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Abstract 

Based on fluid dynamics theory of the chromatographic process, combined with the effects of adsorption and reaction, the 

chromatography model with a reaction A→B was established by a system of two nonlinear hyperbolic partial differential 

equations (PDE). In some practical situations, the reaction chromatography model was simplified a semi-coupled system of 

two linear hyperbolic PDE’s. In which, the reactant concentration wave model was the initial-boundary value problem of a 

self-closed hyperbolic PDE, while the resultant concentration wave model was the initial-boundary value problem of 

hyperbolic PDE coupling reactant concentration. The explicit expressions for the concentration wave of the reactants and 

resultants were constructed by characteristic curve method in general situations. By taking pulse width injection taken as an 

example, the solution of concentration wave for reactant and resultant were derived detailedly, and then the shape of the 

outflow curves were further analyzed in a variety of situations. It was significant for further analysis between input and output 

of chromatography, optimizing chromatographic separation, determining the physical and chemical characters. 
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1. Introduction 

In recent years, with the appearance of diverse production 

chromatography (such as the reaction chromatography), the 

chromatography technology has been widely applied in 

chemistry, chemical engineering, biological engineering and 

pharmaceutical engineering, etc, while the demand of 

chromatography theory is increasing higher. The relationships 

among the chromatographic input-output and the system 

conditions play the very important role in chromatography 

model [1-3]. In fact, the mathematical model of 

chromatography system is an initial-boundary value problem 

of hyperbolic partial differential equations system [4-10], 

which is hard and challenging mathematics problem. The 

relative works of partial differential equations in the practical 

chromatography are still not much. 

If the chromatographic process contains reactions, it is labeled 

as reaction chromatography. An important example is the 

catalyst for the column packing, accompanied the catalytic [2, 

3] in the adsorption process, and the isomerization reaction is 

the common situation. 

In this paper, a chromatography model with a reaction A→B 

was established, which is an initial-boundary value problem 

for the semi-coupled system of two linear hyperbolic partial 

differential equations. Then, using characteristic curve 

method, the explicit expressions of concentration wave of 

reactant and resultant were constructed in general situations. It 

was significant for further analysis between input and output 

of chromatography, optimizing chromatographic separation, 

determining the physical and chemical characters. Finally, the 
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wide pulse was taken as an example, the solution of 

concentration wave for reactant and resultant were derived 

detailedly, and the equations of outflow curves were further 

worked out. The behavior and character of the outflow curves 

were discussed corresponding to every possible situation, 

providing the proper theory models for further 

chromatographic data analysis. 

2. Reaction Chromatography 
Model 

Set the concentrations of the reactant A and the resultant B in 

the mobile phase and in the stationary phase as c1, c2, f1, f2 

respectively. Reaction rate was kr, so the mass conservation 

equation between reactant and resultant in the catalytic 

chromatographic process was shown as below: 

1 1 1

1

2 2 2

1

r

r

c f c
F u k Ff

t t x

c f c
F u k Ff

t t x

∂ ∂ ∂ + + = − ∂ ∂ ∂
∂ ∂ ∂ + + =
 ∂ ∂ ∂

                 (1) 

where, −krf1 was the reactant reduction rate, and krf1 was 

resultant increase rate, kr was the coefficient of reaction rate. 

According to Langmuir type adsorption isotherms, f1 (c1, c2) 

and f2 (c1, c2) satisfied for: 
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where the constants b1, b2 were the adsorption coefficients for 

reactant A and the resultant B, respectively, and G1 and G2 

were both constants. The concentration wave equations (1) 

were a system of two nonlinear hyperbolic partial differential 

equations, which was a hard mathematical problem. But in 

some practical situations, the problem can be simplified [2]. 

Assume c1 was small, or the adsorption coefficient b1 was 

small, so b1c1≪1, while considering the assumed reaction 

rate kr is relatively minor, therefore c2 was also small, that 

was c2≪1, b2c2≪1, and so the adsorption isotherm above can 

be approximated as a linear 

1 1 1 2 2 2,f G c f G c= =ɺ ɺ                    (3) 

and denoted concretely: 

1 2 1
1 2

1 1
, , .rFG FG k FG

u u u
λ λ α+ +

= = =          (4) 

They were positive constant, thus equations (1) can be 

simplified to the following semi-coupled system of two linear 

hyperbolic partial differential equations. In which, the reactant 

concentration wave model was the initial-boundary value 

problem of a self-closed hyperbolic partial differential 

equations, while the resultant concentration wave model was 

the initial boundary value problem of hyperbolic partial 

differential equations coupling reactant concentration. 

1 1 2 2
1 1 2 1, .

c c c c
c c

x t x t
λ α λ α∂ ∂ ∂ ∂

+ = − + =
∂ ∂ ∂ ∂

          (5) 

In fact, in the quantitative analysis using high performance 

liquid chromatography (HPLC), the concentrations of most 

analytes, such as the reactant A and the resultant B here, were 

all very small [2, 3, 5], i.e. satisfied for c1≪1 and c2≪1. 

Therefore, Langmuir type adsorption isotherms (2) can be 

approximated as a linear case (3). This study mainly focused 

on the linear case, and deduced the behavior of concentration 

wave for chromatography system with a reaction A→B. 

Chromatographic process started from the boundary, and there 

were many types of the boundary conditions, such as the 

methods of delta-pulse, head-on, wide pulse, gradual change 

head-on, gradual change wide pulse, etc; whose 

corresponding boundary condition were not zero. The initial 

state of chromatography columns were typically empty, that 

the initial conditions corresponding to 0. However, in practical 

problems, there was some important chromatograph whose 

corresponding initial condition is not zero, such as simulated 

moving bed chromatography. Therefore, it is necessary to 

study the general initial-boundary value problem with both the 

initial and boundary values were not 0. That was, c1, c2 

satisfied the following the general initial-boundary value 

problem. 
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where, 1 2, ,λ λ α were constants, ( ), ( ), 1,2I B

i ic x c t i=  were 

positive piecewise and continuous smooth functions, and meet 

the compatibility condition, (0) (0), 1, 2I B

i ic c i= =  (If this 

compatibility condition was not satisfied, The results of this 

paper was still valid). 
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3. Explicit Solution of 
Concentration Wave 

Firstly, solve the initial-boundary value problem (6) for c1. 

According to characteristic curve method of initial-boundary 

value problem for hyperbolic partial differential equations, the 

characteristic curve t=t(x) of (x, t) plane satisfied the following 

equation: 

1

( )
.

dt x

dx
λ=                         (8) 

Along the characteristic curve t=t(x), we got: 
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Solve the ordinary differential equations about 

1( , ( )) ( )
def

c x t x c x= ɶ , we got: 
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where, ,k ξ  were constants, corresponding to the beginning 

point of characteristic curve. 
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Then solved the initial-boundary value problem (7) for c2, the 

characteristic curve t=t(x) of (x, t) plane satisfied the following 

equation. 
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To sum up, 
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Use the expression (11) of c1 and the relation equation (14) of 

c1 and c2, the explicit solution expressions of c2 were derived 

by dividing into the following three cases. 

In the case of 
2 1
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(i) ( , ) { }x t t xλ∀ ∈ ≥ , for 0,xζ ∈（ ） , we had 
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In the case of 
2 1

λ λ< , see Fig. 1(a) 
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(a) 2 1λ λ<                                               (b) 2 1λ λ>  

Fig. 1. Fragments range of c2. 
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In the case of 
2 1

λ λ> , see Fig. 1(b). 
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To sum up, 
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4. Wide Pulse Injection 

Chromatographic process started from the boundary, and there 

were many types of the boundary conditions, such as the 

methods of delta-pulse, head-on, wide pulse, gradual change 

head-on, gradual change wide pulse, etc; whose 

corresponding boundary condition was not zero. Where, wide 

pulse was the most common way of chromatography injection 

method, its initial state of chromatography column was 

typically empty, so the initial condition was the follows, 

1 2( ) 0, ( ) 0.I Ic x c x≡ ≡                 (18) 

And the corresponding injection function was given as 

follows, 
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, 0
( ) ( ) 0.
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c t t
c t c x

t t
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where, tp was the injection time, c10 was the injection rate, both 

of them are constant. So, in the case of wide pulse, c1, c2 

satisfied the following the initial-boundary value problem (6), 

(7), (18) and (19). If the column length was L, outflow curve 

refers to the function of c1 and c2 when x = L. The character 

state of outflow curve was an important parameter of 

chromatographic process. 

In this paper, pulse width was taken as an example, the 

solution of concentration wave for reactant and resultant were 
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derived detailedly, and then according to the obtained explicit 

expressions of c1 and c2, the shape of the outflow curve were 

further analyzed in a variety of situations, providing 

theoretical models for the chromatographic quantitative 

analysis. 

According to the equations (11), (15), (16) and (17), we had 

the explicit solution expressions of c1 and c2 as the follows, 
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Put (16) into (17), we easily got, 
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When λλλ == 12 , we got the same situations as the 

fragments range of c1, similarly we got, 
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When 
2 1

λ λ< , the fragments range of c2 was showed in 

Fig.2(a). 
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Fig. 2. Fragments range of c2, in case of pulse width injection. 
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When 12 λλ > , the fragments range of c2 was showed in Fig. 

2 (b). Similar to the calculation method as used when 

12 λλ < , we got: 
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Next, we discussed the shape of the outflow curves. 

According to (24), the outflow curve of c1 was the follows, 
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the outflow curve of c2, and we divided it into the following 

three conditions for analysis. 

When
1 2

λ λ λ= = , according to (25), the outflow curve of c2 

was the follows, 
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Fig. 3. Outflow curve of c2 when 
12 λλ < , in case of pulse width injection. 

When 
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λ λ< , the intersection of the line 
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then, c2 can be divided into five regions: Ω1, Ω2, Ω4, Ω5, Ω6, 

and according to (26), the outflow curve of c2 was the follows, 
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It was also shown in Fig. 3(a). If 
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, then, c2 can be 

divided into five regions: Ω1, Ω2, Ω3, Ω5, Ω6, and according to 
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It was also shown in Fig. 3(b). 
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also was showed in Fig. 4(a). If 
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, then, c2 can be 

divided into five regions: Ω1, Ω2, Ω3, Ω5, Ω6, and according to 

(27), the outflow curve of c2 was the follows, 
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It was also shown in Fig. 4 (b). 
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Fig. 4. Outflow curve of c2 when
2 1λ λ> , in case of pulse width injection. 

5. Conclusion 

The concentration wave equations of the chromatography 

process with a reaction A→B were a system of two nonlinear 

hyperbolic PDE’s, which was a hard mathematical problem. 

But in some practical situations, the reaction chromatography 

model can be simplified to a semi-coupled system of two 
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linear hyperbolic PDE’s. In which, the reactant concentration 

wave model was the initial-boundary value problem of a 

self-closed hyperbolic PDE, while the resultant concentration 

wave model was the initial-boundary value problem of 

hyperbolic PDE coupling reactant concentration. The explicit 

expressions for the concentration wave of the reactants and 

resultants were constructed by characteristic curve method in 

general situations. The case of pulse width injection was taken 

as an example, the solution of concentration wave for reactant 

and resultant were derived detailedly, and then the shape of the 

outflow curves were further analyzed in a variety of situations, 

providing the proper theory models for further 

chromatographic data analysis. 
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