha Pandey1, *, Jayant Shekher2

1
Computer Science & Engineering, SRM University, NCR Campus, Modinagar, Ghaziabad, India

2
Computer Science & Engineering, Subharti University, Meerut, India

Abstract

This proposed technique investigates is for the reduction of the test suit with the use of metaheuristic approach this technique is

known as genetic algorithm. The result is showing like with the help of regression testing we can reduce the size n cost of the

test suit significantly the very important features of the test suit that we need to take in consideration is “test suit reduction”.

Here we have uses the algorithm that is the combination of the test-execution cost criteria and block based coverage criteria,

these new criteria with that we can make the prominent decision for reducing the test suit. Here for the test-suit coverage

criteria other criteria such as risk or fault-detection effectiveness, or combination of this criterion we have used the approach is

greedy algorithm that is the sub set selection problem which is NP complete.

Keywords

Metaheuristic Approach, Genetic Algorithm, Regression Testing, Test Suite

Received: April 16, 2015 / Accepted: May 3, 2015 / Published online: June 3, 2015

@ 2015 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY-NC license.

http://creativecommons.org/licenses/by-nc/4.0/

1. Introduction

The software testing basically depends on three factors test

case generation, test execution, and test evaluation. As the

prevasiness of software has increased over decades, testing

has become a business – critical part of the software lifecycle.

Testing is the very important and unavoidable part of the any

software life cycle, testing cannot guarantee the absence of

defects. The problem at hand is to select a subset of test cases

for all possible test cases with a high chance of detecting

defects. Standard design for the test cases allows

measurements of testing performed. The main aim of the

testing is to detect the failure of the software that detect may

be discovered or corrected. Although testing can precisely

determine the correctness of software under the assumption

of some specific hypotheses.

A very basic and fundamental problem with testing is like it

might be possible that testing is feasible with all the

combinations of input and preconditions.

In order to “retest all” is the very expensive and time taking

task so here we are using regression test selection is perform

to optimize the cost . if we are talking about the classification

of RTS that we can divide this into three categories Coverage

techniques, Minimization techniques and Safe techniques.

One more technique we are using here for the optimization of

the test suits i.e. Genetic algorithm. This technique we can

apply on all kind of problems even we can use this for the NP

hard also. Here we are using the metaheuristic approach to

reduce the test suit in optimal (minimum) time.‘Meta‘ means

abstract and a ‘heuristic‘ is a search, Metaheuristic have

played a very important role to optimize the test suits , this is

strategy to guide all the search process in order to provide

sub optional solution in a perfect reasonable time . Generally

the metaheuristic approach is approximate and non-

 American Journal of Information Science and Computer Engineering Vol. 1, No. 1, 2015, pp. 10-20 11

deterministic.

Related work: Before going through any testing technique or

discussion we will provide some introduction to relative

testing terminology and some basic concept.

1.1. Category of the Testing

There are various kinds of testing that we are using to test

different software’s to perform tasks.

It’s totally impossible to check all the parts while testing,

testing does not means that system is totally free of faults.

Mainly the software testing can be divided into major parts

i Static testing technique

ii Dynamic testing technique

Here we are elaborating the main category of the testing

techniques and embraces a variety of aims.

1.2. A General Definition

Testing can refer to many different activities used to check a

piece of software. As said, we focus primarily on “dynamic”

software testing presupposing code execution, for which we

re-propose the following general definition introduced in

Software testing consists of the dynamic verification of the

behavior of a program on a finite set of test cases, suitably

selected from the usually infinite executions domain, against

the specified expected behavior.

2. Types of Tests

The one term testing actually refers to a full range of test

techniques, even quite different from one other, and embraces

a variety of aims.

2.1. Static Techniques

A coarse distinction can be made between dynamic and static

techniques, depending on whether the software is executed or

not. Static techniques are based solely on the (manual or

automated) examination of project documentation, of

software models and code, and of other related information

about requirements and design. Thus static techniques can be

employed all along development, and their earlier usage is of

course highly desirable. Considering a generic development

process, they can be applied.

Static testing solely depends based solely on the (manual or

automated) examination of project documentation, of

software models and code.

Traditional static techniques include:

● Software inspection: this process includes the step-by-step

analysis of the deliverables produced.

● Software reviews: this process is all about different aspect

of the work product is presented to project personnel.

● Code reading: here mainly we deal with the desktop

analysis of the produced code for discovering typing

errors that do not violate style or syntax.

● Algorithm analysis and tracing: here average-case and

probabilistic analysis evaluations can be derived and

mainly this is the process in which the complexity of

algorithms employed and the worst case.

2.2. Dynamic Techniques

Dynamic techniques obtain information of interest about a

program by observing some executions. Standard dynamic

analyses include testing (on which we focus in the rest of the

chapter) and profiling. Essentially a program profile records

the number of times some entities of interest occur during a

set of controlled executions. Profiling tools are increasingly

used today to derive measures of coverage, for instance in

order to dynamically identify control flow invariants, as well

as measures of frequency, called spectra, which are diagrams

providing the relative execution frequencies of the monitored

entities. In particular, path spectra refer to the distribution of

(loop-free) paths traversed during program profiling. Specific

dynamic techniques also include simulation, sizing and

timing analysis, and prototyping.

Basically the question arises like why we are using testing?

Actually the testing we are using to know the correctness of

the working software, verifying the system verifying that the

functional specifications are implemented correctly In the

field of software testing there is ‘N’ numbers of testing are

available for the different customers specifications and their

requirement, Very frequently some of the testing that we are

usin.

2.3. Objective of Testing

Software testing can be applied for different purposes, such

as verifying that the functional specifications are

implemented correctly, or that the system shows specific

nonfunctional properties such as performance, reliability,

usability. A (certainly non complete) list of relevant testing

objectives includes:

● Acceptance/qualification testing: the final test action prior

to deploying a software product. Its main goal is to verify

that the software respects the customer’s requirement.

Generally, it is run by or with the end-users to perform

those functions and tasks the software was built for.

● Installation testing: the system is verified upon installation

in the target environment. Installation testing can be

viewed as system testing conducted once again according

12 Aakanksha Pandey and Jayant Shekher: Optimization the Test Suite of Regression Testing Using Metaherustic

Searching Technique

to hardware configuration requirements. Installation

procedures may also be verified.

● Alpha testing: before releasing the system, it is deployed

to some in-house users for exploring the functions and

business tasks. Generally there is no test plan to follow,

but the individual tester determines what to do.

● Beta Testing: the same as alpha testing but the system is

deployed to external users. In this case the amount of

detail, the data, and approach taken are entirely up to the

individual testers. Each tester is responsible for creating

their own environment, selecting their data, and

determining what functions, features, or tasks to explore.

Each tester is also responsible for identifying their own

criteria for whether to accept the system in its current state

or not.

● Reliability achievement: testing can also be used as a

means to improve reliability; in such a case, the test cases

must be randomly generated according to the operational

profile, i.e., they should sample more densely the most

frequently used functionalities.

● Conformance Testing/Functional Testing: the test cases are

aimed at validating that the observed behavior conforms to

the specifications. In particular it checks whether the

implemented functions are as intended and provide the

required services and methods. This test can be

implemented and executed against different tests targets,

including units, integrated units, and systems.

● Regression testing: According to regression testing is the

“selective retesting of a system or component to verify

that modifications have not caused unintended effects and

that the system or component still complies with its

specified requirements”. In practice, the objective is to

show that a system which previously passed the tests still

does.

● Performance testing: this is specifically aimed at verifying

that the system meets the specified performance

requirements, for instance, capacity and response time.

● Usability testing: this important testing activity evaluates

the ease of using and learning the system and the user

documentation, as well as the effectiveness of system

functioning in supporting user tasks, and, finally, the

ability to recover from user errors.

● Test-driven development: test-driven development is not a

test technique per se, but promotes the use of test case

specifications as a surrogate for requirements document

rather than as an independent check that the software has

correctly implemented the requirements.

3. Test Levels

During the development lifecycle of a software product,

testing is performed at different levels and can involve the

whole system or parts of it. Depending on the process model

adopted, then, software testing activities can be articulated in

different phases, each one addressing specific needs relative

to different portions of a system. Whichever the process

adopted, we can at least distinguish in principle between unit,

integration and system test.

3.1. Unit Test

A unit is the smallest testable piece of software, which may

consist of hundreds or even just a few lines of source code,

and generally represents the result of the work of one

programmer. The unit test’s purpose is to ensure that the unit

satisfies its functional specification and/or that its

implemented structure matches the intended design structure.

3.2. Integration Test

Generally speaking, integration is the process by which

software pieces or components are aggregated to create a

larger component. Integration testing is specifically aimed at

exposing the problems that can arise at this stage. Even

though the single units are individually acceptable when

tested in isolation, in fact, they could still result in incorrect

or inconsistent behavior when combined in order to build

complex systems.

3.3. System Test

System test involves the whole system embedded in its actual

hardware environment and is mainly aimed at verifying that

the system behaves according to the user requirements. In

particular it attempts to reveal bugs that cannot be attributed

to components as such, to the inconsistencies between

components, or to the planned interactions of components

and other objects.

3.4. Regression Test

Properly speaking, regression test is not a separate level of

testing, but may refer to the retesting of a unit, a combination

of components or a whole system (see Figure- 1 below) after

modification, in order to ascertain that the change has not

introduced new faults.

 American Journal of Information Science and Computer Engineering Vol. 1, No. 1, 2015, pp. 10-20 13

Figure 1. Genetic process use case diagram.

As software produced today is constantly in evolution, driven

by market forces and technology advances, regression testing

takes by far the predominant portion of testing effort in

industry.

4. Regression Testing
Techniques

4.1. Definition

Regression testing is defined as “the process of retesting the

modified parts of the software and ensuring that no new

errors have been introduced into previously tested code”. Let

P be a program, let P′ be a modified version of P, and let T be

a test suite for P. Regression testing consists of reusing T on

P′, and determining where the new test cases are needed to

effectively test code or functionality added to or changed in

producing P′. There are various regression testing techniques

(1) Retest all; (2) Regression Test Selection; (3) Test Case

Prioritization; (4) Hybrid Approach. Figure1.1 shows various

regression testing techniques.

4.2. Techniques

Retest All

Retest all method is one of the conventional methods for

TESTER

RTS

DEVELOPER

INITIAL POPULATION

FITNESS

MUTATION

CROSS OVER

exetends

extend

extend

SOURCE CODE

CFG

ALL TEST CASE GENERATOR

GENETIC ALGORITHEM

includes

includes

includes

includes

14 Aakanksha Pandey and Jayant Shekher: Optimization the Test Suite of Regression Testing Using Metaherustic

Searching Technique

regression testing in which all the tests in the existing test

suite are returned. So the retest all technique is very

expensive as compared to techniques which will be discussed

further as regression test suites are costly to execute in full as

it require more time and budget.

5. Test Case Reduction
Technique

5.1. Test Suite Reduction Problem

Test case reduction technique reduces the effective test cases

thereby reducing the test cost to nearly half and hence

reduces the overhead during maintenance phase. It focuses

on reducing test suites to obtain a subset that yields

equivalent coverage with respect to some criteria.

The Optimal Test suite reduction problem may be stated as

follows: Given: Test suite TSj, a set of test requirements Req1,

Req2, Reqn that must be satisfied to provide the desired test

coverage of the program, and subsets of TS1, TS2, TS3, TSn,

one associated with each of the Reqi’s such that any one of

the test cases tci belonging to TSj can be used to test Reqi.

Table 1. Test Requirement coverage information.

Req1 Req2 … Reqj … Reqk

tc1 1 1 …

… 0

tc2 0 0 …

… 1

… … … …

… …

tci 1 1 …

… 1

… … … …

… …

tcn 0 1 …

… 0

… … … …

… …

Problem: Find a representative set of test cases from TSj that satisfies all of

the Reqi.

5.2. Test Requirements Coverage

The logical form of Requirement coverage information can

be derived, as shown in table1. The Reqi in the foregoing

statement can represent various test case requirements, such

as source statements, blocks, decisions, definition-use

associations, or specification items.

In table 1, Req1, Req2, Reqj Reqk are the requirements of the

program, and tc1, tc2,..,tci,...,and tcn is the test cases that have

been executed. The information in the table is all the digits of

‘0’ or ‘1’ which denote the requirements-coverage

information; here ‘1’ in the row i and the column j means tci

tested requirement Reqj , and ‘0’ means tci did not tested

requirement Reqj. The number of ‘1’ in rows i means how

many requirements covered by tci; and the number of ‘1’ in

column j means how many times the requirement Reqj

executed in a test.

5.3. Existing Test Suite Reduction

Techniques

5.3.1. Greedy Algorithm

The test case reduction technique basically known as Test

Filter, selects test cases based on their statement-coverage

(i.e., weight). Note, weight refers to the number of

occurrences of a particular test case that covers different

statement of the program under test. The technique first

calculates weight of all generated test cases. Next it selects

test cases of higher weight and marked all of its

corresponding requirements as satisfied. Again this process

continues until all requirements are satisfied. In case of tie

between test cases (i.e., test cases having same weight),

random selection strategy is used.

5.3.2. Modified Greedy Algorithm

Usually used in test laboratory, the greedy algorithm takes

into consideration the change in the coverage when choosing

a test case to add to the reduced test-suite. We calculate the

marginal coverage of each test case, i.e., the change in the

coverage as a consequence of the change in reduced test-suite.

We then compare it with the change in cost, and choose the

test case that proves to be the best.

step1: Let T = Ø;

step2: For each ti ∈TS-T, calculate the increase in coverage

and cost if it is added to T:

∆Cov(ti) = Cov(T∪ti) − Cov(T)

∆Cost (ti) = Cost (T∪ti) − Cost (T)

step3: Find a test case ti in TS-T for which ∆Cov (ti)/∆Cost (ti)

is minimal. If there are more, then choose the one with the

lowest index. Let T=T∪ti;

step4: If Cov(T) ≥ K, then STOP, otherwise go to Step2.

Here, Cov(ti) denotes the coverage information of test case ti

and Cost(ti) denotes the cost information of test case ti.

5.3.3. Get Split Algorithm

Dynamic Domain Reduction (DDR) DDR is the technique

that creates a set of values that executes a specific path. It

transforms source code to a Control Flow Graph (CFG). A

CFG is a directed graph that represents the control structure

of the program. Each node in the graph is a basic block, a

junction, or a decision node.DDR uses the Get Split

algorithm to find a split point to divide the domain. The Get

Split algorithm is as follows:

Algorithm

Getsplit(LeftDom, RightDom, SrchIndx)

 American Journal of Information Science and Computer Engineering Vol. 1, No. 1, 2015, pp. 10-20 15

Precondition

LeftDom and RightDom are initialized appropriately and

SrchIndx is one more than the last time

Getsplit was called with these domains for this expression.

Postcondition

Splitvalue ≥ (LeftDom.Bot AND RightDom.Bot) and

Splitvalue ≤(LeftDom.Top AND RightDom.Top)

Input

LeftDom: Left expr’s domain with Bot and Top values

RightDom: right expr’s domain with Bot and Top values

Output

Split–a value the divides a domain of values into two sub

domains.

BEGIN

-- Compute the current search point

-- srchPt = (1/2, 1/4, 3/4, 1/8, 3/8, …)

Choose exp such that 2exp ≤ SrchIndx ≤ 2exp +1

SrchPt = (2exp - (2 - (2exp -1) -1)) /2exp -- Try to equally

split the left and right expression's domains.

IF (LeftDom.Bot≥ RightDom.Bot AND LeftDom.Top ≤

RightDom.Top)

split=(LeftDom.Top -LeftDom.Bot)*srchPt + LeftDom.Bot

ELSE IF (LeftDom.Bot≤ RightDom.Bot AND LeftDom.Top

≥ RightDom.Top)

split=(RightDom.Top -RightDom.Bot)*srchPt +

RightDom.Bot

ELSE IF (LeftDom.Bot≥ RightDom.Bot AND LeftDom.Top

≥ RightDom.Top)

split=(RightDom.Top - LeftDom.Bot)*srchPt + LeftDom.Bot

ELSE -- LeftDom.Bot≤ RightDom.Bot AND LeftDom.Top ≤

RightDom.Top

split=(LeftDom.Top - RightDom.Bot)*srchPt +

RightDom.Bot

END IF

RETURN split

END GetSplit

In the dynamic domain reduction procedure, loops are

handled dynamically instead of finding all possible paths.

The procedure exits the loop and continues traversing the

path on the node after the loop. This eliminates the need for

loop unrolling, which allows more realistic programs to be

handled.

5.3.4. Coverall Algorithm

Steps:

1) Finding all possible constraints from start to finish nodes.

A constraint is a pair of algebraic expressions which dictate

conditions of variables between start and finish nodes (>, <,

=, ≥, ≤, ≠).

2) Identifying the variables with maximum and minimum

values in the path, if any. Using conditions dictated by the

constraints, two variables, one with maximum value and the

other with minimum value, can be identified. To reduce the

test cases, the maximum variable would be set at the highest

value within its range, while assigning the minimum variable

at the lowest possible value of its range.

3) Finding constant values in the path, if any. When constant

values can be found for any variable in the path, the values

would then be assigned to the given variables at each node.

4) Using all of the above-mentioned values to create a table

to present all possible test cases.

5.3.5. TSR Using Greedy Algorithm

The working procedure of this approach is as follows:

Step 1: Calculates a Weighted Set (WS) of test cases. The

weighted set is a function from test cases to their weights.

The weight of a test case is the number of its occurrences in

the set of test suites.

Step 2: Select the first test case (tch) from the WS that has the

highest weight. In case of a tie between test cases, use a

random selection.

Step 3: Move tch to the Representative Set (RS), and mark all

test suites from Set of Test Suites (STS), which contain tch in

their domain. If all test suites of STS are marked then exit,

otherwise go back to step1. Consider the following function

Value takes three integers inputs A, B, C, and returns an

integer V.

Value Function:

Int value (a, b, c)

Int a,b,c;

{

Int v;

V=0

If (a<b)

{

C=15;

If (a<c)

V=a+20;

16 Aakanksha Pandey and Jayant Shekher: Optimization the Test Suite of Regression Testing Using Metaherustic

Searching Technique

Else

V=a;

}

Else

{

C=40;

V=a+b+c;

}

Consider the values for variables A, B, C respectively as

follows,

A [] = {11, 2, 15};

B [] = {15, 20, 9};

C [] = {6, 10, 17};

The test cases are developed using black box and white box

techniques for validation purposes.

All possible test cases came from number of values on the

each variable 3*3*3=27.

6. Use Case Diagram for

Genetic Process

6.1. Model of the Test Reduction Problem

Given a test suite TS = tl, t2, tn consisting of the test case and

the statements of a tested program S = sl, s2, sk, we have a

positive cost, cj assigned to each test case measuring the

amount of resources its execution needs. A positive weight,

wi is assigned to each statement, which represents the relative

importance of bi with respect to the correct behavior of

program or to the regression testing. For example, we can

assign bigger weight to the modified statements or

modification affected statements of the new version program.

Let T be an arbitrary set of the test cases, T⊂TS. The cost of

this test set is defined as the sum of the costs of the test cases

that belong to T:

C (T) = ∑t ∈T C (t)

Let Cov (T) denote the coverage of the test set T,

Cov (T) = ∑ t∈ T wt * Cov (t)

The test-suite reduction problem can be defined according to

our purposes and bounds:

Minimal cost problem:

Minimal cost problem. Given a lower bound (K) for the

coverage, select the set of test cases that satisfies this bound

with minimal cost.

min C (T)

subject to Cov(T) ≥ K (1)

T ⊂TS

Here the lower bound (K) is the coverage of the original test-

suite. In fact, the coverage of the reduced test suite is

impossible to be larger than K.

In our test problem, Cov (T) measures how many statements

are tested by T. Furthermore, we can calculate the coverage

of the test suite T as follows:

Cov(T) = ∑ t ∈T wt * Cov(t) = ∑ si∈S wt * stCov(si, T) (2)

Here stCov (si,T) measures whether the test-suite T exercised

statement si, and if a single test case tj T tested

si,stCov(si,T)=1, otherwise stCov(si,T)=0.

The minimal cost problem in our test selection is equivalent

to the Set Covering Problem, which is known to be NP-hard.

We transform the minimal cost problem to a linear integer-

programming problem.

Let ai be the characteristic vector which contains the column

information in Table 1 according to the test statement for

i=1.k and A be the 0-1 matrix of size k × n made up of row

vectors ai. Thus (A)ij=1 if and only if tj tests si. Let x be the

characteristic vector of test set T⊂ TS, c be the cost vector

and w be the vector containing the weights of statements.

Then

C (T)=cx and Cov(T) =∑
k
i=1 wi * fi(aix) for i = 1, 2, k.

Using these notations the minimal cost problem (1) can be

written as:

min cx

subject to ∑ki=1 wi * fi(aix) ≥ K (3)

x ∈{0, 1}
n

Let us define a new variable vector z = (z1, z2, zk) in the

following manner:

Zj= 1 if aix ≥ 1 I i=1. k.

In other words, zj = 1 if statement sj has been tested by test

set represented by x. Using this vector problem, from(3) can

be transformed into as follows:

min cx

subject to Ax ≥ z

z ≥ K

Based on the mathematical model, we present a genetic

algorithm for test-suite reduction.

 American Journal of Information Science and Computer Engineering Vol. 1, No. 1, 2015, pp. 10-20 17

6.2. TSR Using Genetic Algorithm

(1)Genetic algorithm:

A genetic algorithm is a programming technique that mimics

the process of natural genetic selection according to

Darwinian Theory of Biological Evolution as a problem

solving strategy. Genetic algorithms represent a class of

adaptive search techniques, based on biological evolution,

which are used to approximate solutions.

Genetic algorithms are optimization algorithms based on

natural genetics and selection mechanisms. To apply genetic

algorithms to a particular problem, it has to be decomposed

into atomic units that correspond to genes. Then individuals

can be built with correspondence to a finite string of genes,

and a set of individuals is called a population. A criterion

needs to be defined: a fitness function F which, for every

individual among a population, gives F(x), the value which is

the quality of the individual regarding the problem we want

to solve.

Once the problem is defined in terms of genes, and fitness

function is available, a genetic algorithm is computed

following the process described.

Table 2. Action of Genetic Algorithm.

Genetic Loop:

Choose an initial population

Calculate the fitness value for each individual.

Reproduction.

Crossover.

Mutation on one or several individual.

Several stopping criteria: X no. of generations, a given value is reached.

Control Structure testing

In this testing, all the logical statements are in the

implementation of both greedy and genetic algorithm have

tested by using block box testing with help of WINRUNNER

tool. Finally tool ensured that following properties are

satisfied from source code.

1. All independent paths are exercised at least once.

2. All the logical statements are exercised for both true and

false paths.

3. All the loops are executed at their boundaries and within

operational bounds.

4. All the internal data structure are exercised to ensure

validity.

Basic path testing

A testing mechanism proposed by McCabe. Aim is to drive a

logical complexity measure of a procedural design.

Boundary value Analysis

Generally, the large no of errors tend to occur at boundaries

of the input domain.BVA leads to selection of the test cases

that exercise boundary values.BVA complements equivalence

portioning, rather than select any element in an equivalent

class, select those at the edge of the class. Finally this

analysis technique analyzed the genetic algorithm because

there we need some boundary value for optimization process.

7. Conclusion

This work has presented a mathematical model of our test

reduction problem and transformed it into a linear integer-

programming problem. By modifying the function

Cov(),which is used to calculate the coverage of test suites,

the presented reduction algorithm, can be conveniently

modified to account for different coverage criteria like block

and decision when reducing test suites.

The results of studies are encouraging. They show the

potential for substantial reduction of test-suite size and cost,

and genetic algorithm is more effective than greedy

approaches. The initial studies also showed that the

promotion of effectiveness in test-cost reduction could be

achieved by taking the cost criteria into consideration. We

conclude that, the cost reduction is an important

characteristic needed to be taken into consideration in test-

suite reduction.

8. Future Enhancement

Experiments have to be done to further investigate the fault

detection capabilities of a statement/block-based test if it is

an adequate test suite for the software. These studies will

help evaluate our algorithms and help provide guidelines for

test-suite reduction in practice and evaluate parallel

algorithm for the test case execution. With help of parallel

test case execution procedure to improve the cost of testing

and reduce the complexity to find the coverage of code and

also future work investigate test suite reduction that attempts

to use addition coverage information of test cases to

selectively keep some additional test cases in the reduced

suites that are redundant with respect to the test criteria used

for suite minimization, with the goal of improving the fault

detection effectiveness redundant of the reduced suite and

modifying an existing heuristics for test suite minimization.

8.1. Result Analysis of Greedy Approach

(1) The screen shot shows the number of test cases for Value

function to be generated

18 Aakanksha Pandey and Jayant Shekher: Optimization the Test Suite of Regression Testing Using Metaherustic

Searching Technique

Figure 2. Test Case Generation (5)The screen shot shows the final iteration

of recalculation of all the weight and the resultant test cases.

Figure 3. Final iteration of recalculation of weights and Resultant test cases.

8.2. Result Analysis of Genetic Approach

For the Value function shown in by taking the same A, B, C

values 27 test cases are generated.

The Reqi in the foregoing statement can represent various test

case requirements, such as source statements, decisions,

definition-use associations, or specification items

In the value functions identified as 7 requirements are shown

in Table 3.

Table 3 shows each statement as separate testing requirement,

and its associated.

Table 3. The Coverage Requirements for Value function.

Statements Reqi tck in Associated Set

if(A < B) Req1 tc1 − tc27

C = 16 Req2 tc1 − tc6, tc10 − tc18, tc22 − tc24

if(A < C) Req3 tc1 − tc6, tc10 − tc18, tc22 − tc24

V = A + 30; Req4 tc1 − tc6, tc10 − tc18, tc22 − tc24

V = A; Req5

C = 30; Req6 tc7 − tc9, tc19 − tc21, tc25 − tc27

V = C+B+A; Req7 tc7 − tc9, tc19 − tc21, tc25 − tc27

Test cases. There are total 7 statements, so we have total 7

requirements. Then we determine which test case(s) is/are

useful in validating these requirement(s). Table 4 shows the

coverage information i.e., mapping of test cases to the

statements.

Table 4. Coverage Information.

tci s1 s2 s3 s4 s5 s6 s7 tci s1 s2 s3 s4 s5 s6 s7

tc1 11 1 1 0 0 0 tc15 1 1 1 1 0 0 0

tc2 11 1 1 0 0 0 tc16 1 1 1 1 0 0 0

tc3 11 1 1 0 0 0 tc17 1 1 1 1 0 0 0

tc4 11 1 1 0 0 0 tc18 1 1 1 1 0 0 0

tc5 11 1 1 0 0 0 tc19 10 0 0 0 1 1

tc6 11 1 1 0 0 0 tc20 10 0 0 0 1 1

tc7 10 0 0 0 1 1 tc21 10 0 0 0 1 1

tc8 10 0 0 0 1 1 tc22 1 1 1 1 0 0 0

tc9 10 0 0 0 1 1 tc23 1 1 1 1 0 0 0

tc10 11 1 1 0 0 0 tc24 1 1 1 1 0 0 0

tc11 11 1 1 0 0 0 tc25 10 0 0 0 1 1

tc12 11 1 1 0 0 0 tc26 10 0 0 0 1 1

tc13 11 1 1 0 0 0 tc27 1 0 0 0 0 1 1

tc14 11 1 1 0 0 0

Using Table 4, we can see whether a certain statement has

been tested, how many statements have been covered in one

test. We can also calculate the test coverage according to

certain criteria and evaluate each test-case’s contribution by

calculating the number of ‘1’ in the row that is associated

 American Journal of Information Science and Computer Engineering Vol. 1, No. 1, 2015, pp. 10-20 19

with each test case.

The fitness function for individual ti can be computed as

follows:

∑ (gj * wj)

F(ti) = C (ti)

C (ti) is the cost of ti when used to test the program, wj is the

weight of the requirement and gj is the coverage information.

Figure 4. Convergence graph for Test Suite Reduction problem.

References

[1] Anoj Kumar, 2Shailesh Tiwari, 3 K. K. Mishra and 4A.K.
Misra, Generation of Efficient Test Data using Path Selection
Strategy with Elitist GA in Regression Testing,IEEE 2007,PP
43 -51.

[2] Agastya Nanda_, Senthil Mani†, Saurabh Sinha†, Mary Jean
Harrold‡, and Alessandro Orso‡, Regression Testing in the
Presence of Non-code Changes,IEEE 2011,PP 211-218.

[3] Bing JIANG, Yongmin MU, Research of Optimization
Algorithm for Path-Based Regression Testing Suit,IEEE 2011,
PP 122-128.

[4] Dennis Jeffrey and Neelam Gupta, Improving Fault Detection
Capability By Selectively Retaining Test Cases during Test
Suite Reduction, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 33, NO. 2, FEB- 2007, PP108-127.

[5] Engin Uzuncaova, Sarfraz Khurshid, and Don Batory,
Incremental Test Generation for Software Product Lines, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
36, NO. 3, MAY/JUNE 2010 PP 309-321.

[6] Gregory M. Kapfhammer, Empirically Evaluating Regression
Testing Techniques: Challenges, Solutions, and a
PotentialWay Forward,IEEE 2011,PP 78-84.

[7] Hyunsook Do, Ladan Tahvildari, The Effects of Time
Constraints on Test Case Prioritization, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.
36, NO. 5, SEPTEMBER/OCTOBER 2010PP 593-614.

[8] Irman Hermadi, Chris Lokan, Genetic Algorithm Based Path
Testing:Challenges and Key Parameters, 2010 Second WRI
World Congress on Software Engineering PP 341-356.

[9] James H. Andrews, Genetic Algorithms for Randomized Unit
Testing, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 37, NO. 1, JANUARY/FEBRUARY
2011, PP 80-102.

[10] Kaner.C, J. Falk, and H.Q. Nguyen H.Q. Testing Computer
Software,2nd Edition, John Wiley & Sons, April, 1999.

[11] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Preliminary
Guidelines for Empirical Research in Software
Engineering,IEEE 2005,PP 18-24.

[12] Mary Jean Harrold, ,Empirical Studies of a Prediction Model
for Regression Test Selection, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 27, NO. 3, MARCH
2001, PP 248-260.

[13] Mark Harman, Kiran Lakhotia, Phil McMinn, A Multi–
Objective Approach To Search–Based Test Data
Generation,IEEE 2008,PP 98-105.

[14] Nigel Tracey John Clark Keith Mander, Automated Program
Flaw Finding using Simulated Annealing,IEEE 2007,PP 201-
208.

[15] Lyu M.R, eds., Handbook of Software Reliability Engineering,
McGraw-Hill, 1996.

[16] Pavan Kumar Chittimalli and Mary Jean Harrold, Senior
Member, Recomputing Coverage Information to Assist
Regression Testing, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 35, NO. 4,
JULY/AUGUST 2009, PP 452-472.

[17] Phil McMinn, Search-based Software Test Data Generation:A
Survey,WHITE PAPER.

[18] Preeyavis Pringsulaka and Jirapun Daengdej, Coverall
Algorithm for Test Case Reduction,IEEE 2005 ,PP 234-239.

[19] P fleeger.S.L, Software Engineering Theory and Practice,
Prentice Hall, 2001.

[20] Stefan Wappler, Ina Schieferdecker, Improving Evolutionary
Class Testing in the Presence of Non-Public Methods,IEEE
2004,PP 308-312.

[21] Simon Poulding and John A. Clark Efficient Software
Verification: Statistical Testing Using Automated Search,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010, PP 763-
787.

[22] Shaukat Ali, C. Briand, Hadi Hemmati, A Systematic Review
of the Application and Empirical Investigation of Search-
Based Test Case Generation, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 36, NO. 6,
NOVEMBER/DECEMBER 2010.

20 Aakanksha Pandey and Jayant Shekher: Optimization the Test Suite of Regression Testing Using Metaherustic

Searching Technique

[23] Ummu Salima.T.M.S,Ms. A.Askarunisha, Dr. N.Ramaraj,
Enhancing The Efficiency Of Regression TestingThrough
Intelligent Agents, International Conference on Computational
Intelligence and Multimedia Applications 2007,PP 230-238.

