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Abstract 

A technique of nonlinear analysis- the fractal analysis, is recently having its popularity to many researchers working on 

nonlinear data for which most mathematical models produce intractable solutions. The term “Fractals” is derived from the 

Latin wordfractus, the adjectival from offranger, or break. Fractals as a set of fine structure, enough irregularities to be 

described in traditional geometrical language and fractal dimension is greater than topological dimension. Fractal is a 

mathematical analysis for characterizing complexity of repeating geometrical patterns at various scale lengths. The analysis is 

mostly suitable for analyzing data with self-similarity (i.e., data do not depend on time scale). Due to the self-similarity in the 

Heart’s electrical conduction mechanism and self-affine behavior of heart rate (HR), fractal analysis can be used as an analyzer 

of HR time series data. The aim of this work is to analysis heart rate variability (HRV) by applying different method to 

calculate fractal dimension (FD) of instantaneous heart rate (IHR) derived from ECG. The behavioral change of FD will be 

analyzed with the variation of data length. Based on FD change, the classification of abnormalities are being tried to identify in 

ECG. These methods will be applied to a large class of long duration data sets and it is expected that the proposed technique 

will provide a better result by comparison with others to detect the abnormality of ECG signal. 
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1. Introduction 

An Electrocardiogram (ECG) signal gives a significant 

information for the cardiologist to detect cardiac diseases [1]. 

ECG signal is a self-similar object. So, fractal analysis can be 

implemented for proper utilization of the gathered 

information. 

1.1. The Action Potential 

Action potential is a term used to denote a temporal 

phenomena exhibited by every electrically excitable cell [2]. 

The action potential has four main stages: depolarization, 

repolarization, hyperpolarization, and the refractory phase. 

Depolarization is caused when positively charged sodium 

ions rush into a neuron. 

Repolarization is caused by the closing of sodium ion 

channels and the opening of potassium ion channels. 

Hyperpolarization occurs due to an excess of open potassium 

channels and potassium efflux from the cell. The refractory 

period for a cell is characterized by a reduced capacity to 

evoke another action potential. Due to this non-linearity most 
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cells have a refractory period during which the cells cannot 

experience action potentials. Resting potential phase is the 

equilibrium state of the neuron. After the refractory period, 

the potential again returns back to the resting potential [3]. 

 

Figure 1. Schematic representation of an action potential in an excitable cell. 

1.2. Activation of the Heart and the ECG 

The contraction and relaxation of the heart muscles that 

enables the irrigation of all the circulatory system is 

adequately related with the action potential propagation in 

the heart. The electrical activity of the heart originates in the 

sino-atrial node. The impulse then rapidly spreads through 

the right atrium to the atrioventricular node. It also spreads 

through the atrial muscle directly from the right atrium to the 

left atrium. The electrical conduction system of the heart is 

composed of the following structures [4]: 

 

Figure 2. Propagation of the Action Potential through heart [5]. 

In ECG, P-wave is generated by activation of the muscle of 

both atria, result of atrial depolarization. The impulse travels 

very slowly through the AV node, then very quickly through 

the bundle of His, then the bundle branches, the Purkinje 

network, and finally the ventricular muscle. This generates 

the Q-wave. Next the left and right ventricular free walls, 

which form the bulk of the muscle of both ventricles, gets 

activated, with the endocardial surface being activated before 

the epicardial surface. This generates the R-wave. A few 

small areas of the ventricles are activated at a rather late 

stage. This generates the S-wave. Finally, the ventricular 

muscle repolarizes. This generates T-wave [6]. 

The activation sequence of the action potential in the heart 

leads to the production of closed-line action currents that 

flow in the thoracic volume conductor. Potentials measured 

at the outer surface (the body surface) are referred as Electro- 

cardiograms (ECGs). Electrocardiograph is generated with 

the help surface electrodes, electronic amplifiers and filters 

and display devices. It provides information about the heart 

rate, rhythm, and morphology. 

FD is a descriptive measure that has been proven useful in 

quantifying the complexity or self-similarity of biomedical 

signals. ECG signal of a human heart is a self-similar object, 

so it must have a fractal dimension that can be extracted 

using mathematical methods to identifying and distinguish 

specific states of heart pathological conditions. Three 

different methods for computing FD values will be 

investigated from ECG time series signals depending on 

fractal geometry in order to extract its main features. 

2. Methodology 

Fractal Dimension is a descriptive measure that has been 

proven useful in quantifying the complexity or self-

similarity of biomedical signals. ECG signal of a human 

heart is a self-similar object, so it must have a fractal 

dimension that can be extracted using mathematical 

methods to identifying and distinguish specific states of 

heart pathological conditions [7] [8]. In general, a fractal is 

defined as a set having non-integer dimension. 

Consequently, the fractal dimension (FD) is introduced as a 

factor highly correlated with the human perception of 

object’s roughness. FD fills the gap between one- and two-

dimensional objects. The more complex the contour of the 

curve, the more it fills the plane and the more its fractal 

dimension will be closer to 2. This section investigates 

three different methods for computing FD values from ECG 

time series signals (RR intervals) depending on fractal 

geometry in order to extract its main features. 

A. Relative Dispersion (RD) Method 

B. Power Spectral Density (PSD) Method 

C. Rescaled Range Method 

2.1. Relative Dispersion (RD) Method 

One-dimensional approach that can be applied to an 

isotropic signal of any dimension [9]. Making estimates of 
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the variance of the signal at each of several different levels 

of resolution form the basis of the technique; for fractal 

signals a plot of the log of the standard deviation versus the 

log of the measuring element size (the measure of 

resolution) gives a straight line with a slope of 1 - D, where 

D is the fractal dimension. The characterizing Hurst 

coefficient, H is a measure of irregularity; the irregularity or 

anticorrelation in the signal is maximal at H near zero. 

White noise with zero correlation has H = 0.5. For one-

dimensional series, H = 2 - D, where D is the fractal 

dimension, 1<D<2 [9]. 

There is a strong relationship between the measure of variation 

(the coefficient of variation) and the resolution of 

measurement. This is a simple one dimensional spatial analysis 

which we level as RD analysis, where RD is the relative 

dispersion i.e. the standard deviation divided by the mean. 

Mathematically it can be expressed as: 	RD = SD Mean⁄  

Standard Deviation = �∑ 
�� − �̅������ �⁄  

Where,x� = Random variable 

x�= Mean of the variables 

N = Number of Samples 

H not equal to 0.5, the SD will be proportional to n���, n 

being the bin size or time resolution interval. By calculating 

the RD (RD = SD Mean� ) for different bin sizes, n and fitting 

the square law function: 

RD=RD0(n��� nο)⁄  [9] 

Where, RD0 is the RD for some reference bin size no. 

The exponent can be best estimated by a log-log 

transformation. 

log(RD)=log(RD0) +(H-1)log(n/n0), Here H-1=slope [9] 

ForFractal Dimension, D=2-H. So, D=1-slope. So, fractal 

dimension from this equation can easily be estimated. The fit 

is little improved when longer signals are used. 

a) Analysis Procedure in Brief 

1. At first specified data (RR intervals of ECG signal) is 

divided into different series of Bin size. 

2. Then calculated Standard deviation and Mean for different 

Bin size of data. 

Determine the arithmetic mean of data set by adding all of 

the individual values of the set together and dividing by the 

total number of values. 

3. Then standard deviation is normalized by dividing with 

the arithmetic mean, which yields the relative dispersion 

RD of the data series. 

Table 1. FD Calculation for Normal ‘data 210’. 

Bin size 

n 
Mean SD RD log2n Log2(RD) Fractaldimension 

1024 91.5515 18.9998 0.2075 10 -2.2686  

512 93.2274 20.1173 0.2158 9 -2.2123  

256 91.5454 17.0487 0.1862 8 -2.4248  

128 93.1399 18.0455 0.1937 7 -2.3678  

64 94.2575 17.8798 0.1897 6 -2.3983 1.041 

32 96.2882 16.4548 0.1709 5 -2.5489  

16 97.8004 16.9946 0.1738 4 -2.5248  

8 101.8916 22.7369 0.2231 3 -2.1639  

4 111.6402 28.4708 0.2550 2 -1.9713  

2 104.8985 10.7501 0.1025 1 -3.2866  

Table 2. FD Calculation for Abnormal ‘data106’. 

Bin size 

n 
Mean SD RD log2n log2(RD) Fractaldimension 

1024 73.9664 24.5858 0.3324 10 -1.5890  

512 69.2495 20.8778 0.3015 9 -1.7298  

256 75.1851 26.2609 0.3493 8 -1.5175  

128 73.3652 19.8773 0.2709 7 -1.8840  

64 68.8558 8.0295 0.1166 6 -3.1002 1.46 

32 70.5044 9.1036 0.1291 5 -2.9532  

16 63.0528 4.9497 0.0785 4 -3.6711  

8 60.1309 3.7947 0.0631 3 -3.9861  

4 58.4505 1.5827 0.0271 2 -5.2068  

2 58.7940 1.4708 0.0250 1 -5.3210  

1. The results are then plotted against log2(n) versuslog2(RD), where n is the 

bin size or the time resolution interval. 

2. The MATLAB function ‘polyfit()’ is used to fit a least square straight line 

over the log2(n) versuslog2(RD) curve. 

 

Figure 3. Actual and approximated straight line for normal data. 

 

Figure 4. Actual and approximated straight line for abnormal data. 

The slope of the straight line is then used to calculate the fractal dimension: 

(D=1-slope) 

Table 3. FD’s calculation for several Normal data. 
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Data Fractal Dimension, D 

107 1.036 

111 1.037 

112 1.0082 

210 1.041 

234 1.0089 

Table 4. FD’s calculation for several Abnormal data. 

Data Fractal Dimension, D 

105 1.2553 

106 1.46 

118 1.4014 

201 1.25 

230 1.2973 

b)Comparison and Comments 

 

Figure 5. FDs of Normal and Abnormal data of RD method. 

From the figure it is clear that there is a difference in fractal 

dimension between normal and abnormal data. This 

difference varies mainly in the slope. If data is normal- SD 

will be small, so RD will be small and log2(RD) also will be 

small. And when log2(n) versus log2(RD) is plotted Slope 

will be low. 

 

Figure 6. Ramp for normal and abnormal data. 

In general, with the increase of data length, calculated fractal 

dimension in general, gets closer to the actual result. 

We know, Standard Deviation = �∑ 
�� − �̅������ �⁄  

For the case of Fractal dimensions, 

For normal, Standard Deviation = 0.0162 

For abnormal, Standard Deviation = 0.0936 

It is seen that 2nd value of is more than 1st value. It is clear 

that 2
nd

 values are for abnormal because it is largely deviated 

from average. Relative Dispersion (RD) Analysis is well 

suited for long signals. 

 

Figure 7. Flow Chart for Power Spectral Density Analysis. 

2.2. Power Spectral Density Analysis 

The power spectrum (the square of the amplitude from the 

Fourier transform) of an unpolluted fractional Brownian 

motion is known to be described by a power law function: 

|A|
2
= 1/ f 

β

 

Where |A| is the magnitude of the spectral density at 

frequency f, with an exponent equal to β = 2H + 1. In 

general, fractal signals always have such a very broad 

spectrum. When the derivative is taken from a fractal signal, 

β is reduced by two. Thus, for fractional Brownian noise, 

fBn, β is expected to be: β=2H+1. 

Here again, a straight line is fitted from a log-log plot, and H 

is calculated from the slope β. Power spectrum method 

applies the power law variation of time series. A strong 

relationship exists between fractal dimension and power law 

index of time series. In the frequency domain, fractal time 

series exhibit power law properties:P(f) ~ f 
–α 

Where P(f) is the power spectral density, f, and the exponent 

α is the so called power-spectral index. For the values region 
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between FD=1 and FD =2 the following relationship between 

FD and α is valid: FD=(5-α)/2, for 1<FD<2 

In other words, the fractal dimension of a time series can be 

calculated directly from its power spectrum. 

a) Analysis Procedure in Brief 

1. At first simulated data is loaded. 

2. Power spectral density is estimated by using MATLAB 

function ‘PSD’ [10] [11]. 

Function Format: [Pxx,F]= psd(x,nfft,fs,window,noverlap) 

It returns a vector of frequencies, the same size as Pxx at 

which the PSD is estimated. The PSD is plotted on log scale 

by using ‘log log’ command. The plots of the power spectral 

densities against the normalized frequency in the log scale 

are for normal and abnormal data assuming sampling 

frequency. 

1. Least-square straight line is then fitted over the PSD 

plotted. 

 

Figure 8. PSD and approximated straight line for normal. 

 

Figure 9. PSD and approximated straight line for abnormal. 

2. From the graphs, the ramp of the approximated straight 

line and fractal dimensions are calculated for different data 

series. For PSD method, Fractal dimension, D= (5-slope)/2 

Table 5. FD’s for different normal data. 

Data Fractal Dimension, D 

101 2.21 

107 2.24 

111 2.19 

112 2.185 

117 2.18 

234 2.215 

Table 6. FD’s for different abnormal data. 

Data Fractal Dimension, D 

105 2.435 

106 2.38 

118 2.365 

201 2.405 

208 2.49989 

223 2.493 

b) Comparison and Comments 

 

Figure 10. FDs are plotted for Normal and Abnormal data. 

From the figure it is clear that there is a difference in Fractal 

Dimension between normal and abnormal data. This 

difference varies mainly in the slope. 

 

Figure 11. Ramp for Normal and Abnormal data. 

2.3. Rescaled Range Analysis 

Hurst (1965) developed the rescaled range analysis, a 

statistical method is used to analyze long records of natural 

phenomena. There are two factors used in this analysis: 

firstly, the range R, this is the difference between the 

minimum and maximum 'accumulated' values or cumulative 

sum of X(t,τ) of the natural phenomenon at discrete integer-
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valued time t over a time span τ (taw), and secondly the 

standard deviation S, estimated from the observed values 

Xi(t). Hurst found that the ratio R/S is very well described for 

a large number of natural phenomena by the following 

empirical relation [12-18]: 

!(")
#(") ∝ "% 

where τ is the time span, and H the Hurst exponent. The 

coefficient c was taken equal to 0.5 by Hurst. R and S are 

!(") = &'�(X(t, τ))–Min(X(t, τ)) for the range 1≤ - ≤ " 

And #(") = .�
/ 0 {2(-) − (2)/}�/

4��  

The Relation between Hurst exponent and the fractal 

dimension is simply D=2-H. We calculate the individual 

calculations for each interval length. A straight line is fitted 

in the log-log plot: Log[R(T)/S(T)] = c + H log(T). Where H 

= slope. So, Fractal dimension, D= 2-H. With the help of this 

equation we can easily evaluate fractal dimension in rescaled 

range analysis[19]. 

a) Analysis Procedure in Brief 

1. At first specified data is divided into different series of Bin 

size. 

2. Then calculated standard deviation for different Bin size of 

data. 

3. Maximum and minimum of integral for each lag interval is 

then calculated to find out the range, R of each interval. 

4. Finally, the R/S ratio is calculated from the average of 

each slot R/S ratio. 

Table 7. R/S analysis for Normal ‘data 107’. 

Slot size, T R/S log2(T) log2(R/S) 

1024 23.6853 10 4.5659 

512 11.2427 9 3.4909 

256 10.1599 8 3.3448 

128 8.9118 7 3.1557 

64 3.4537 6 1.7881 

32 3.3725 5 1.7538 

Table 8. R/S analysis for Abnormal ‘data 201’. 

Slot size, T R/S log2(T) log2(R/S) 

1024 5.3199 10 2.4114 

512 5.6393 9 2.4955 

256 5.1807 8 2.3731 

128 4.5431 7 2.1837 

64 5.1270 6 2.3581 

32 5.3104 5 2.4088 

1. The results are then plotted against log2(t ) vs log2(R/S), where tis the 

length of the time. 

2. The MATLAB function ‘polyfit()’ is used to fit a least square straight line 

over the log2(t) vslog2(R/S) curve. 

 

Figure 12. Actual and approximated straight line for normal using R/S 

analysis. 

 

Figure 13. Actual and approximated straight line for abnormal using R/S 

analysis. 

From the above graphs, the slope of the straight line is then 

used to calculate the fractal dimension. 

In the R/S analysis, fractal dimension D=2-H 

Table 9. FD’s for different normal data by R/S analysis. 

Data Fractal Dimension, D 

107 1.45 

111 1.45 

205 1.53 

Table 10. FD’s for different abnormal data by R/S analysis. 

Data Fractal Dimension, D 

105 1.8138 

106 1.901 

201 1.982 
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b) Comparison and Comments 

 

Figure 14. FDs are plotted for Normal and Abnormal data. 

From the figure it is clear that there is a difference in fractal 

dimension between normal and abnormal data. This 

difference varies mainly in the slope. 

 

Figure 15. Difference in ramp for normal and abnormal data. 

In Rescaled Range Analysis there is no linear variation of 

fractal dimension with data length or closely spaced data 

series. 

For the case of Fractal dimensions, 

For normal, Standard Deviation =0.001422 

For abnormal, Standard Deviation = 0.004717 

We see that 2
nd

 value of Standard	Deviation is more than 1
st
 

value. It is clear that 2
nd

 values are for abnormal because it is 

largely deviated from average. 

3. Result and Discussion 

In this research, fractal dimension for both normal and 

abnormal data are calculated and differences in fractal 

dimension between them for the case of three proposed 

methods are also calculated. From the calculated fractal 

dimension there is a sort of distance between normal and 

abnormal data that is cleared from the figure of ramp which 

have been plotted for normal and abnormal data. More 

distance will clear the more accuracy. Differences are not 

equal for all the three cases. In RD method under FD average 

value of normal data is 1.02622 and average value of 

abnormal data is 1.3328. It is observed that the range of 

difference is 30%. In PSD method under FD average value of 

normal data is 2.2033 and average value of abnormal data is 

2.4296. It is observed that the range of difference is 22.63%. 

In R/S method under FD average value of normal data is 1.48 

and average value of abnormal data is 1.8989. It is observed 

that the range of difference is 41.89%. One may find a quick 

hint from the fact that, in general, data series is suited better 

by R/S analysis rather than RD and PSD analysis. R/S 

analysis gives the more difference between normal and 

abnormal data. So it has a better accuracy to calculate fractal 

dimension than others. 

4. Conclusions and Future 
Work 

This paper aims to analysis heart rate variability (HRV) 

applying three different methods to calculate fractal 

dimension (FD) of instantaneous heart rate (IHR) derived 

from ECG. These non-linear techniques are applied to 

different raw data (RR intervals of ECG) that are derived 

from the sample ECG records from MIT-BIH database. The 

results found from this work are analyzed to see how they 

differ between normal and abnormal in the examined ECG 

record. There also has some classical technique to Heart rate 

analysis. In futureheart abnormalities will be detected by 

using several frequency domain methods such as cross 

entropy analysis, Support Vector Machine (SVM), Discrete 

Cosine Transform (DCT) and Wavelet Transform etc. 
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