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Abstract 

A simple Feed-Forward Neural Network (FFNN) model with a learning back-propagation algorithm was applied to forecast 

drought patterns derived from rainfall data of Juba County, South Sudan from 1997-2016. The annual rainfall data were 

aggregated into three seasons MAMJ, JAS and OND and later trained for best predictions for the period 2017-2034 using 

the Alyuda Forecaster XL software. Best training was attained once the minimum error of the weight ∆W and expressed as 

Mean Square Error between the measured and estimated values. Drought expressed as SPI was derived by fitting the 

respective CDFs to the rainfall amounts of each season. The results showed that for MAMJ and JAS months, the number 

forecasts were over 85% whereas this was between 60-80% for OND months. Rainfall forecast showed that the MAMJ 

months for the years 2019 to 2027 will be moderately wet with near to normal drought except in April 2021 which will 

experience some severe wetness. Interdecadal severe drought is expected between 2028 to 2033 after almost two decades. 

Declining trend per decade of SPI for all seasons was significant at p<0.01 whereas JAS and OND seasonal decrease in the 

next 100 years is forecasted to remain within the near to normal range while MAMJ is forecasted to have moderate drought. 
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1. Introduction 

A large part of the East African region including South Sudan 

has over the last twenty years been experiencing significant 

impacts of climate change. This is noticeable by the erratic 

spatial-temporal variations of rainfall in both intensity and 

amounts. Although no prior studies on the seasonality of 

rainfall distribution in Juba County have been conducted, 

experiential evidences from farming communities in the 

region report of clear deviations and decrease below average 

values especially during the onset of the rainy season (Ja´be). 

Generally, the annual onset rains start during the second to 

third dekad of April and continues till June punctuated with a 

dry spell around July. From August, this continues till 

October significantly decreasing toward November and 

December dry season (Méling). The effects of such temporal 

shift from the traditional farming calendar could be caused 

by El Niño-Southern Oscillation (ENSO) [1] regimes 

resulting to untimely availability of soil moisture and 

consequently into poor harvests or crop failure. 

Understanding such erratic rainfall events and assessing 

seasonal rainfall trends would require a differentiated 

understanding of the effects of “meteorological drought” on 

the “agricultural drought”. The former is expressed entirely 

based of the degree of dryness (usually related to rainfall 

anomaly from the long-term mean) whereas the latter is based 

on temporal soil moisture deficit during crop phenology 
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coupled with intensive actual evapotranspiration. According 

to the Intergovernmental Panel on Climate Change (IPCC) 

AR4 (Fourth Assessment Report), drought may be described 

as a ‘prolonged absence or marked deficiency of 

precipitation in the topmost one meter of soil layer`. Much of 

the rainfall predictions for South Sudan encompassing the 

study area have in the last decade been issued by diverse 

regional and international institutions like the IGAD Climate 

Prediction and Applications Centre, (ICPAC); UN Food and 

Agriculture Organization (FAO); United Nations Office for 

the Coordination of Humanitarian Affairs (UNOCHA). These 

predictions are, however, monthly with short decadal time 

scales and often in the form of probabilities relative to 

monthly or seasonal rainfall averages. Often, spatial and 

temporal rainfall patterns do not correlate with soil moisture 

contents and dynamics. [2] Showed that surface soil moisture 

dynamics generally follow rainfall patterns at two gravel 

plain sites but was not the case in the sand dune site. 

Therefore, depending on intensity of rainfall, soil structure, 

surface sealing and infiltration, clear distinctions between 

meteorological and agricultural droughts should be made and 

how both are interlinked. 

Drought can be measured in absolute terms as a function of 

precipitation amounts. It can be expressed as; Soil Moisture 

Deficit Index (SMDI) [3] the Normalized Soil Moisture 

Index (NSMI) [4] or to more appropriate, the Standardized 

Precipitation Index (SPI). The Global Climate Observation 

System (GCOS) program has acknowledged soil moisture as 

one of the Essential Climate Variable (ESV SM) that will 

have to be routinely measured and monitored in space and 

time. In the last three decades, temporal and spatial in-situ 

soil moisture contents have continuously been measured 

through satellite-based soil moisture products obtained from 

active and passive microwave sensors like the Advanced 

Microwave Scanning Radiometer on Earth Observing System 

(AMSR-E) [5] or the AQUA AMSR-E [6]. 

Much research on rainfall prediction using the ANN over the 

last decades have been conducted in different parts of the 

world from monthly time series [7]; seasonal [8]; daily [9]; 

hourly [10]; decadal [11]; monthly [12]. A comprehensive 

overview of ANNs use in temporal rainfall prediction has 

been reported by [13]. However, only a few similar studies 

have been conducted in Africa as in Ethiopia [14]; in Algeria 

[15] and in West Africa [16]. 

The main objective of our study was to evaluate the 

relevance, accuracy and application of FFNN in forecasting 

seasonal drought patterns derived from historical data. 

1.1. ANN Architecture 

The ANN model is based on a simplified and popularly used 

neural network architecture called multilayer perceptron 

network (MLPN) model (also known as multilayer 

feedforward network) as in Figure 1. Hereby, the product of 

the values of neurons or impulses (��, ��, … . ��� from the 

several input neurons and their respective weighted values 

(
���, 
���, … 
���� are passed on to the middle neurons as 

a sum of ��
���, 
���, … 
���� or ∑ ��
���� in the hidden 

layer. 

 

Figure 1. A simple illustration of the FFNN model. 

The products from the individual neurons in the hidden layer 

are passed on upon activation through a non-linear transfer  

function or logistic function ���� �
�

������
 to produce their 

respective outputs. The total output of the entire ANN for the 

specific inputs are compared to the target value (���. The 

difference is expressed as the measure of error (Ε) between 

the computed and expected values. The process of 

backpropagation from the output to the hidden layer ensues 

and continues iteratively depending on margin of error till a 

minimum error value is attained. 
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1.2. Estimation of SPI 

The Standardized Precipitation Index (SPI) is a popularly 

used index to characterize meteorological drought [17] on 

varying timescales. SPI is a probability index based entirely 

on precipitation as input variable. Formulated by [18] it can 

better represent rainfall anomalies in terms of wetness or 

drought than for example the Palmer Drought Severity Index 

(PSDI). 

Table 1. Classification scale for the SPI. 

Drought Wetness 

Description SPI Description SPI 

Extreme drought < -2.0 Extreme wetness >2.0 

Severe drought -1.5 to-2.0 Severely wet 1.5 to 2.0 

Moderate drought -1.0 to -1.5 Moderately wet 1.0 to 1.5 

Near normal -1.0 to 0.0 Near normal 0.0 to 1.0 

The first step in calculating the SPI was to determine a 

Cumulative Distribution Function (CDF) that describes the 

long-term time series of precipitation observations in either 1, 

3, 6-month, etc. intervals. The CDF with mean zero 

(corresponds to the median precipitation), was then applied 

to the cumulative probability and the SPI estimated. The 

magnitude of the SPI departure from zero is a probabilistic 

measure of the severity of a wet or dry event that can be used 

for risk assessment. Basically, the SPI was envisaged to 

express the spatial-temporal drought events and variability as 

influenced by rainfall deficit. It was defined as the number of 

standard deviations from which normally distributed random 

variable deviated from its long-term mean. This was obtained 

by fitting a gamma function Γ���  of the cumulative 

distribution to precipitation values in the time series (as in 

our study a 3-month period). For most part, the SPI estimates 

were let to vary between -2.0 and +2.0 which contained 

approximately 95% of the SPI values with close to 68% 

within the range -1 to +1. 

2. Methodology 

This study evaluated the significance of the ANNs in the 

forecasting of seasonal rainfall patterns in Juba County of 

Central Equatoria State (CES), South Sudan. In general, there 

are five basics steps: (1) collecting data, (2) pre-processing 

data, (3) building the network, (4) training and (5) test 

performance of model. The basic flow in designing ANNs 

model is given in Figure 1. The daily rainfall data for Juba 

weather station as from the years 1983 to 2015 were 

downloaded from the US National Oceanic and Atmospheric 

Administration (NOAA). However, daily and consistent 

rainfall data were only recorded as from 1997 to 2016 and 

were used for this study. Data pre-processing involved 

aggregating the daily rainfall amounts to monthly means of 

March-April-May-June (MAMJ), July-August-September 

(JAS) and October-November-December (OND). Due to the 

unpredictable onset of rains especially between mid to end of 

March of each season, the MAMJ was “lumped” together. 

Rainfall around mid-March prior to the onset of the rainfall 

season in April was characterized by drizzles and light 

rainfall showers. With these monthly rainfall data sets, neural 

networks were then created and later proceeded by training 

and forecasting. The chosen rainfall data for each season 

were divided into two random groups, the training and test 

sets corresponding to 82% and 18% respectively. Networks 

were trained for a fixed number of epochs or iterations till a 

minimum error function was reached. The optimal number of 

neurons in the hidden layer was obtained experimentally 

running the training process several times until a good 

performance was obtained or when no other changes were 

observed. 

2.1. Cumulative Distribution Function (CDF) 

of Gamma Distribution 

For some chosen rainfall season and time scale, the CDF G (x) 

of a gamma distribution (Γ�� is defined as: 

���� �
�

����
�����

�
�
                           (1) 

where, 

Γ� � ! ��"#

$
%���&%                           (2) 

Where x > 0 is the rainfall amount and the gamma 

distribution parameters � > 0  as the shape and ) > 0  the 

scale parameters and can be estimated through the Maximum 

Likelihood Estimation (MLE). First, a measure of the 

skewness (A) with median * � 0.5  of all ���)  non-zero 

values in the rainfall time series and (��) the arithmetic mean 

is estimated as: 

, = ln���) − ∑ 01�23)4356�                          (3) 

The values for the gamma distribution parameters can then 

be estimated as: 

α = �
78 91 + <1 + 78

= >                     (4) 

β = 23
α

                                 (5) 

2.2. Data Pre-processing and Training of 
the Network 

In order to enhance a faster convergence to a global 

minimum, the seasonal rainfall input variables were 

normalized relative to the total seasonal average. The SPI 

values were then derived from normalized rainfall values to 

be consistent with the sigmoid activation function between 0 
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and 1. Since probability is between 0 and 1, the normalized 

values would give better predictions during training. The 

Alyuda ForecasterXL basically splits the data into two sets (1) 

training set (2) test set. During training, the weights of the 

neural network are adjusted to increases the accuracy by 

minimizing the error function (E) during iteration. The 

training is stopped once the error function reaches a global 

minimum. Finally, the performance of the network is 

evaluated on the test data set which had not been involved in 

the training process. In this study, the neural network was 

trained with 76, 56 and 55 datasets for the MAMJ, JAS and 

OND months respectively. 

2.3. Model Performance 

Model prediction accuracy measured by the error function (E) 

was tested by both the Mean Standard Error (MSE) and 

Absolute Error (AE). This is the difference between the 

observed (��? ) and the predicted (�@�? ) for the i-th training 

case at the j-th network output and for (n) observations as: 

AE = ��? − �@�?                         (6) 

MSE = �
� ∑ E��? − �@�?F� ��G�                 (7) 

In both cases, the error function (E) is directly dependent on 

the weight component (W) which in turn influences the 

learning rate ( H ). This is updated or changed iteratively 

during gradient descent as: 

ΔW = H KL�M)
KM                             (8) 

The smaller the error function the better the prediction during 

the training process. A minimum of five training runs were 

done on the same data set to obtain the number or iterations 

that showed the lowest MSE or AE. This was later set as the 

maximum number of iterations during training and 

forecasting in the Create network/Options window of 

ForecasterXL. The performance of the neural network during 

training is best done by fitting a linear regression coefficient 

(r²) of the observed (actual) and forecasted data and 

expressed in terms of good and bad forecasts (expressed 

relative to 100% highest accuracy). 

In this study, 76, 56 and 55 data sets for the MAMJ, JAS and 

OND months respectively were trained with error tolerance 

for both training and test sets were set at 10 and 30% 

respectively. For each of the data sets, we started with one 

input and output layer while adjusting the number of hidden 

layers between 1 and 3 for best approximation. The training 

was run several times for each case till the MSE, AE or 

tolerance error was low and the highest percentage of good 

forecasts between actual and forecasted data was attained. 

3. Results and Discussion 

3.1. Neural Network Performance 

The trained JAS with smaller dataset (n=56) and single 

hidden layer appeared to outperform the MAMJ dataset with 

larger dataset (n=76) and two hidden layers demonstrating 

the significance of data size. The variances for MAMJ 

(��=0.252), JAS (��=0.332) and OND (��=0.345) were 0.01, 

0.006 and 0.07 respectively. Comparing the variance effects 

on all datasets, there was a notable difference on learning 

especially of JAS and OND datasets with similar data size. 

The MAMJ and OND were characterized by high standard 

deviation (σ= 0.266) and (σ = 0.1) respectively, whereas for 

JAS, this was σ = 0.076). However, all training sets achieved 

statistically significant performances (r² ≥ 0.99) with number 

of good forecasts over 60%. Figure 2 shows a plot of MSE 

and AE vs number of iterations during training for the MAMJ, 

JAS and OND datasets for the years 1997-2015. The error 

function estimates showed steep gradients prior to 1000-th 

iteration till convergence at global minima (Figure 3). During 

training of the MAMJ dataset for example, there was a sharp 

decrease of the MSE from about 0.016 to as low as 0.0007 

while for the AE this was between 0.1 to 0.016. It is seen that 

both error functions were large at low iteration values 

decreasing till convergence and subsequently increasing with 

further iterations. 

 

Figure 2. Error estimation between the actual and predicted mean rainfall amounts during training of time series data between 1997 to 2016. 

The AE and MSE during training for OND was ten-fold 

larger that of either MAMJ or JAS. The learning rate (H) 

measured by number of iterations till global minimum was 

fastest for OND at 1008 than for JAS or MAMJ at 1625 and 
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1363 respectively. Low iteration number for OND indicated 

that the algorithm for stochastic gradient descent effected 

larger steps with larger errors. This accounted for faster and 

poor learning rates with poor generalization. Conversely, 

smaller steps with smaller gradients resulted into larger 

number of iterations with comparatively lesser errors and 

better generalization as shown by percentage of good 

forecasts as in both MAMJ and JAS data sets. The rate of 

change of the error function ΔW as in Equation (13) therefore, 

had a significant effect on the performance and accuracy of 

the ANN. 

 

Figure 3. Error development and convergence to global minimum during training of MAMJ, JAS and OND of time series data between 1997 

to 2015. 

Table 2 shows the training parameters and accuracy 

according to the r², number of good forecasts, hidden layer 

(s), MSE, and AE. The network demonstrated better 

performance rate for MAMJ and JAS when using two and 

one hidden layers respectively. The results here suggest that 

model performance in terms of the number of good forecasts 

(98%) was similar for both 1 and 2 hidden layers. In effect, 

one hidden layer performed just as good as two layers. 

Similar results on neural performance with a single hidden 

layer were reported by [19-23]. Although both JAS and OND  

trained datasets had each one hidden layer and almost equal  

data size, the latter gave a low number of good forecasts at 

61% and high number of bad forecasts (39%). Generally, 

better accuracy was shown by both MAMJ with 2 hidden 

layers and JAS only one hidden layer whereas, the OND with 

1 hidden layer showed a ten-fold less error margin. In terms 

of iterations till global minimum, OND data set (1 hidden 

layer) had the lowest number at 1008, whereas JAS had the 

highest at 1625 and MAMJ intermediate (2 hidden layers) at 

1363. In terms of the percentage of bad forecasts, OND 

showed the highest inaccuracy. This could be due to the 

inability to learn from a small dataset, although the learning 

algorithm for JAS with almost similar data size seemed to 

work well. 

Table 2. Training parameters and network structures showing the goodness of error estimation between the training and test set. 

 
MAMJ JAS OND 

Training set Test set Training set Test set Training set Test set 

Nr. of data set 63 13 47 9 46 9 
AE 0.005 0.005 0.003 0.006 0.015 0.02 

MSE 4.91E-05 2.35E-05 2.71E-05 7.42E-05 0.0003 0.0004 

Error tolerance (%) 10 30 10 30 10 30 
Nr. of good forecasts (%) 61 (98%) 13 (100%) 46 (98%) 9 (100%) 28 (61%) 7 (78%) 

Nr. of bad forecasts (%) 2 (3%) 0 (0%) 1 (2%) 0 (0%) 18 (39%) 2 (22%) 

r² 0.994  0.996  0.997  
No. of hidden layer (s) 2 1 1 

No. of input layer (s) 1 1 1 

No. of output layer (s) 1 1 1 
Best at iteration number 1363 1625 1008 

Learning rate �H) till global minimum 0.0040 0.0021 0.0062 
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Similar observations were reported by [24, 25]. Such 

conflicting generalizations in terms of the number of hidden 

layers for MAMJ-JAS as well as for JAS-OND on model 

performance and accuracy indicate striking instability 

especially for smaller datasets. For instance, using one 

hidden layer, the OND dataset had a learning rate of 0.0062 

and reached the global minimum at lower iterations than JAS 

at 0.0021. After that, the error functions AE and MSE started 

to increase indicating that the model was getting over-fitted. 

Moreover, the MAMJ dataset with two hidden layers had a 

learning rate at 0.004 (Table 2) and was comparatively lower 

than that of OND but greater than that of JAS dataset with 

one hidden layer. 

Conclusively, one can say, that the learning rate during 

gradient descent is inversely related to the number of 

iterations in reaching a global minimum. Judging by the rule-

of-thumb in estimating the number of neurons in the hidden 

layer (s), our study showed that this was between 105 and 

210 neurons for one and two hidden layers respectively for 

MAMJ dataset, whereas these were 99 and 100 neurons for 

OND and JAS datasets respectively. Despite such striking 

inconsistency between the JAS and OND datasets with the 

single hidden layer, the accuracy and generalization 

performance of the two-layer feed forward neural network 

model was satisfactory. With the error tolerance (%) as 

indicator for overall performance, the results demonstrate 

that, this model was able to achieve remarkable performances 

on predictive tasks with sufficient data size as in MAMJ and 

JAS datasets, but unable to perform well on smaller datasets 

as in OND. 

 

Figure 4. Trendline of rainfall projection between 1997-2034 for the MAMJ, JAS and OND months. 

3.2. Inter-seasonal SPI Changes and 
Drought 

The histograms of the SPI during the MAMJ months is 

shown in Figure 5. It was found that most of the MAMJ 

months of the preceding years from 1997 to 2016 showed 

near normal to moderate wetness with similar drought SPI 
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values. Recurrent severe drought for MAMJ months (red bars) 

was witnessed during the years 2010-2013 with unusual 

extreme wetness in July 2014. However, the years 2015 till 

2017 showed normal to moderately wet MAMJ months. 

During 2020, the SPI for the AMJ months are expected to be 

near normal with moderate drought in March with SPI -0.73, 

but increase to 1.05 and 0.91 for April and June respectively 

(Table 3). It is forecasted, that the MAMJ months for the 

years 2019 to 2027 will be moderately wet with near to 

normal drought except in April 2021 which will experience 

some severe wetness (green bars - due to intensive rainfall). 

Interdecadal severe drought at SPI -1.5 to -2.0 with rainfall 

ranges less than 10th to 5th percentile (< 50 mm) is expected 

between 2028 to 2033 after almost two decades and is 

anticipated to have a long duration. 

 

Figure 5. Calculated and projected SPI for the MAMJ months during the period 1997-2034. 

For the JAS months, except in 2014, the SPI from 2009-2018 

was near normal (Figure 6). In August 2019, moderate 

drought with SPI -1.3 was followed by sporadic and heavy 

rainfall ranging between 20
th

 and 10
th

 percentile (about 125 

mm). This led to severely wet September month with SPI at 

1.96 causing immense flooding in most parts of the county. 

              

 

Figure 6. Calculated and projected SPI for the JAS months during the period 1997-2034. 

For the MAMJ months (Table 3), five periods of moderate 

drought between 2021 to 2033 with SPI values between -1.0 

and -1.8 at the 40
th

 percentile have been forecasted coupled 

with periods of severe droughts. Rainfall amounts are 

expected to vary between 70-90 mm. No extreme droughts 

have been forecasted during this period. For the JAS months, 

moderate drought in August 2021 is expected following the 

generally higher rainfall averages from May to July. For the 

near future, inter-seasonal severe drought with SPI at -1.9 

and a rainfall range between the 10
th

 to 5th percentile has 

been forecasted for September 2022 (Table 4). Just as in the 

MAMJ months, no extreme droughts have been forecasted 

during this period. In our study, we found out that recurrent 

severe droughts in September are often preceded by severe 

wetness in July-August and are forecasted to continue till 

2034 

Table 3. Projected drought periods using SPI values from 2018 to 2034 for the MAMJ Months. 

Description Month/Year 

Moderate drought 03/2018, 03/2021, 03/2027, 04/2031, 05/2033 

Severe drought 05/2028, 03/2030, 04/2030, 04/2032, 04/2033 
Extreme drought  

Table 4. Projected drought periods using SPI values from 2018 to 2034 for the JAS Months. 

Description Month/Year 

Moderate drought 08/2021 

Severe drought 09/2022, 09/2024, 09/2026, 07/2030, 09/2031, 08/2034 

Extreme drought  
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For OND months, 2020 is expected to be remain near to 

normal with moderate drought at SPI -1.0 to -1.5 (rainfall 

range less than the 20th to 10th percentile) for much of the 

period except in December which is forecasted to moderately 

dry (Figure 7). October months have been characterized by 

severe wetness between 2016-2019 proceeded by moderate 

drought in November and December months. Moderate 

drought especially during both months with SPI values 

between -0.93 to -1.1 respectively and rainfall probability 

between 10-20% or 20
th

 to 10
th

 percentile is expected to 

continue till 2027. This moderate drought into the following 

new MAMJ season may significantly delay the onset of 

rainfall in March-April. Forecasts till 2034, project that this 

recurrent phenomenon will ostensibly interrupt the traditional 

farming-calendar especially during land preparation and 

sowing. 

 

Figure 7. SPI histograms of the different seasons of Juba County. 

3.3. Changing Rainfall Patterns and 

Impacts on Crop Production  

Figure 8 shows the anticipated decline in the amount of mean 

rainfall at the onset of rain during the MAMJ. The onset rains 

varied between the 4th dekad of February and 1st dekad of 

March with daily rainfall values generally below 4.0 mm 

level. The March rainfall amounts locally termed as ´doko 

kulunyit (that which carries away grass cinders after burning) 

are barely enough for any effective land preparation and 

planting. Thus, most farmers tend to shift their land 

preparation and planting dates toward the 3rd and 4th dekad 

of April. Most farmers plant cowpeas (ngete), amaranth 

(kwedekwede), jute mallow (mulukhiya/khudra), okra (bamia) 

whose short growing and maturity periods (from 21 to 70 

days) often offers best food security options prior to the onset 

of the longer rainy JAS season. Increasing inter-seasonal 

rainfall variability with declining mean rainfall amounts 

during MAMJ is forecasted to continue, thus much crop 

production will have to be shifted toward the 4th dekad of 

April or 1st dekad of May while for maize, sorghum, sesame 

will have to be grown during the JAS to OND season. Mean 

onset rainfall amounts in 2018 was expected to be around 65 

mm with a 25% probability. With declining amounts of the 

onset rains, there is need to intensify inter-cropping of fast 

and slow growing crops during the MAMJ-JAS seasons as 

much time, energy and water resources can effectively be 

utilized. These findings corroborate similar studies by [26] 

on declining rainfall trend in the March-May rains within the 

East African region. 

3.4. Interpretation of the Parameters (α) 

and (β) 

Unlike the normal distribution curve that requires mean, median 

and mode to define the skewness, the gamma distribution 

requires that both the shape ��) and scale parameter (β) that are 

interlinked by Equation (10) be interpreted concurrently. For our 

study, we varied a priori the scale parameter ()) with different 

values around the mean values to observe the resultant effect on 

the shape parameter (α).   

 

Figure 8. Observed and projected mean rainfall amounts at onset in the first dekad of March (70 days from start of each new year). Black line is the 

unchanged rainfall means, red line the projected drop. 
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The scale parameters for MAMJ, JAS and OND months with 

mean values of 113.32 mm, 154. 6 mm and 84.54 mm were 

36.3, 30.6 and 77.3 respectively. We observed that a greater 

scale parameter (with correspondingly low shape parameter) 

had low mean and variance. Hereby, large scale parameter 

depicted large variability in rainfall patterns resulting in 

irregular rainfall typical for the comparatively drier OND 

months. Conversely, with increasing rainfall during the rainy 

season (Ja´be), the wetter JAS months with high mean and 

lowest scale parameter (with correspondingly higher shape 

parameter) showed low rainfall variability. 

 

Figure 9. A CDF plot of different shapes of the distribution curves for the three seasons as influenced by different β scale parameters. 

The MAMJ months transitioning from the relatively drier 

OND months showed more, or less similar patterns to the 

JAS months with intermediate scale parameter and mean 

(compared to JAS but higher than OND months) that was 

often characterized by occasional rainfall showers in March 

prior to the onset of the rainy season in April. Hereby, the 

scale parameter was low with comparatively higher mean 

suggesting less rainfall variability and therefore wetness. 

With such interpretation of gamma parameters, it is likely to 

describe periods of relative wetness or dryness as well as 

drought-prone times. For example, for the months JAS, the 

probability for normal wet conditions at SPI=0.5 increased 

with each scale parameter ) as shown in Figure 9 (a). The 

rainfall probability here at ) = 60.594 is about 0.56, at 

) =0.594 is about 0.67 and at ) =20.594 is about 0.97. To 

illustrate the interlinkage between scale parameter and 

rainfall amount at SPI=0.5 constant, a straight line was drawn 

from Figure 9 (a) that cut the cumulative rainfall in Figure 9 
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(b). The estimated rainfall amounts at ) =60.594, ) =30.594 

and  ) = 20.594 were about 140, 168 and 227 mm 

respectively and showed increasing rainfall amounts with 

decreasing scale parameter resulting into more negatively 

skewed CDF. In general, this implies that wetter rainfall 

conditions have smaller ) values than drier conditions. This 

inverse relationship between scale parameter and rainfall 

amount may give insight into the rainfall patterns during 

anytime of the season as in the MAMJ and OND months. 

3.5. SPI Future Projections 

Though not significant at p < 0.01, the observed (1997-2016) 

and forecasted (2017-2034) SPI for the MMAJ, JAS and 

OND showed decreasing trends of −0.15, -0.05 and -0.04 

respectively. For JAS and OND this decrease in the next 100 

years is forecasted to remain within the near to normal range 

while for MAMJ, is forecasted to have moderate drought. 

The reason is the low mean rainfall during OND coupled 

with high daily temperatures around this period that often 

continues into the MAMJ months prior to the onset of the 

first rainfall. Manufacturing industries and large-scale 

agricultural farming that generate large CO2 or methane 

emissions are practically non-existent within Juba County 

and therefore, such “anthropogenic compulsions” are 

unlikely to be the causes for local weather changes 

influencing rainfall patterns. However, increased burning of 

fossil fuel, indiscriminate cutting down of forest trees as 

cheap energy source [27] over the last 50 years may suggest a 

possible anthropogenic cause for the prolonged heatwave 

events from hot and dry months, as less CO2 is being 

sequestered. Deforestation within a given domain is known 

to affect local hydrological cycle or regime through reduced 

evapotranspiration, ET and so increase the likelihood for 

drought occurrence. 

However, effects of global warming exacerbated by El 

Niño Southern Oscillation on rainfall patterns at the regional 

level may have occurred, but this could not be statistically 

identified and verified within the available historical rainfall 

data. 

4. Conclusion 

Time series rainfall data from 1997 to 2015 were trained, 

tested and used to make 3-months forecast. The performance 

of the ANNs model based on the AE and MSE, degree of 

tolerance as well as the number of good forecasts during 

training and testing indicated that the ANN model was 

accurate enough in forecasting seasonal rainfall. Rainfall 

projection to year 2034 showed that there was negative 

monotonic trend (p<0.01) for all seasons with amounts 

varying between 5-12% below seasonal averages. There was 

also decreasing trend in the average rainfall amounts during 

onset with much rainfall events occurring towards the end 3
rd

 

and 4
th

 dekad of April and in other instances in the 1
st
 dekad 

of May of each year significantly affecting the timing for 

land preparation and subsequently planting. Given the 

projected SPI, three El Niño Southern Oscillation regimes 

have been projected between 2018 and 2027 for the MAMJ 

months increasing the probability for poor rain onset. 

National, state governments as well as development partners 

will be urged to prepare contingency and intervention plans 

that could quickly and timely be implemented to avert any 

disruptions on crop production. Inherent challenges on the 

application of ANN models in projecting spatial and temporal 

rainfall patterns, especially on shorter hourly and daily time 

scales persist. Understanding rainfall variability and intensity 

on hourly and daily basis within Juba County would increase 

the capacities and readiness of all stakeholders to timely and 

adequately respond to uncertainties arising from erratic 

rainfall patterns and drought. This paper recommends further 

studies to investigate whether such seasonal projections of 

rainfall can be corroborated with empirically measured 

rainfall amounts from several spatially placed stations within 

the county. 
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