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Abstract 

In this research, our aim is to calculate Fractal Dimension (FD) to analyse the heart rate variability (HRV) of healthy person 

from Electrocardiogram (ECG) signal. Some non-linear techniques are applied to different raw data (RR intervals of ECG) that 

are derived from the sample ECG records from MIT-BIH database. Electrocardiogram (ECG) signal gives significant 

information for the cardiologist to detect cardiac diseases. ECG signal is a self-similar object. So, fractal analysis can be 

implemented for proper utilization of the gathered information. A technique of nonlinear analysis- the fractal analysis is 

recently having its popularity to many researchers working on. In general, fractals can be any type of infinitely scaled and 

repeated pattern. A fractal is a natural phenomenon or a mathematical set that exhibits a repeating pattern that displays at every 

scale due to the self-similarity in the Heart’s electrical conduction mechanism and self-affine behaviour of Heart Rate (HR). It 

is also known as expanding symmetry or evolving symmetry. Fractal analysis is measures complexity using the fractal 

dimension. Self-similarity dimension is one of the classifications of Fractal Dimension (FD). If the replication is exactly the 

same at every scale, it is called a self-similar pattern. So, fractal analysis can be implemented for proper utilization of the 

gathered information. It is expected that the proposed technique will provide a better result by comparison will others to 

calculate FD of ECG signal. 
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1. Introduction 

ECG signal of a human heart is a self-similar object, so it 

must have a fractal dimension that can be extracted using 

mathematical methods to identifying and distinguish specific 

states of heart pathological conditions [1]. Three non-linear 

methods for computing FD values will be investigated from 

ECG time series signals depending on fractal geometry in 

order to extract its main features. 

1.1. Electrocardiogram (ECG) 

An electrocardiogram (ECG) is a test which measures the 

electrical activity of heart [2]. With each heartbeat, an 

electrical signal spreads from the top of the heart to the 

bottom. In a healthy adult heart at rest, the SA node sends 

an electrical signal to begin a new heartbeat 60 to 100 

times a minute [3]. The signal travels through the right 

and left atria from SA node. This electrical signal moving 

through the atria is recorded as the P wave on the ECG. 

When an electrical signal passes between the atria and 

ventricles it is called the atrioventricular (AV) node [4]. 

This process is the flat line between the end of the P wave 

and the beginning of the Q wave. The electrical signal 
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then leaves the AV node and travels into the right and left 

bundle branches. As a result, blood pumps to the lungs and 

rest of the body. This process is recorded QRS waves on 

the ECG. When the ventricles recover their normal state, 

then it is shown as T wave on the ECG. Total heart's 

rhythm and activity then records on a moving strip of 

paper or a line on a screen. 

 

Figure 1. The components of an E.C.G signal. 

1.2. Fractal Dimension 

The term "fractals" is derived from the Latin word 

‘Fractus’, the adjectival form of ‘Franger’, or "to break. 

Fractals have been used to explain objects and geometrical 

formations. Fractal dimension is a quantity, very often non-

integer, often it is the only one measure of fractals [5]. Just 

a small group of fractals have one certain fractal dimension, 

which is scale invariant. These fractals are mono-Fractals. 

Fractal is strictly self-similar if it can be expressed as a 

union of sets, each of which is an exactly reduced copy (is 

geometrically similar to) of the full set. The most fractal 

looking in nature does not display this precise form. Natural 

objects are not union of exact reduced copies of whole. A 

magnified view of one part will not precisely reproduce the 

whole object, but it will have the same qualitative 

appearance [6] [7]. This property is called statistical self-

similarity or semi-self-similarity. The most of natural 

fractals have different fractal dimensions depending on the 

scale. They are composed of many fractals with the 

different fractal dimension. They are called “multi-

Fractals”. A compilation of mathematical procedures used 

to establish fractal dimension with the smallest error. 

 

Figure 2. Fractal Dimension (FD) is according to the order and length. 

2. Methodology 

Fractal Dimension is a descriptive measure that has been 

proven useful in quantifying the complexity or self-similarity 

of biomedical signals. [8]. In general, a fractal is defined as a 

set having non-integer dimension. Consequently, the fractal 

dimension (FD) is introduced as a factor highly correlated 

with the human perception of object’s roughness. FD fills the 

gap between one- and two-dimensional objects. The more 

complex the contour of the curve, the more it fills the plane 

and the more its fractal dimension will be closer to 2. This 

section investigates three different methods for computing 

FD values from ECG time series signals (RR intervals) 

depending on fractal geometry in order to extract its main 

features [9]. 

A. Relative Dispersion (RD) Method 

B. Power Spectral Density (PSD) Method 

C. Rescaled Range Method 

The heart rate data of healthy persons are loaded using 

MATLAB code. The code is simulated using appropriate data 

and the output Y is saved in ‘.mat’ format. Collected 

‘115.mat’ or ‘117.mat’ or ‘127.mat’ or ‘230.mat’ provides 

ECG of healthy person. The plot of these matrices is shown 

in figure 3, 4, 5 and 6. 
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Figure 3. Heart rate of a healthy person (Data 122). 

 

Figure 4. Heart rate of a healthy person (Data 115). 

 

Figure 5. Heart rate of a healthy person (Data 117). 

 

Figure 6. Heart rate of a healthy person (Data 230). 

2.1. Relative Dispersion (RD) Method 

One-dimensional approach that can be applied to an isotropic 

signal of any dimension [10]. Making estimates of the 

variance of the signal at each of several different levels of 

resolution form the basis of the technique; for fractal signals 

a plot of the log of the standard deviation versus the log of 

the measuring element size (the measure of resolution) gives 

a straight line with a slope of 1 - D, where D is the fractal 

dimension. The characterizing Hurst coefficient, H is a 

measure of irregularity; the irregularity or anti correlation in 

the signal is maximal at H near zero. White noise with zero 

correlation has H = 0.5. For one-dimensional series, H = 2 - 

D, where D is the fractal dimension, 1<D<2[9]. 

There is a strong relationship between the measure of 

variation (the coefficient of variation) and the resolution of 

measurement. This is a simple one dimensional spatial 

analysis which we level as RD analysis, where RD is the 

relative dispersion i.e. the standard deviation divided by the 

mean. Mathematically it can be expressed as: 	RD �
SD Mean⁄  

Standard Deviation = �∑ 
�� � �̅������ �⁄        (1) 

Where, x� � Random variable 

x�= Mean of the variables 

N = Number of Samples 

H not equal to 0.5, the SD will be proportional to n���, n 

being the bin size or time resolution interval. By calculating 

the RD (RD � SD Mean� ) for different bin sizes, n and fitting 

the square law function: 

RD=RD0�n��� nο ⁄                       (2) 

Where, RD0 is the RD for some reference bin size no. 

The exponent can be best estimated by a log-log 

transformation. 
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log(RD)=log(RD0) +(H-1)log(n/n0)           (3) 

Here H-1=slope, For Fractal Dimension, D=2-H. So, D=1-

slope. So, fractal dimension from this equation can easily be 

estimated. The fit is little improved when longer signals are 

used. [9] 

a) Analysis Procedure in Brief 

1) At first specified data (RR intervals of ECG signal) is 

divided into different series of Bin size. 

2) The data series is then segmented into intervals and 

individual Standard deviation and Mean of each segment 

are calculated. 

3) Determined the arithmetic mean of data set by adding all 

of the individual values of the set together and dividing 

by the total number of values. 

4) Then standard deviation is normalized by dividing with 

the arithmetic mean, which yields the relative dispersion 

RD of the data series. 

5) The results are then plotted against log2 (n) versus log2 (RD), 

where n is the bin size or the time resolution interval. 

6) The MATLAB function ‘polyfit()’ is used to fit a least square 

straight line over the log2 (n) versus log2 (RD) curve. 

b) The given data numbers ‘115’ or ‘117’ or ‘122’ provides 

ECG of healthy person 

Table 1. RD method using 1024 simulated data for ‘data-115’. 

Bin size, n Mean SD RD log2n log2(RD) 

512 -98.9805 1.8086 -0.0183 9 -5.7742 

256 -98.9805 3.8381 -0.0388 8 -4.6887 

128 -98.9805 13.6422 -0.1378 7 -2.8591 

64 -98.9805 19.0539 -0.1925 6 -2.3771 

32 -98.9805 25.3241 -0.2558 5 -1.9666 

16 -98.9805 32.1144 -0.3245 4 -1.6239 

8 -98.9805 51.2082 -0.5174 3 -0.9508 

4 -98.9805 56.5814 -0.5716 2 -0.8068 

2 -98.9805 58.704 -0.5931 1 -0.7537 

 

Figure 7. Actual and approximated straight line using N=1024 for ‘data-115’. 

Table 2. RD method using 2048 simulated data for ‘data-115’. 

Bin size, n Mean SD RD log2n log2(RD) 

1024 -101.6660 2.6855 -0.0264 10 -5.2425 

512 -101.6660 3.6850 -0.0362 9 -4.7860 

256 -101.6660 5.7818 -0.0569 8 -4.1362 

128 -101.6660 13.8885 -0.1366 7 -2.8719 

64 -101.6660 19.6121 -0.1929 6 -2.3740 

32 -101.6660 27.3504 -0.2690 5 -1.8942 

16 -101.6660 37.8055 -0.3719 4 -1.4272 

8 -101.6660 51.2683 -0.5043 3 -0.9877 

4 -101.6660 56.7174 -0.5579 2 -0.8420 

2 -101.6660 58.8620 -0.5790 1 -0.7884 

 

Figure 8. Actual and approximated straight line using N=2048 for ‘data-115’. 

Table 3. RD method using 4096 simulated data for ‘data-115’. 

Bin size, n Mean SD RD log2n log2(RD) 

2048 -97.6292 4.0369 -0.0413 11 -4.5960 

1024 -97.6292 4.8560 -0.0497 10 -4.3295 

512 -97.6292 12.1435 -0.1244 9 -3.0071 

256 -97.6292 13.3000 -0.1362 8 -2.8759 

128 -97.6292 18.8721 -0.1933 7 -2.3711 

64 -97.6292 23.2309 -0.2380 6 -2.0713 

32 -97.6292 30.5692 -0.3131 5 -1.6752 

16 -97.6292 40.7325 -0.4172 4 -1.2611 

8 -97.6292 55.5996 -0.5183 3 -0.9482 

4 -97.6292 56.1919 -0.5753 2 -0.7977 

2 -97.6292 58.1929 -0.5961 1 -0.7464 

 

Figure 9. Actual and approximated straight line using N=4096 for ‘data-115’. 
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Table 4. RD method using 8192 simulated data for ‘data-115’. 

Bin size, n Mean SD RD log2n log2(RD) 

4096 -98.6744 1.0453 -0.0106 12 -6.5607 

2048 -98.6744 4.3451 -0.0440 11 -4.5052 

1024 -98.6744 23.6631 -0.2398 10 -2.0600 

512 -98.6744 27.3933 -0.2776 9 -1.8489 

256 -98.6744 28.5327 -0.2892 8 -1.7901 

128 -98.6744 31.0265 -0.3144 7 -1.6692 

64 -98.6744 33.7273 -0.3418 6 -1.5488 

32 -98.6744 39.1148 -0.3964 5 -1.3350 

16 -98.6744 47.6433 -0.4828 4 -1.0504 

8 -98.6744 56.8525 -0.5762 3 -0.7955 

4 -98.6744 62.5687 -0.6341 2 -0.6572 

2 -98.6744 64.6028 -0.6547 1 -0.6111 

 

Figure 10. Actual and approximated straight line using N=8192 for ‘data-115’ 

Table 5. RD method using 1024 simulated data for ‘data-122’. 

Bin size, n Mean SD RD log2n log2(RD) 

512 -152.5850 9.5088 -0.0623 9 -4.0042 

256 -152.5850 11.1898 -0.0733 8 -3.7694 

128 -152.5850 19.4844 -0.1277 7 -2.9692 

64 -152.5850 31.1854 -0.2044 6 -2.2907 

32 -152.5850 41.7397 -0.2736 5 -1.8701 

16 -152.5850 60.2320 -0.3947 4 -1.3410 

8 -152.5850 69.7918 -0.4574 3 -1.1285 

4 -152.5850 72.7961 -0.4771 2 -1.0677 

2 -152.5850 73.6464 -0.4827 1 -1.0509 

 

Figure 11. Actual and approximated straight using N=1024 for ‘data-122’. 

Table 6. RD method using 2048 simulated data for ‘data-122’. 

Bin size, n Mean SD RD log2n log2(RD) 

1024 -163.0415 10.4565 -0.0641 10 -3.9628 

512 -163.0415 12.6741 -0.0777 9 -3.6853 

256 -163.0415 13.7009 -0.0840 8 -3.5729 

128 -163.0415 21.6276 -0.1327 7 -2.9143 

64 -163.0415 30.8450 -0.1892 6 -2.4021 

32 -163.0415 43.2240 -0.2651 5 -1.9153 

16 -163.0415 57.2942 -0.3514 4 -1.5088 

8 -163.0415 67.8111 -0.4159 3 -1.2656 

4 -163.0415 70.7211 -0.4338 2 -1.2050 

2 -163.0415 71.5694 -0.4390 1 -1.1878 

 

Figure 12. Actual and approximated straight using N=2048 for ‘data-122’. 

Table 7. RD method using 4096 simulated data for ‘data-122’. 

Bin size, n Mean SD RD log2n log2(RD) 

2048 -165.5513 2.5098 -0.0152 11 -6.0436 

1024 -165.5513 9.2726 -0.0560 10 -4.1582 

512 -165.5513 10.7165 -0.0647 9 -3.9494 

256 -165.5513 11.4114 -0.0689 8 -3.8587 

128 -165.5513 20.7424 -0.1253 7 -2.9966 

64 -165.5513 30.1411 -0.1821 6 -2.4575 

32 -165.5513 42.5256 -0.2569 5 -1.9609 

16 -165.5513 56.1678 -0.3393 4 -1.5595 

8 -165.5513 66.1902 -0.3998 3 -1.3226 

4 -165.5513 68.8921 -0.4161 2 -1.2649 

2 -165.5513 69.6806 -0.4209 1 -1.2484 

 

Figure 13. Actual and approximated straight using N=4096 for ‘data-122’ 
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Table 8. RD method using 8192 simulated data for ‘data-122’. 

Bin size, n Mean SD RD log2n log2(RD) 

4096 -169.7992 4.2479 -0.0250 12 -5.3209 

2048 -169.7992 4.6620 -0.0275 11 -5.1867 

1024 -169.7992 8.7722 -0.0517 10 -4.2748 

512 -169.7992 10.1694 -0.0599 9 -4.0615 

256 -169.7992 10.9584 -0.0645 8 -3.9537 

128 -169.7992 19.6442 -0.1157 7 -3.1117 

64 -169.7992 29.3029 -0.1726 6 -2.5347 

32 -169.7992 43.4798 -0.2561 5 -1.9654 

16 -169.7992 56.5836 -0.3332 4 -1.5854 

8 -169.7992 65.9676 -0.3885 3 -1.3640 

4 -169.7992 68.7177 -0.4047 2 -1.3051 

2 -169.7992 69.5263 -0.4095 1 -1.2882 

 

Figure 14. Actual and approximated straight using N=8192 for ‘data-115’. 

c) Analysis 

The slope of the straight line is then used to calculate the 

fractal dimension (D=1-slope) (4) 

Table 9. Range of Fractal Dimension of healthy persons obtained for 

different data Using Relative Dispersion (RD) Analysis. 

 

Data Number Data Length N Fractal Dimension 

‘Data 115’ 

1024 1.5500 

2048 1.5349 

4096 1.3952 

8192 1.4000 

‘Data 122’ 

1024 1.4092 

2048 1.3550 

4096 1.4460 

8192 1.4147 

‘Data 117’ 

1024 1.3458 

2048 1.3562 

4096 1.5349 

8192 1.3192 

The above calculation Standard Deviation is least when data 

length is 8192. In general, with the increase of data length, 

calculated fractal dimension in general gets closer to the 

actual result. So, Relative Dispersion (RD) Analysis is well 

suited for long signals. 

From the above calculation, we can conclude that the range 

of fractal dimension for healthy person is 1.31-1.41. 

2.2. Power Spectral Density Analysis 

The power spectrum (the square of the amplitude from the 

Fourier transform) of an unpolluted fractional Brownian 

motion is known to be described by a power law function: 

|A|
2
 = 1/ f

 β

                                                     (5) 

Where |A| is the magnitude of the spectral density at 

frequency f, with an exponent equal to β = 2H + 1. In 

general, fractal signals always have such a very broad 

spectrum. When the derivative is taken from a fractal signal, 

β is reduced by two. Thus, for fractional Brownian noise, 

fBn, β is expected to be:  

β=2H+1.                                  (6) 

Here again, a straight line is fitted from a log-log plot, and H 

is calculated from the slope β. Power spectrum method 

applies the power law variation of time series. A strong 

relationship exists between fractal dimension and power law 

index of time series. In the frequency domain, fractal time 

series exhibit power law properties:  

P(f) ~ f
–α

                                   (7)
 

Where P(f) is the power spectral density, f, and the exponent 

α is the so, called power-spectral index. For the values region 

between FD=1 and FD =2 the following relationship between 

FD and α is valid:  

FD=(5-α)/2, for 1<FD<2                  (8) 

In other words, the fractal dimension of a time series can be 

calculated directly from its power spectrum. 

 

Figure 15. Flow Chart for Power Spectral Density Analysis. 
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a) Analysis Procedure in Brief 

1) At first simulated data is loaded. 

2) Power spectral density is estimated by using MATLAB 

function ‘PSD’ [10] [11]. 

Function Format: [Pxx,F]= psd(x,nfft,fs,window,noverlap) 

It returns a vector of frequencies, the same size as Pxx at 

which the PSD is estimated. The PSD is plotted on log scale 

by using ‘log log’ command. The plots of the power spectral 

densities against the normalized frequency in the log scale 

are for normal data assuming sampling frequency. 

3) Least-square straight line is then fitted over the PSD plotted. 

4) The slope of the estimated straight line is used to calculate 

the fractal dimension of the simulated data. for different 

data series. Fractal dimension obtained for each data in then 

tabulated. Comparing these values the range of fractal 

dimension for healthy person is determined. Deviation 

from this range predicts the presence of abnormality. 

b) The given data numbers ‘115’ or ‘117’ or ‘127’ or ‘230’ 

provides ECG of healthy person 

 

Figure 16. PSD and approximated straight line using N=4096 for ‘data 115’. 

 

Figure 17. PSD and approximated straight line using N=4096 for ‘data 117’. 
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Figure 18. PSD and approximated straight line using N=4096 for ‘data 122’. 

 

Figure 19. PSD and approximated straight line using N=4096 for ‘data 230’. 

c) Analysis 

We know that for PSD method, 

Fractal dimension, D= (5-slope)/2          (8) 

As in the case of RD method, the best result is achieved with 

longer data series. From the analysis, it is obvious that PSD 

method shows least biased results. However, no single 

equation expression can be established at this stage to relate 

the nature of data series and the calculated fractal dimension. 

From the above calculation, we can conclude that the range 

of fractal dimension for healthy person is 1.7494 - 1.7989. 

Table 10. Range of Fractal Dimension of Healthy Person for different 

simulated data using Power spectral density analysis. 

Data Number Data Length N Fractal Dimension 

‘Data 115’ 

1024 1.7578 

2048 1.7655 

4096 1.7965 

‘Data 117’ 

1024 1.7647 

2048 1.7989 

4096 1.8148 

‘Data 122’ 

1024 1.7149 

2048 1.7494 

4096 1.7704 

‘Data 230’ 

1024 1.7470 

2048 1.7614 

4096 1.7617 
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2.3. Rescaled Range Analysis 

Hurst (1965) developed the rescaled range analysis, a 

statistical method is used to analyse long records of natural 

phenomena. There are two factors used in this analysis: 

firstly, the range R, this is the difference between the 

minimum and maximum 'accumulated' values or cumulative 

sum of X(t,τ) of the natural phenomenon at discrete integer-

valued time t over a time span τ (taw), and secondly the 

standard deviation S, estimated from the observed values 

Xi(t). Hurst found that the ratio R/S is very well described for 

a large number of natural phenomena by the following 

empirical relation [12-18]: 

!�" 
#�" ∝ %&                                 (9) 

where τ is the time span, and H the Hurst exponent. The 

coefficient c was taken equal to 0.5 by Hurst. R and S are 

'�% � ()��X�t, τ  –Min (X�t, τ )          (10) 

for the range 1. / . % 

and 0�% � 1�
" 2 34�/ � �4 "5�"

6��             (11) 

The Relation between Hurst exponent and the fractal 

dimension is simply D=2-H. We calculate the individual 

calculations for each interval length. A straight line is fitted 

in the log-log plot: Log[R(T)/S(T)] = c + H log(T). Where H 

= slope. So, Fractal dimension, D= 2-H. With the help of this 

equation we can easily evaluate fractal dimension in rescaled 

range analysis [19]. 

a) Analysis Procedure in Brief 

1) At first specified data is divided into different series of 

Bin size or resolution time interval. 

2) Then calculated standard deviation for different Bin size 

of data. 

3) Mean of the data series is then calculated. Maximum and 

minimum of integral for each lag interval is then 

calculated to find out the range, R of each interval. 

4) Finally, the R/S ratio is calculated from the average of 

each slot R/S ratio. 

5) The results are then plotted against log2(t) vs log2(R/S), 

where t is the length of the time. 

6) The MATLAB function ‘polyfit()’ is used to fit a least 

square straight line over the log2 (t) vs log2 (R/S) curve. 

b) In the given ‘115.mat’ or ‘117.mat’ or ‘122.mat’ provides 

ECG of healthy person 

Table 11. R/S Analysis using 1024 simulated data for Data-115. 

Slot size, T log2(T) log2(R/S) 

512 9 12.6237 

256 8 12.0999 

128 7 11.9111 

64 6 11.5401 

32 5 11.1825 

 

 

Figure 20. Actual and approximated straight line using N=1024 for data115. 
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Table 12. R/S Analysis using 2048 simulated data for Data-115. 

Slot size, T log2(T) log2(R/S) 

512 9 12.1189 

256 8 11.999 

128 7 11.1111 

64 6 10.5401 

32 5 10.1825 

 

Figure 21. Actual and approximated straight line using N=2048 for’data115’. 

Table 13. R/S Analysis using 4096 stimulated data for Data-115. 

Slot size, T log2(T) log2(R/S) 

512 9 12.5697 

256 8 12.1587 

128 7 11.8979 

64 6 11.5438 

32 5 11.2147 

 

Figure 22. Actual and approximated straight line using N=4096 for data115. 
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Table 14. R/S Analysis using 1024 simulated data for Data-117. 

Slot size, T log2(T) log2(R/S) 

512 9 11.0151 

256 8 10.9981 

128 7 10.4695 

64 6 9.9987 

32 5 9.4855 

 

Figure 23. Actual and approximated straight line using N=1024 for data117. 

Table 15. R/S Analysis using 2048simulated for Data-117. 

Slot size, T log2(T) log2(R/S) 

512 9 11.3151 

256 8 10.9981 

128 7 10.7695 

64 6 10.2120 

32 5 9.7685 

 

Figure 24. Actual and approximated straight line using N=2048 for data117. 
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Table 16. R/S Analysis using 4096 simulated data for Data-117. 

Slot size, T log2(T) log2(R/S) 

512 9 12.0094 

256 8 11.7840 

128 7 11.4543 

64 6 10.9997 

32 5 10.7596 

 

Figure 25. Actual and approximated straight line using N=4096 for data117. 

Table 17. R/S Analysis using 1024 simulated data for Data-122. 

Slot size, T log2(T) log2(R/S) 

512 9 12.4374 

256 8 12.1576 

128 7 11.7642 

64 6 11.5154 

32 5 10.7596 

 

Figure 26. Actual and approximated straight line using N=1024 for data122. 
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Table 18. R/S Analysis using 2048 simulated data for Data-122. 

Slot size, T log2(T) log2(R/S) 

1024 10 13.1374 

512 9 12.7576 

256 8 12.2642 

128 7 11.8954 

64 6 11.5096 

32 5 11.0215 

 

Figure 27. Actual and approximated straight line using N=2048 for data122. 

Table 19. R/S Analysis using 4096 simulated data for Data-122. 

Slot size, T log2(T) log2(R/S 

1024 10 12.8864 

512 9 12.5576 

256 8 12.2642 

128 7 11.8954 

64 6 11.5096 

32 5 10.9980 

 

Figure 28. Actual and approximated straight line using N=4096 for data122. 
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c) Analysis 

From the above graphs, the slope of the straight line is then 

used to calculate the fractal dimension. 

In the R/S analysis, fractal dimension D=2-H     (12) 

Table 20. Range of Fractal Dimension of healthy persons obtained for 

different data using Rescaled Range method. 

Data Number Data Length, N Fractal Dimension (D) 

‘Data 115’ 

1024 1.6558 

2048 1.6345 

4096 1.6612 

‘Data 122’ 

1024 1.6037 

2048 1.5743 

4096 1.6521 

‘Data 117’ 

1024 1.5941 

2048 1.6121 

4096 1.6626 

From the above table, it is found that in Rescaled Range 

analysis there is no linear variation of fractal dimension with 

data length or closely spaced data series. The Standard 

Deviation is least when data length is 4096. The best result is 

obtained with data size, N=4096. 

So, we can conclude that the range of fractal dimension for 

healthy person is 1.65 -1.67. 

3. Result and Discussion 

In this research, fractal dimensions are estimated for healthy 

person (normal data) for the case of three proposed methods. 

Relative Dispersion Method: Range of Fractal Dimension of 

healthy persons is 1.31-1.41. 

Power Spectral Density (PSD) Method: Range of Fractal 

Dimension of healthy persons is 1.7494 - 1.7989. 

Rescaled Range (R/S) Method: Range of Fractal Dimension 

of healthy persons is 1.65-1.67. 

Relative dispersion analysis is well suited for long signals. 

PSD method shows least biased results. In Rescaled range 

analysis, there is no linear variation of fractal dimension with 

data length or closely spaced data series. 

We find a quick hint from the fact that, in general, data series 

is suited better by R/S analysis rather than RD analysis and 

PSD analysis. So, it has a better accuracy to calculate fractal 

dimension than other method. 

4. Conclusions and Future 
Work 

This paper aims to analysis heart rate variability (HRV) 

applying three different methods to calculate fractal 

dimension (FD) of instantaneous heart rate (IHR) derived 

from ECG. These non-linear techniques are applied to 

different raw data (RR intervals of ECG) that are derived 

from the sample ECG records from MIT-BIH database. The 

results found from this work are analysed to see the range of 

fractal dimension of healthy or normal persons according to 

bit rate in the examined ECG record. In future, there are so 

many opportunities to find fractal dimension of abnormal 

patients and how they vary between normal and abnormal. 

Box Counting Method is another efficient way to calculate 

fractal dimension. There also have some other classical 

techniques to determine heart rate analysis. Heart 

abnormalities will be detected by using several frequency 

domain methods such as cross entropy analysis, Support 

Vector Machine (SVM), Discrete Cosine Transform (DCT) 

and Wavelet Transform etc. 
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