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Abstract 

Optimal feature subset selection is an important pre-processing step for classification in many real life problems where number 

of dimensions of feature space is large and some features are may be irrelevant or redundant. One example of such a situation 

is genes expression profile data to classify among normal and cancerous samples. Contribution of this paper is five folds. 

Similarity-dissimilarity index (MSDI) is proposed which can estimate the class discrimination quality of the high dimensional 

feature space without using any kind of classifier. A framework to find out the best features subset from the n-dimensional 

feature space using genetic algorithm is proposed to select the minimum possible important features optimally using MSDI as 

fitness function to evolve the population. Similarity-dissimilarity plot is proposed to visualize the high dimensional data that 

can be used to extract important information about the class discrimination quality of the feature space. It is possible to predict 

the best classification accuracy using MSDI when an appropriate classifier is used. Another index called average differential of 

similarity and dissimilarity distances above similarity-dissimilarity line is proposed which gives information about how far 

each class instances or clusters are from other classes and the compactness of the classes in the feature space. Effectiveness of 

the methods is highlighted by using a large set of benchmark datasets in cancer classification and size of features subset and 

predicted classification accuracy is compared with the published results. 
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1. Introduction 

In pattern classification, many features are extracted from the 

raw data coming from sensors, clinical test and other sources. 

These features may be relevant or irrelevant to the pattern 

classification problem or redundant in nature. Before 

designing an optimal classifier, it is very important to assess 

the discrimination quality of the feature space. Selecting 

relevant features and ignoring irrelevant or redundant 

features can reduce the computational cost, improve the 

classification accuracy and simplify the decision boundary 

among different classes.  

Gene expression microarray data [1],[2]from oligonucleotide 

arrays or cDNA microarrays is used to classify different types 

of cancer tumors in the cancer research. This biotechnology 

is used to collect thousands of gene expressions. In gene 

expression microarray data, normally number of variables or 

genes may be huge and much greater than the number of 

instances [3]. This is “large dimension, small instances” 

problem in which number of features or variables (genes) are 

much larger than number of instances (like tumor samples). 

Feature selection is an important pre-processing step for 

microarray gene expression data after extraction of features 

and before designing an appropriate classifier. Feature 

selection is also applied to many other areas as pre-
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processing step like document processing [4], text 

categorization [5], spam filtering [6]etc. Reduction of 

features can be through dimension reduction techniques like 

principal component analysis, Fischer discriminant analysis; 

multidimensional scaling etc. Xu et al [7]applied two 

modified linear discriminant analysis (LDA) techniques to 

microarray classification datasets with limited sample size. 

The “large dimensions, small instances” datasets create 

problems of instability and singularity in the performance of 

LDA which is tried to solved by [8][9]. Xiong et al 

[10]proposed a hierarchical strategy in which all genes are 

evaluated first individually and near optimal set is defined. In 

the next step a subset of two or three genes are searched that 

can optimize the classification accuracy using stepwise and 

monte carlo methods. A good survey about dimension 

reduction techniques can be found in [11][12]. In these 

techniques, features are mapped or projected on a low 

dimensional space losing the understanding of the 

dimensions. Another method is to select a subset of the 

features that can describe the variance of the data in the best 

way possible. 

Blum et al [21]divided the feature selection methods into 

three broader categories, embed, wrapper and filtering 

methods. In embedding methods, selection of feature subset 

and classifier are embedded together and both are optimized 

simultaneously. Chen et al [22]proposed flexible neural tree 

for feature selection and classification simultaneously. 

Flexible neural tree is constructed by using genetic 

programming and claimed that it is efficient for input feature 

selection and produced improved classification rates. In 

filtering methods, an evaluation criterion is defined and a 

subset of features is selected by using this criterion.  Filtering 

methods use the statistical or some intrinsic properties of the 

data to define an appropriate evaluation criterion to select the 

relevant features. Advantages of filtering methods are 

computational simplicity, fast and independent of classifier 

[23]. After the selection of features subset, a classifier has to 

be optimized with this available subset only. Ando et al [24] 

used p-value calculated by Mann-Whitney test to rank the 

genes and selected top ten genes for the classification. Guoan 

et al [25]used t-statistics to find out relevant biomarkers. In 

mass spectrometry, many researchers used statistical 

classifiers. Satten et al [26]used random forest after de-

noising and standardizing the whole mass spectra. Adam et al 

[27]used SELDI protein profiling on prostate cancer samples 

and best features are decided by peak detection and 

discrimination power of each peak by using area under the 

Receiver Operator Curve (ROC). Decision tree is used to 

classify the prostate cancer samples from the normal ones. 

One disadvantage of the filtering methods is their analysis of 

the features in isolation and they try to rank the features 

according to their solo performance in the discrimination of 

the classes. This is not true for all cases and it may happen 

that combination of features may produce better or worse 

classification results. Hence it is important to analyze the 

effectiveness of the features subsets collectively. 

In wrapper methods, a learning method is defined and only 

those features are selected which show high classification or 

prediction accuracy by the learning method. In these types of 

methods, multiple feature subsets are selected and evaluated 

on a particular classifier iteratively. For high dimensional 

feature space, some heuristic search like genetic algorithm is 

required to define multiple features subset. Wrapper methods 

prove to be computationally very intensive especially for 

high dimensional space like microarray gene expressions 

datasets. It also has the risk of over-fitness. A good reference 

for the details of these types of methods can be found in ([23], 

table 2.). 

Xie and Wang [28]combined the advantages of filtering 

method and wrapper method by defining improved F-score as 

selection criterion and sequential forward search is used to 

evaluate the wrapper method and support vector machine is 

used for evaluating the classification accuracy. Yang et al 

[29]reported that there is no single ranking scheme or 

statistics which is universally optimal for all datasets. So they 

proposed a mixture of measures to rank the genes and 

claimed that it showed better performance than a single 

statistics. Yang et al [30]in another paper proposed improved 

hybrid system using genetic ensemble system and different 

filtering techniques to enhance the performance of features 

subset. 

In this paper, a new framework to select the feature subsets 

especially for “large dimension, small instances” cases is 

proposed to remove the irrelevant features and select best 

combinations of features. In this framework, concept of 

neighborhood is used and a new Similarity dissimilarity 

index (MSDI) is proposed which can assess the class 

discrimination quality of the features without using any 

classifier. Genetic algorithm is used to generate various 

feature subsets and their fitness is evaluated by the MSDI. A 

penalty function is defined to penalize subsets having large 

number of features. By using this framework it is possible to 

generate various features subsets having minimum sizes and 

maximum MSDI values.  

Furthermore, visualization of high dimensional feature space 

is also very important in the context of patter classification in 

many real life applications. Lot of efforts has been done in 

the past to effectively visualize the data. Radviz [52][53]is 

another type of visualization technique that can be applied to 

visualize the data structure. It can be applied to feature space 

having continuous attributes normalized to interval [0,1]. 
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Dimension anchors are placed evenly on the circumference 

of a unit circle. Dimension anchors attract every data point 

towards itself with the strength proportional to the value of 

data point in the dimension corresponding to the dimension 

anchor. Number of dimensions that can be placed on the 

circumference of the circle is limited due to limited space of 

the unit circle. Moreover, an optimization of the order of 

dimensions placed on the unit circle is very important to get 

some meaningful insight in the data. It is handled by Vizrank 

[53]and McCarthy et al [54]. Freeviz [55]is another extension 

of Radviz which allows dimension anchors to be placed 

anywhere in the unit circle. Correlated features are placed 

near to each other and less important features are placed near 

the center of unit circle. Vectorized Radviz [56] is proposed 

to better visualize the multi-clusters data by increasing the 

dimensions of the data through data flattening.  

Similarity-dissimilarity plot proposed in [57][58]provide a 

good visualization tool to extract many useful information 

about the features discrimination quality in the high 

dimensional space. Independent of number of dimensions, 

the proposed plot can discriminate between good quality 

instances (producing good classification accuracy) and bad 

quality instances (creating confusion with other classes) on 

the feature space. In the sparse high dimensional feature 

space (like “large dimension, small instances” case in gene 

expressions datasets), sometimes it is possible that instances 

at the boundary of classes may considered as bad quality 

instance even though it is separable by a decision boundary 

among different classes. In this paper, a Similarity-

dissimilarity plot is proposed in which neighborhood count is 

defined for every instance. This count explains that how 

many times an instance is considered in the neighborhood of 

other instances of similar class. High neighborhood counts 

means that a particular instance is at the boundary of its own 

class and should be considered as good instance. Furthermore 

outliers of different classes can also be identified by the 

Similarity dissimilarity plot. This framework is explained in 

detail in the coming sections and applied to many benchmark 

gene expressions datasets available online. In the end, results 

of the proposed framework are compared with the reported 

results in the literature. 

2. Material and Methods 

In this section, methodology of the proposed framework and 

description of the datasets will be elaborated. The 

methodology of the proposed framework is to search a single 

or multiple feature subsets which have the maximum value of 

MSDI and have minimum possible size of features. Block 

diagram of the proposed framework is given in Figure 1. 

 

Figure 1. Proposed Framework to select optimal feature subsets. 

2.1. Similarity-Dissimilarity Index (MSDI) 

Similarity-dissimilarity index (MSDI) gives the fraction of 

instances from each class who are in the neighborhood of 

their correct classes in the high dimensional feature space. 

Therefore, it can predict the expected classification accuracy 

of every class based on the distribution of instances of that 

class in the high dimensional feature space without applying 

any classifier to the dataset.  

Let a dataset � � ���, ��, ��, … , �	
 ∈ �
  and ��  is an 

instance lies in an n-dimensional feature space. There are NC 

classes in the dataset. Total number of instances in the dataset 

is	� � ∑ ���	�
��� , and ���  is the number of instances in the 

��� class.  

All features of the dataset are normalized such that their 

mean become zero and variance is set to one. Normalization 

can be done as follows, 

,  1, 2,...,  and  1, 2,...,
j j

j i

i j

X
X i N j n

µ
σ
−

= = =          (1) 

Here 
jµ is the mean and jσ is the standard deviation of the j

th
 

feature.  

Algorithm of MSDI is explained in the following steps.  

For each instance �� of the dataset, do steps 1 to 3. 
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Step 1: Calculation of the Similarity Distance 

For an instance ��  belonging to the class �� , k nearest 

neighbors are found from the class ��  (class of �� ). This 

nearest neighbor set is called as similarity set ����� for an 

instance �� . Similarity distance ����(�) is calculated as the 

mean distance of the instance �� 	 from the similarity set 

�����, 

����(�) � �
�∑ � (�� , �!),				�! ∈ ������!��            (2) 

Distance metric � (�� , �!) used above is Minkowski distance 

metric of order p which is given as, 

1

1

( , )
n p

p

p i i

i

d X Y x y
=

 = − 
 
∑                           (3) 

Here [ ]1 2, ,..., nX x x x= and [ ]1 2, ,..., nY y y y=  are two n-

dimensional instances in R
n
. Euclidean distance is the 

Minkowski distance metric with 2p =  and Manhatten 

distance is another Minkowski distance metric with p = 1. 

Step 2: Calculation of the Dissimilarity Distance  

Similarly, for an instance ��  belonging to the class �� , k 

nearest neighbors are searched from classes other than class 

�� and these k nearest neighbors are called dissimilarity set 

��"����� . Dissimilarity distance �"�����(�)  is calculated as 

the mean distance of the instance �� from the dissimilarity set 

��"�����.  

�"�����(�) = �
�∑ � (�� , �!),				�! ∈ ��"������!��          (4) 

Step 3: Calculation of the Neighborhood Count  

For each instance in the dataset, a neighborhood count η is 

defined. The neighborhood count η� for an instance ��  is 

count of times the instance ��  is found to be in the 

neighborhood of other instances from the similar class. The 

neighborhood count η� is calculated as follows, 

The neighborhood count of all the instances in the dataset is 

initialized to zero. For the instance ��, find out all instances 

of class ��  whose distances from ��  is less than �"�����(�) 
and call it as neighborhood set �#(�).  
�#(�) = $��%� ∈ ∀�'���, � (�, ��) ≤ �"�����(�))         (5) 

Now neighborhood count η� of all the instances belonging 

to the neighborhood set �#(�) is incremented as follows, 

η� = η� + 1, , ∈ �#(�)                         (6) 

This procedure is carried out for all the instances in the 

dataset.  

The neighborhood count tells us about how many times the 

instance is listed in the neighborhood set �#(�).  
Step 4: Calculation of MSDI. 

MSDI gives the fraction of instances which are good in the 

context of classification. So for every instance ��  of the 

dataset, a binary variable -(�) is defined as zero or one. If 

-(�) is one then instance �� 	will be classified correctly and if 

-(�)  is zero then instance ��  will most probably be 

misclassified and confused with some other class by the 

classifier. If the similarity distance ����(�) is less than the 

dissimilarity distance	�"�����(�), it suggests that the instance 

is near to its own class as compared to other classes and 

chances of classifying this instance ��  correctly by an 

optimal classifier are high. Lesser the similarity distance than 

the dissimilarity distance, easier is to classify this instance 

correctly. The variable -(�) is calculated as follows, 

-(�) = .1 �/	(����(�) < �"�����(�)) 	∨ 	(η� > ς)	
0 45ℎ789�:7         (7) 

Where ς is the lower threshold on the neighborhood count, 

based one which an instance is considered to be classifiable 

correctly. This is considered as an important factor because 

for all those instances which are on the border of the clusters 

of a particular class may have similarity distances larger than 

the dissimilarity distances. This is due to the fact that they are 

nearer to other classes as compared to their original class 

even though they can be classified correctly and a decision 

boundary exists among classes. This situation becomes more 

critical when the number of instances per class are few and 

the feature space is high dimensional which is very common 

in microarray genes expressions data for different kind of 

cancers. For such a sparse representation of classes in the 

high dimensional space, calculation of neighborhood count 

can improve the correct prediction of classification accuracy. 

This point will be further elaborated by some examples in the 

coming section. 

Similarity-dissimilarity index (MSDI) for each class ��  is 

calculated as follows, 

;#<=� = ∑ >(�)? ,�∈@A		

"A                                 (8) 

Overall MSDI for the whole dataset is calculated as, 

;#<= = ∑ 
"ABCDEAF�A
∑ 
"AF�A

                             (9) 

Range of MSDI is from zero to one. Low value of MSDI 

corresponds to the overlapped clusters of different classes 

and classification accuracy is predicted to be very poor. High 

value of MSDI means different classes are well separated and 

high classification accuracy is possible by designing an 
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appropriate classifier. 

Step 5: Similarity-Dissimilarity Plot. 

To visualize the high dimensional data, Similarity-

dissimilarity plot is proposed which is based on similarity-

dissimilarity plot proposed in [57]. For every class ��,	 a 

particular color and shape is defined. For the ���	instance of 

class	��, if	����(�) 0 �"�����(�), this instance will be plotted 

over the similarity dissimilarity line by the shape and color of 

class 	�� . If neighborhood count is greater than threshold 

value then the instance will be plotted below similarity-

dissimilarity line will be plotted as shape of the class �� but 

the color is black. If	����(�) G �"�����(�), this instance will 

be plotted as shape of the class �� 	and the color of the shape 

will be decided by the class of majority of the instances in the 

neighborhood of 	���	instance. Figure 2 explains the meaning 

of location of an instance on the Similarity-dissimilarity plot. 

If the instance is above the similarity-dissimilarity line then 

this instance is nearer to its own class as compared to other 

classes. As the instance moves upward, better is the quality of 

instance in the context of classification. Similarly, if 

instances are located on the left side of the plot, then the class 

is sparse (similarity distances are large). All the instances 

below the similarity-dissimilarity line may be considered as 

low quality instances.  Some instances below the line may be 

considered as good points if their neighborhood count is high 

(points on the boundary of a class). This concept is further 

explained by example 1 as shown in Figure 3. The 

Similarity-dissimilarity plot is shows in Figure 4. In Figure 3, 

some data points of two class problem are plotted. It can be 

seen from the figure that both classes are linearly separable 

and 100% classification accuracy is achievable easily by any 

classifier.  

 

Figure 2. Similarity Dissimilarity Plot. 

 

Figure 3. Example 1. 
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2.2. Example 1: Graphical Illustration of 

MSDI 

One data point of green class is at the boundary of the class 

and near to the red class. Let us consider this data point as 

query point. There are three data points of green class NNs in 

the neighborhood of the query point and there are three data 

points NNd of red class in the neighborhood of query point. 

When similarity and dissimilarity distances will be calculated 

for this query point, its similarity distance will be large as 

compared to the dissimilarity distance. But this data point 

will be included in the neighborhood of all other seven points 

when their similarity and dissimilarity distances will be 

calculated. Hence it is clear that this data point is at the 

boundary of the green class and should not be counted 

towards prediction of misclassification. 

When MSDI will be calculated the value will be 1.0 showing 

100% classification accuracy prediction. It is also clear from 

the similarity-dissimilarity plot of the dataset (Figure 4.) that 

all data points are above the similarity-dissimilarity line (SD 

Line) and only one data point is below the SD line. But since 

its neighborhood count is high so this data point will also be 

considered classifiable. 

 

Figure 4. Similarity-Dissimilarity plot of Example 1. 

 

Figure 5. Example 2. 
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To further illustrate the concept of neighborhood count, 

dataset of example 2 is plotted in Figure 5. In this dataset, 

six data points of green class is within the red class which 

are not good data points in the context of classification. 

But there are two data points of green class in the black 

circle which are at the boundary and closer to the red class 

as compared to the green class. These data points are good 

data points and can be classified correctly. Figure 6 shows 

the similarity-dissimilarity plot of example 2 in which the 

two data points marked in black circle is shown by black 

markers and considered as good points. MSDI of dataset 

of example 2 is found to be 0.933 (84/90).  

 

Figure 6. Similarity Dissimilarity plot of example 2. 

2.3. Selection of the Optimal Feature 

Subset 

In a high dimensional feature space, not all the features 

contribute in the correct classification of instances. It might 

be possible that optimal feature set has much lesser 

dimensions as compared to the total feature set. Let H is the 

total feature set and Φ(.) is the feature selection criterion 

function. Formally, the problem of selection of optimal 

feature subset for a particular dataset X is as follows, 

Φ(X) � maxM⊆H,|M|�PΦ(M)                         (10) 

Here M	is the feature subset and �	is the size of this subset. 

For a particular dataset of n dimensions, there will be RndU 

possible combinations of feature subsets. Since optimal value 

of �	 is not known before hand, number of possible 

combinations will increase exponentially as n grows. In 

cancer gene expressions datasets, value of n is normally in 

thousands. Hence, genetic algorithm [59]is used to explore 

all possible combinations of different sizes of feature subsets 

and to find out the optimal feature subset that can maximize 

the feature selection criterion Φ.  

Genetic algorithm is used to select the best possible feature 

subset that can maximize MSDI value of a dataset. Following 

are the steps to apply genetic algorithm in selecting the 

optimal feature subset. 

Step 1: Define genetic algorithm parameters: Parameters are 

listed in the Table 1. 

Table 1. Genetic Algorithm parameters. 

Parameter Description 

� V  Number of Individuals in a population 

�WX
 Total number of generations 

YZ Probability of Crossover 

Y� Probability of Mutation 

[ Penalizing factor 

Step 2: Define initial population: First population is initialed 

randomly with variable length chromosomes. Each 

chromosome defines a subset of features and number of 

features to be included is selected randomly. Size of subset is 

also selected randomly. Counter of generation is initialized. 

Step 3: Fitness Calculation: For ��� generation and fitness of 

every individual of populations is calculated as follows, 

\�5�7::(]) � /(;#<=(]), ^([)) 
Fitness of ]�� 	individual of ���	generation is calculated from 

MSDI. This fitness is penalized by ^([)	factor depending on 
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the size of the feature subset. Larger the size of the feature 

subset, more fitness will be penalized. 

Step 4: Selection of Parents for Crossover: Based on the 

fitness values of ���	generation, a fixed number of parents 

will be selected by roulette wheel selection method. 

Step 5: Crossover and Mutation: Crossover of parents will be 

performed based on single point crossover with the crossover 

probability	YZ . Chromosomes of offspring will be corrected 

for duplicate entries of features by selecting only unique 

feature subset of the offspring as shown below (Figure 7.), 

 

Figure 7. Crossover of chromosomes. 

 

Figure 8. Value of 	_`a	for two examples. 

Similarly, Mutation is performed on each individual with 

probability of	Y� . Any location of the offspring is selected 

randomly and its values is changed to any values between 1 

and maximum number of feature in the dataset. New 

population will be selected from previous population and 

offspring. 

Step 6: Stopping criterion: Steps 2 to 5 will be performed 

iteratively until some stopping criterion is satisfied or max 

number of generations is reached. 

Step 6: Average Differential of Similarity and Dissimilarity 

Distances above SD line: Genetic algorithm may return 

multiple feature subsets that have similar MSDI value. To 

differentiate among these feature subsets, another index is 

defined which is called average differential of similarity and 

dissimilarity distances above the SD line	(bCD). It is assumed 

that if inter-class distances among different classes are large, 

classification of classes will be easy. bCD 	 is defined as 

follows, 

	bCD �
1
�c c d	�"�����(�) e ����(�)f

�∈@A
	"g?h(�)i"j?gg?h(�)

@A
 

In  

Figure 8, two examples are drawn. In example 1, two classes 
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are very near to each other although they are classifiable. 

Similarly in example 2, there are two classes which are far 

away from each other. The value of 	bCD 	is calculated for 

both examples and it can be seen from the values given in the 

figure that 	bCD 	of example 2 is almost double than example 

1. Hence this parameter can be used to assess the inter-class 

separation in the high dimensional feature set. Higher the 

value of 	bCD	is, better is the quality of instances above the 

similarity-dissimilarity line in the context of classification. 

The value of 	bCD 	will be high when the distances among 

different classes are large or when the classes are very 

compact. 

Table 2. Details of benchmark cancer datasets. 

Datasets 
Total 

Samples 

Number 

of Genes 
Class Labels 

Class wise 

distribution 

AML [60] 54 12625 
Remission 28 

Relapse 26 

CNS 

Tumor [62] 
60 7129 

Survivor 21 

Failures 39 

Lung 

Cancer [64] 
203 12600 

lung 

adenocarcinomas 

(ADEN) 

139 

Normal 17 

Squamous cell 

lung carcinomas 

(SQUA) 

21 

pulmonary 

carcinoids 

(COID) 

20 

small-cell lung 

carcinomas 

(SCLC) 

6 

Leukemia 1 

[1] 
72 7129 

ALL 47 

AML 25 

Leukemia 2 

[69] 
72 12582 

ALL 24 

AML 28 

MLL 20 

Table 3. Parameters used for genetic algorithm and MSDI. 

Parameter Description Value 

� V  
Number of Individuals in a 
population 

100 

�WX
 Total number of generations 400 

YZ Probability of Crossover 0.8 

Y� Probability of Mutation 0.1 

[ Penalizing factor 10 

k Number of Nearest neighbors 3 

ς Threshold for neighborhood count 
2% of class 
instances1 

3. Benchmark Datasets 

In this set of benchmark data, we have selected some 

benchmark datasets representing gene expressions for 

different type of cancers which are famous in the machine 

learning community. All attributes are of numeric type. 

Further details of the dataset is given below, 

                                                             

1 If 2% of class instances are less than 3 then ς is set to 3. 

AML: This dataset consists of 54 AML pediatric patients (age 

less than 15 years) probed by oligonucleotide microarray 

containing large number of probes so that genes associated 

with prognoses of AML patients may be identified. There are 

two classes, remission and relapsed. Remission class means 

patient survived more than three years after complete 

remission and relapsed means failure within one year after 

complete remission.  

CNS: In this dataset, there are 60 patients samples out of each 

21 are those patients who have survived after the treatment 

and 39 patients died after the treatment. There are 7129 

probes from 6817 human genes. 

Lung: A total of 203 snap-frozen samples are used including 

186 lung tumors and 17 normal lung specimens. Expression 

levels of mRNA corresponding to 12,600 transcript 

sequences are studied. 

Leukemia1: In this set, acute leukemia dataset is based on the 

analysis of bone marrow samples of adult patients. Whole 

dataset consists of total of 72 leukemia patients out of which 

25 suffer from acute myeloid leukemia (AML) and 47 from 

acute lymphoblastic leukemia (ALL).  

Leukemia2: This dataset is again related to leukemia patients. 

Whole dataset has 72 leukemia patients and 11225 genes 

expression profile is used to classify AML, ALL and MLL 

(Myeloid/Lymphoid Lineage Leukemia). 

All of the above datasets are summarized in Table 2 with 

class distribution. 

4. Results and Discussions 

Similarity-dissimilarity index (MSDI) is used as fitness 

function in the evolution of genetic algorithm. Different 

setting related to Similarity-dissimilarity index and genetic 

algorithm is summarized in Table 3. Three types of 

information are extracted from the results, namely, trend of 

fitness evolution, minimization of features set along with the 

improvement in the MSDI and different sets of features 

showing equal performance. Accuracy of every class is 

predicted and Similarity-dissimilarity plot is analyzed. In the 

following sub-sections results of our proposed framework is 

analyzed for all benchmark datasets. 

The fitness function for genetic algorithm is defined as, 

\�5�7::(]) � /d;#<=(]), ^([)f = ;#<=(])^([) 
Where ^([) = 7lmno	and α is the number of features in the 

subset defined by an individual in the population. 

In the subsequent sections, results for different benchmark 

datasets given in table 2 will be explained and analyzed. 
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4.1. Analysis of AML Dataset 

Genetic algorithm is run for 400 generations and trend of 

fitness is plotted in  

Figure 9. Fitness value is increased sharply in the initial 

generations and then slowly moved towards the maximum 

fitness value of 1.0. Best fitness value for 400 generations is 

found to be 0.92 and best MSDI value is 0.94 Minimum and 

mean value of the size of the feature set is plotted in Figure 

10 for all generations. In the initial generations, size of 

feature set is reduced drastically and then slowly converged 

to the feature size less than 10. Fitness and size of features 

subset trend for different generations of genetic algorithm is 

similar in all other datasets as well. In some datasets, the 

convergence is rapid while in some datasets, convergence is 

slow but the trend is same. 

MSDI for Remission class is 0.964 whereas it is 0.923 for 

relapse class. It shows that predicted accuracies of remission 

and relapse classes are 96.4% and 92.3% respectively. 

Overall MSDI for both classes is found to be 0.944. 

Similarity-dissimilarity plot (Figure 11) for AML dataset 

shows that most of the instances of both classes are above the 

SD line. Some instances of both classes are identified as 

boundary points. There are three instances (two from 

remission class and one from relapse class) below the SD line. 

These instances may be misclassified by any classifier.  

Gene numbers of the best individual found by the genetic 

algorithm is given in Table 4. Eight genes are identified as 

the most important genes to classify two classes correctly. In 

the later generations, all individuals showing MSDI value of 

0.94 have been converged to a single set of eight genes as 

given in table 4. The feature subset is corresponding to the 

gene number is given in table 4. 

 

Figure 9. Trend of maximum and mean fitness values versus generation number for AML dataset. 

 

Figure 10. Size of feature set in different generations for AML dataset. 
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Table 4. Properties of best individuals after 400 generation. 

Gen Number Individual Number Fitness MSDI Mink Distance Feature set size 

366 24 0.92 0.94 1 8 

 

Figure 11. Similarity-Dissimilarity Plot for AML dataset (with 8 genes selected). 

4.2. Analysis of CNS Tumor Dataset 

SD plot is plotted in Figure 12 and it can be seen that some 

instances of class 1 (survivor) are below the SD line and 

values of MSDI are 0.809 and 1.0 for survivor and failure 

Classes respectively. The dataset contains less number of 

instances for survivor class (21 instances) as compared to the 

failure class (39 instances). So it may be assumed that 

classification accuracy may improve for the survivor class if 

the number of instances for survivor class is increased. 

Overall MSDI value is found to be 0.933 for the best feature 

subset. For Minkowski distance, value of p is found to be 1. 

For best feature subset overall MSDI value is 0.933 (Table 5). 

The value of 	bCD is calculated as 1.08. 

Table 5. Best individual after GA optimization for CNS tumor dataset. 

Gen Number Individual Number Fitness MSDI Mink Distance Feature set size 

400 67 0.906 0.933 1 7 

 

Figure 12. SD plot for CNS tumor dataset  
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4.3. Analysis of Lung Cancer Dataset 

After 400 generations, best size of features subset is found to 

be 7 as given in the Table 6. SD plot for the dataset is plotted 

in Figure 13. MSDI values for all five classes are found to be 

1.0, 0.94, 0.76, 1.0 and 1.0 for the best feature subset given in 

the Table 6. Class of SQUA showed low value of MSDI. All 

instances of SQUA which are below SD line are near to the 

ADEN class and hence in classification, these instances of 

SQUA will most probably be confused with ADEN class. 

One instance of NORMAL class is also near to the ADEN 

class. Some instances are near the boundary and shown as 

black on the SD plot.  

 

Figure 13. SD plot for Lung Cancer dataset. 

Table 6. Best features subset for Lung cancer dataset. 

Gen Number Individual Number Fitness MSDI Mink Distance Feature Set Size 	_`a 

399 32 0.9544 0.97 2 7 0.53 

400 97 0.9544 0.97 2 7 0.51 

Table 7. Best features subset for Leukemia1 dataset. 

Gen Number Individual Number Fitness MSDI Mink Distance Feature Set Size 	_`a 

400 100 0.99 1 2 3 0.64 

 

One instance of COID and SCLC each are very far away 

from their own classes and also from the rest of classes. 

Overall MSDI for the best feature subset is 0.97 and size of 

the feature subset is seven. It is predicted that classification 

accuracy for this subset with an optimal classifier will be 

about 97%. Minkowski distance parameter is optimized as 2 

for the distance metric.  

4.4. Analysis of Leukemia 1 Dataset 

Leukemia dataset is a very famous dataset and many 

researchers have used this dataset in proving the 

classification capabilities of their classifiers. Selection of the 

best features subset is important. Genetic algorithm 

converged to fitness value of 0.99, MSDI value of 1.0 and 

size of features subset is found to be 3 as given in Table 7. 

SD plot of Best features subset is shown in Figure 14. MSDI 

values of the individual classes are 1.0 and 1.0 and overall 

MSDI is also 1.0. In the figure, quality of ALL instances is 

better as they have lesser similarity distances and larger 

dissimilarity distances. Very few are away from their own 

classes and other classes as well. 
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Figure 14. SD plot for Leukemia1 dataset. 

 

Figure 15. SD plot for Leukemia2 dataset. 

Table 8. Best features subset for Leukemia2 dataset. 

Gen Number Individual Number Fitness MSDI Mink Distance Feature Set Size 	_`a 

384 1 0.985 1 1 6 1.18 

370 38 0.985 1 1 6 1.02 

361 98 0.985 1 1 6 1.17 

400 2 0.985 1 1 6 1.22 

 

4.5. Analysis of Leukemia 2 Dataset 

Leukemia2 dataset consists of three classes, ALL, AML and 

MLL. Genetic algorithm found four subsets of features, each 

having five features with same fitness value of 0.985. MSDI 

is found to be 1.0 and Minkowski distance parameter is 1.0 

for this dataset. Details are given in Table 18. The value 

of	bCD is calculated for all these four subsets. The values are 

almost similar and above 1.0. SD plot of best feature subset 

is plotted in Figure 15. Most of the instances of three classes 

are above the SD line and individual MSDI for all three 

classes are 1.0 predicting 100% classification accuracy with 

the feature subset of four features. Four instances are below 

SD line but they are considered as boundary points because 

of their neighborhood counts. 
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4.6. Comparison with Published Results 

Optimized MSDI results are compared with the published 

results and tabulated in 9. Classification accuracy is predicted 

from MSDI value which reflects number of instances above 

the similarity-dissimilarity line or has high neighborhood 

counts. For the AML Leukemia dataset, there is only one 

reported result found in the literature who has reported 94% 

and 100% classification accuracy considering all features 

respectively. Predicted accuracy for AML dataset using 

MSDI is calculated as 94% as well using a feature subset of 

eight features with Minkowski distance parameter equals to 1. 

In the dataset of CNS tumor predicted accuracy is 93.3% 

with 7 features which is consistent with the reported 

accuracies in the literature. The best accuracy is found to be 

98% with 8 features. In case of Lung cancer dataset, 

predicted accuracy with feature subset of size seven is similar 

to the range of accuracies and features subset sizes in the 

literature. Similar trend can be seen for the case of prostate 

cancer dataset in which best predicted accuracy by genetic 

algorithm is found to be 98% with only four features subset. 

Only one reference [98]reported accuracy of 100% using 

average feature subset value as 3.1 (exact size of feature 

subset is not known).  

Table 9. Comparison of Optimized MSDI results with published results. 

Datasets Authors 
Published Results Accuracy 

(# of features) 

Predicted Accuracy (# of 

features) 

Minkowski Distance 

parameter 

AML [Yagi2003] [71] 94 (All) 94(8) 1 

CNS Tumor 

[72] 73.29 (53) 93.3 (7) 1 

[73] 86 (200)   

[74] 90 (36)   

[75] 77 (2)   

[76] 98 (8)   

Lung Cancer 

[Bhattacharjee 2001] 

[98] 95.7 (7) 97 (7) 2 

[77] 97.3 (1)   

[77] 96.6 (2)   

[83] 99.3 (6)   

[84] 98 (2)   

Leukemia 1 [Galoub 1999] 

[97] 100 (4), 98 (3) 100 (4) 2 

[96] 99.7 (7)   

[78] 98 (10)   

[81] 100 (5)   

Leukemia 2 [Armstrong 

2002] 

[69] 90 (100) 100 (6) 1 

[77] 93 (1)   

[94] 100 (26)   

[69] 95 (40)   

 

For leukemia 1 and Leukemia 2 datasets, proposed 

framework produced subsets of four and six features 

respectively. It is worth mentioning that Leukemia1 dataset is 

a two class classification problem whereas Leukemia2 

dataset is a three class classification problem. These subsets 

of features also expected to produce 100% classification 

accuracy if Manhattan distance is used as distance metric. All 

the results reported in the Table 9, showed good agreement 

with the reported results and in some cases better results were 

also produced. Some optimized subsets of features are found 

for almost all the datasets. It shows the effectiveness of the 

proposed framework in this paper where MSDI along with a 

penalty function is used as a fitness function in the genetic 

algorithm. Moreover, different features subsets having 

similar fitness are also compared by average differential of 

similarity-dissimilarity distances over SD line index to find 

out best feature subset. 

5. Conclusions 

In this paper, a framework is proposed to search an optimal 

set of features subset that can maximize the quality of feature 

discrimination in the subspace of selected features in the 

context of classification using MSDI and a penalizing 

function. Furthermore, Similarity-dissimilarity plot is also 

proposed to study the distribution of instances of different 

classes in the dataset. Important information can be obtained 

from this plot related to the quality of instances in 

discriminating different classes. Sparseness or compactness 

of instances of classes can be predicted. Outliers if present in 

the dataset can also be identified. The proposed methodology 

is applied to various datasets comprising of different type of 

cancers. Effectiveness of the method is proved by comparing 

our results with some reported results in the literature. Hence 

it is suggested that this method can be used effectively to find 

out multiple optimal features subsets according to some pre-
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defined criterion or MSDI proposed in this paper. In the 

future work, this methodology will be extended to mixed 

type of attributes including numeric, categorical, nominal or 

binary attributes. 
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