International Journal of Plant Science and Ecology Vol. 4, No. 2, 2018, pp. 8-21 http://www.aiscience.org/journal/ijpse ISSN: 2381-6996 (Print); ISSN: 2381-7003 (Online)

Economic Impacts of Rice Grains Storage Using Fumigants Against Rice Weevils

Mohammad Amir Hossain Mollah¹, Razia Khatun², Abdul Jabber Hawlader³, Mohammad Razzab Ali⁴, Shamim Ahmed², Mohammad Showkat Mahmud⁵, Md Amirul Hasan^{2, *}

¹Development Technical Consultants Pvt. Ltd. Dhaka, Bangladesh

²Training, Planning and Technology Testing Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

³Departments of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh

⁴Department of Entomology, Sher-e-Bangla Agrcultural University, Dhaka, Bangladesh

⁵Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

Abstract

The research work was designed to investigate the management of the most damaging rice pest, the angoumois grain moth, *Sitotrogacerealella* (Olivier) by following some commonly practiced techniques. During the present study, the efficacy of different types of containers viz. plastic pots, tin pots, earthen pots and polyester bags, different types of fumigants viz. Organic treatment Untreated control was tested. The Camphor was the most effective fumigant to protect the rice grain infestation in storage against rice moth in laboratory condition than phostoxin, naphthalene and organic treatment. Camphor had reduced 73.77% rice grain infestation, 92.30% adult emergence, 75.75% grain content loss and increased 56.34% seed germination over control followed by phostoxin, which reduced grain infestation, 70.65% adult emergence, 74.66% grain content loss and increased 55.77% seed germination. The Naphthalene reduced 61.34% grain infestation, 71.71% adult emergence, 64.95% grain content loss and increased 55.58% seed germination. The organic treatment reduced 48.94% grain infestation, 67.65% adult emergence, 40.15% grain content loss and increased 53.77% seed germination. Considering the fumigants, the camphor @ 1.0 gm/kg rice grains was performed as the most economically viable treatment that gave the highest BCR (12.6) applied against rice moth in storage rice grains followed by organic treatment (11.30), phostoxin (6.0) and naphthalene (5.97).

Keywords

Rice Weevils, Fumigants, Storage, Economic Impact, Bangladesh

Received: August 29, 2017 / Accepted: November 23, 2017 / Published online: September 4, 2018

@ 2017 The Authors. Published by American Institute of Science. This Open Access article is under the CC BY license. http://creativecommons.org/licenses/by/4.0/

1. Introduction

About 90% of the population of Bangladesh depends on rice for their major food intake [1]. The farmers store more than 65% of the total rice produces till the next season for their food, feed and seed purposes. Reported that about 5-8% of rice was stored for seed [17]. During the storage condition of ambient temperature, rice is being damaged by a number of agents, such as insects, rodents, fungi, mites, birds and moisture [16]. Among them, storage insects are the major agents causing considerable losses every year. Nearly seventeen species of insects have been found to infest stored

* Corresponding author

E-mail address: amirul.blri@gmail.com (Md A. Hasan)

rice [17] of which rice moth (*Sitotrogacerealella*), rice weevil (*Sitophilusoryzae* Linn.) and beetles (*Triboliumcastaneum*) predominate in parboiled rice. Among all the insects, *Sitotrogacerealella* is often placed at the top of the list of major insect pests of stored rice. On the other hand, rice moth and beetles predominate in raw rice and weevils predominate in milled [4]. The rice moth, *Sitotrogacerealella* (Oliv.) known as the angoumois grain moth or paddy moth is one of the most dominant species in the stored paddy [18]. It is cosmopolitan throughout the tropical and subtropical parts of the world. While stores in bag it appeared to be the major and number one pest [10]. Experimental assessed weight losses during rice storage and concluded that one gravid female of *Sitotrogacerealella* in 50 gm of stored rice could destroy the grain completely for three subsequent generations [8].

Bangladesh produces a total of 33.542 million tons of rice from an area of 26.018 million acres [3]. Rice is stored as paddy (unhusked rice), brown and polished milled rice. In Bangladesh, rice is stored as raw parboiled in bamboo made container (called dole and golas) or stored as parbolied milled rice in earthen pot (called motka) [4].

Chemical control, however as an alternative method has got great value. Several reports are available on the efficacy of different chemicals [7, 9, 16, 23, 24, 25]. But the use of chemical insecticides against the attack of paddy moth in storage may cause serious health hazards. The residues of the chemical insecticides remain in the stored grain and also in the environment [18 & 22]. Moreover, serious environmental imbalance results due to development of resistance in pest population and subsequent resurgence as well as destruction of beneficial insects. Besides this, reports are also available on the efficacy of plant oils [6]. But the oils are not always available, not good in efficacy, have pungent smell and cannot de-infest the seeds. Hence, search for the alternative method of paddy moth control utilizing some non-toxic, environment friendly and human health hazard free methods are being pursued now-a-days.

In Bangladesh, most of the farmers are poor and marginal. They store small quantities of seed for edible rice and cannot offer expensive control measures. Therefore, they essentially need some cheap, easy to use, readily available but effective methods for safe storing of rice. Fumigants may be the alternative method of chemical for controlling rice moth. The fumigation toxicity of different plant oils and their derivatives were also tested by several workers against stored grain insect pests. Reported that the fumigant toxicity of essential oils of plants (mainly belonging to Apiaceae, Lamiaceae, Lauraceae and Myrtaceae) and their components (cyanohydrins, monoterpenoids, sulphur compounds, thiocyanates and others) largely reduced the infestation of beetle pests such as Triboliumcastaneum,

Rhyzoperthadominica, Sitophilusoryzae and Sitophiluszeamais. Camphor is the new invention for insect pest management extracted from the wood of plant, Cinnamonumcamphora has fumigation action and widely used in medicinal purposes [15] and available at grocery stores. Lethal doses in adults are in the range 50-500 mg/kg (orally). Generally, 2 g causes serious toxicity and 4 g is potentially lethal [14]. The fumigation action of camphor against pulse beetle, Callosobruchuschinensis [20], rice Sitophilusoryzae and maize weevil, [12] weevil, Sitophiluszeamais [11], inhibited the about 100% growth and development in the laboratory conditions in Bangladesh, but little or no attention has been paid towards moths such as Sitotrogacerealella. [2] reported that the insecticidal efficacy of camphor. [5] reported that the camphor has fumigation properties and has got a very low mammalian toxicity. Phostoxin (aluminium phosphide) is available in the market at its tablet or pellet form [26], which is used as a rodenticide, insecticide and fumigant for stored cereal grains [13]. Evidence suggests that a series of experiments were conducted, which will help to formulate appropriate future plan for developing suitable management approach for controlling rice moth. However, the use of quality insecticide and its proper management is a burning issue in respect of agro socio economic and environmental aspect. At present situation in Bangladesh, there is a great need of information about appropriate insecticide based management to pest in rice.

Therefore, a reliable research on technological knowledge on pre and post-harvest agricultural pests and their economic impacts in Bangladesh is essential for identifying the current status of the technological knowledge so that administrators and policy makers can formulate proper strategy for ensuring sustainable crop production in the country. Emphasis has also been given to suggest most suitable and effective technologies and future policy guideline of the sector to build a new Bangladesh with self-sufficiency in agricultural production. This study was conducted to assessment of the extent of damage of stored rice grains by rice moth, Sitotrogacerealella, evaluation of the suitability of commonly used containers for storing rice grains and testing the efficacy of fumigants available in the market against rice moth.

2. Materials and Methods

The hybrid rice variety 'Hira' were collected from Savar Bazar, then sun dried, cleaned and kept in ambient room temperature [19]. To assess the level of infestation on rice grains, the newly laid eggs of rice moth, *Sitotrogacerealella* were also collected. The present study was also conducted in

2-factor completely randomized design (CRD), where container was used as factor one which comprised with 4 levels viz. Plastic container, tin pot, earthen pot and Polyester bag. On the other hand, fumigant was used as factor two which comprised with 5 levels viz. Camphor, Phostoxin tablet, Naphthlene, Organic treatment, and untreated control. The experiment was also replicated with four times for each parameter.

2.1. Treatments Application

2.1.1. Organic Treatment

 Table 1. The combinations of the Fumigants treatments along with containers used for storing rice grains.

Containers	Fumigants	Dose of the fumigants			
	Camphor	1 gm/kg rice grains % w/w			
DI di	Phostoxin	200 mg/kg rice grains			
Plastic container	Naphthlene	500 mg/kg rice grains % w/w			
container	Organic treatment	De-oxygenation from container			
	Untreated control	No fumigants were used			
	Camphor	1 gm/kg rice grains % w/w			
	Phostoxin	200 mg/kg rice grains			
Tin pot	Naphthlene	500 mg/kg rice grains % w/w			
	Organic treatment	De-oxygenation from container			
	Untreated control	No fumigants were used			
	Camphor	1 gm/kg rice grains % w/w			
	Phostoxin	200 mg/kg rice grains			
Earthen pot	Naphthlene	500 mg/kg rice grains % w/w			
	Organic treatment	De-oxygenation from container			
	Untreated control	No fumigants were used			
	Camphor	1 gm/kg rice grains % w/w			
	Phostoxin	200 mg/kg rice grains			
Polyester bag	Naphthlene	500 mg/kg rice grains % w/w			
	Organic treatment	De-oxygenation from container			
	Untreated control	No fumigants were used			

The organic treatment is the thought to remove the oxygen (de-oxygenation) from the air tight container with a view to create unfavorable environment for the survival of any living beings. This is a simple technology commonly used by the rural farmers to protect their grains especially for paddy against their insect pests in storage with a negligible involvement of money. Considering the view, candle light was used in the present study. When the respective container was filled with rice grains and rice moth eggs as described earlier, a small size candle (5 cm height and 1.5 cm dia) was put on and erectly placed on the grains including an earthen plate attached beneath the candle. After placing the candle light, the container was covered with respective lid. After a certain period of time, the candle light would be put off due to the complete removal of oxygen inside the container that is the de-oxygenation would be occurred.

2.1.2. Untreated Control

The grains used as untreated control were never treated with any of the fumigants, but only the eggs of rice moth were released on the rice grains, and stored in respective container and preserved for infestation from which necessary data were recorded.

2.2. Moisture Content and Viability Test of the Seeds

The moisture content and germination test of the sun dried and cleaned rice seeds were determined following the procedures as mentioned and described earlier in the experiment 1.

2.3. Collection of Containers and Preparation

The containers used the present study were also purchased and collected from the Savar Bazar and prepared for use considering the earlier procedure.

2.4. Collection of Fumigants and Preparation

The fumigants viz. Camphor, Phostoxin tablet, Naphthalene and for organic treatment, the candle were collected from the local market of Savar Bazar.

2.5. Application of the Fumigants

About 20 kg of the selected rice grains were taken and distributed in 20 plastic pots each having one kg of the grains. The pots were then arranged into groups 1 to 5, each group having 4 replications. About 1.0 gm of Camphor were thoroughly mixed with the grains of each of the pots of group 1. The grains of each pot of group 2 were mixed with 200 mg of Phostoxin tablet. Similarly, 500 mg of Naphthalene were mixed with the grains of each of group 3 pots. In case of the grains of group 4 pots, de-oxygenation from air tight container was done using the candle light as 'Organic treatment', where a small size candle (5 cm height and 1.5 cm dia.) was put on and erectly placed on the grains including an earthen plate attached beneath the candle. After placing the candle light, the container was covered with respective lid. After a certain period of time, the candle light was put off due to the complete removal of oxygen inside the container that is the de-oxygenation was occurred. The pots of group 5 were kept as untreated control, i.e. no fumigants were mixed with the grains of this group. Similar procedures were followed for the experiments with Tin pots, Earthen pots and Polyester bags. Initial weight of 100 grains taken from each type of containers was recorded for further use in the calculation of the percent grain content loss.

2.6. Release of the Rice Moth (*S. cerealella*) Eggs

The eggs of rice moth were released on the rice grains for each treatment and replication considering the similar procedure as mentioned in the earlier experiment and the respective air tight containers with lids were preserved in ambient temperature of the laboratory up to 6 months that is 180 days after egg release (DAER) for recording the data.

2.7. Data Sampling, Collection and Calculation

The data sampling, collection on respective parameters and their calculations were done considering the similar methods and procedures as mentioned earlier experiment 1.

2.8. Economic Analysis of the Management Practices Comprising Fumigant Based Treatments

Economic analysis in terms of Benefit Cost Ratio (BCR) was also analyzed on the basis of total expenditure of the respective management treatment along with the total return from that particular treatment using fumigants against rice moth as described in the experiment 1. Finally, BCR was calculated for each management treatment using fumigants to justify the economic basis of the management practices.

2.9. Data Analysis

The data on above mentioned parameters were analyzed on 2-factor CRD with help of Computer based program MSTAT-C software considering the similar procedures mentioned in the earlier experiment. The means were also separated to determine the level of significance following Least Significance Difference (LSD) and Duncan's Multiple Range Test (DMRT) wherever necessary at 1% level of probability.

3. Results and Discussion

3.1. Effect of Containers and Fumigants on the Grain Infestation of Rice Against Rice Moth in Storage

3.1.1. Effect of Containers on Grain Infestation of Rice Against Rice Moth

Significant variations among different containers were observed on the grain infestation by number used against rice moth in the storage throughout the storing period from 30 days after egg release (DAER) of rice moth to 180 DAER on the grain of hybrid rice in the containers (Table 2). More or less similar but increasing trends of percent grain infestation by number were observed at different days after egg release from 60 DAER to 180 DAER. Among different containers, plastic container performed as most suitable container to reduce the rice moth infestation and the level of grain infestation was ranged from 0.00 to 7.26% at 60 DAER to 180 DAER, respectively. This trend was followed by tin pot (0.00 to 12.47%) and earthen pot (0.00 to 15.60%), whereas polyester bag performed as least suitable container and showed highest infestation that was ranged from 0.00 to 33.20% at 60 DAER to 180 DAER, respectively. In case of 30 DAER, no grain infestations (0.00%) were observed among different containers and it might be the reasons for the initial stage of the infestation of rice moth.

Considering the mean grain infestation, plastic container performed as most suitable container to reduce the rice moth infestation and level of infestation was 3.56% followed by tin pot (6.06%) and earthen pot (7.94%), whereas polyester bag also performed as least suitable container and showed highest infestation (16.45%). Considering the performance of different containers showing reduction of grain infestation, plastic container showed highest reduction (78.13%) over polyester bag followed by tin pot (62.44%) and earthen pot (53.01%).

Containers	Percent grai	Percent grain infestation by number								
Containers	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control		
Plastic container	0.00	0.40b	1.73c	3.40d	5.00d	7.26d	3.56c	78.13		
Tin pot	0.00	0.86b	3.26b	5.66c	8.06c	12.47c	6.06b	62.44		
Earthen pot	0.00	1.133b	4.46b	9.06b	9.46b	15.60b	7.94b	53.01		
Polyester bag	0.00	2.46a	10.27a	14.27a	22.07a	33.20a	16.45a	-		
LSD(0.01)	-	0.81	1.27	1.07	1.27	1.59	1.96	-		
CV(%)	-	30.01	11.70	5.96	5.18	4.20	3.30	-		

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.1.2. Effect of Fumigants on Grain Infestation of Rice Against Rice Moth

observed on the grain infestation by number used against rice moth in the storage throughout the storing period from 30 to 180 DAER on the grain of hybrid rice (Table 3). More or less

Significant variations among different fumigants were

similar but increasing trends of percent grain infestation by number were observed at 30 to 180 DAER. Among different fumigants, Camphor performed as most effective fumigant to reduce the rice moth infestation, which showed the minimum infestation at different data recording time and the level of grain infestation was ranged from 0.00 to 9.16% at 30 to 180 DAER, respectively. This trend was followed by phostoxin (0.00 to 10.25%). This was also followed by Naphthalene (0.00 to 13.50%) and Organic treatment (0.00 to 17.83%), whereas maximum infestation was recorded in untreated control grains and the level of infestation was ranged from 0.00 to 34.92% at 30 to 180 DAER, respectively. In case of 30 DAER, no grain infestations were observed among different fumigant treated grains and it might be the reasons for the initial stage of infestation caused by rice moth. Considering the mean grain infestation, more or less similar trends of results were observed irrespective of any fumigants (Table 3). Considering the performance of different fumigants in reducing the grain infestation over control, the Camphor showed the highest reduction (73.77%) over control followed by Phostoxin (70.65%) and Naphthalene (61.34%), whereas the lowest reduction of grain infestation over control was recorded in organic treatment (48.94%).

Table 3. Effect of Fumigants on the Infestation of Hybrid Rice grain (Hira) by Rice moth S. cerealellain Storage.

	Percent grai	n infestation by	number					% reduction over
	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control
Camphor	0.00	0.08c	0.83c	1.83d	5.16d	9.16d	3.41d	73.77
Phostoxin	0.00	0.08c	0.91c	2.00d	5.75d	10.25d	3.80cd	70.65
Naphthalene	0.00	0.41c	1.50c	4.66c	8.08c	13.50c	5.63c	61.34
Organic	0.00	1.58b	6.50b	9.91b	11.58b	17.83b	9.48b	48.94
Control	0.00	3.91a	14.9a	22.08a	25.17a	34.92a	20.20a	-
LSD(0.01)	-	0.81	1.27	1.07	1.27	1.59	1.96	-
CV(%)	-	30.01	11.70	5.96	5.18	4.20	3.30	-

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.2. Combined Effect of Fumigants and Containers on the Grain Infestation

Grain infestations of rice were varied significantly among different fumigants stored in different containers throughout the storing period (Table 4). More or less similar but increasing trends of percent grain infestation by number were observed at different days after egg release from 30 to 180 DAER. The lowest grain infestation was observed in Camphor treated grains stored in plastic containers (0.00%) followed by tin pot (0.00 to 4.66%), earthen pot (0.00 to 6.66%) and polyester bag (0.00 to 25.33%). The grain infestation was nearly followed by Phostoxin treated grains stored in plastic container (0.00 to 0.33%) followed by tin pot (0.00 to 5.00%), earthen pot (0.00 to 7.33%) and polyester bag (0.00 to 28.33%). The highest grain infestation was observed in untreated control grains stored in polyester bag (0.00 to 42.33%) followed earthen pot (0.00 to 35.00%), tin pot (0.00 to 33.67%) and plastic pot (0.00 to 28.67%). The grain infestation was nearly followed by organic treatment and Naphthalene grains stored in any containers (Table 4).

Considering the performance of different botanicals in reducing the grain infestation over control stored in different containers, the Camphor showed the highest reduction ranged from 40.16 to 100.00% over control stored in polyester bag (40.16%), earthen pot (80.97%), tin pot (86.16%) and plastic container (100.00%), respectively followed by Phostoxin (33.07 to 98.85%) and Naphthalene (29.91 to 93.02%), whereas the lowest reduction of grain infestation over control was recorded in organic treatment (4.72 to 69.32%) stored in any containers (Table 4).

From the above findings it was revealed that among containers, the most suitable container was plastic container in reducing the grain infestation by number against rice moth followed by tin pot and earthen pot, whereas polyester bag performed as least suitable container. In case of efficiency of fumigants, Camphor performed as the most effective in reducing the grain infestation by number against rice moth followed by phostoxin, Naphthalene and organic treatment. [20] reported that the camphor kept the infestation reduction from 78.46-89.14% of rice grains against rice moth, S. cerealellain storage. [21] reported in another study that the fumigation action of camphor against pulse beetle, C. chinensis; [12] also reported the toxicity efficacy of camphor against different stages of rice weevil, Sitophilusoryzaeand maize weevil, Sitophiluszeamais Motsch [17]. They reported 100% inhibition of the growth and development of pulse beetle, rice weevil and maize in lab conditions in Bangladesh.

Table 4. Interaction Effect of Container and Fumigant on the Infestation of Hybrid Rice grain (Hira) by Rice moth S. cerealellain Storage.

C · · ·	F	Number of a	adult emergen	e per 100 seed	s				% reduction
Containers	Fumigants	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	over control
	Camphor	0.00	0.00f	0.00j	0.00m	0.001	0.00n	0.001	100.00
	Phostoxin	0.00	0.00f	0.00j	0.00m	0.001	0.33n	0.061	98.85
Plastic	Naphthalene	0.00	0.00f	0.66hij	0.33m	1.00kl	2.00m	0.80kl	93.02
container	Organic	0.00	0.00f	1.66fghi	1.66jkl	3.00ij	5.33kl	2.33ijk	81.41
	Control	0.00	2.00d	6.33e	15.00d	21.00c	28.67d	14.60d	_
	Camphor	0.00	0.00f	0.33ij	0.66lm	2.00jk	4.661	1.53jkl	86.16
	Phostoxin	0.00	0.00f	0.33ij	1.00klm	2.33ij	5.001	1.73jkl	85.15
Tin pot	Naphthalene	0.00	0.33ef	0.66hij	2.66ij	4.66h	8.66i	3.40ij	74.28
	Organic	0.00	0.33ef	1.00ghij	3.66hi	6.66g	10.33h	4.40hi	69.32
	Control	0.00	3.66c	14.00d	20.33c	24.67b	33.67c	19.27c	_
	Camphor	0.00	0.00f	1.00ghij	2.00jk	3.33ij	6.66jk	2.60ijk	80.97
	Phostoxin	0.00	0.00f	1.00ghij	2.00jk	3.66hi	7.33ij	2.80ijk	79.06
Earthen pot	Naphthalene	0.00	0.33ef	1.66fghi	7.66 f	7.00g	13.67g	6.06gh	60.94
1	Organic	0.00	1.00e	2.00fgh	9.00e	7.66g	15.33f	7.00g	56.20
	Control	0.00	4.33bc	16.67c	24.67b	25.67b	35.00c	21.27b	_
	Camphor	0.00	0.33ef	2.00fgh	4.66gh	15.33f	25.33e	9.53f	40.16
	Phostoxin	0.00	0.33ef	2.33fg	5.00g	17.00e	28.33d	10.60ef	33.07
Polyester	Naphthalene	0.00	1.00e	3.00f	8.00ef	19.67d	29.67d	12.27e	29.91
bag	Organic	0.00	5.00ab	21.33b	25.33b	29.00a	40.33b	24.20a	4.72
C	Control	0.00	5.66a	22.67a	28.33a	29.33a	42.33a	25.67a	-
LSD _(0.01)		-	0.21	1.27	1.07	1.27	1.59	1.96	_
CV(%)		_	30.01	11.70	5.96	5.18	4.20	3.30	_

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.3. Effect of Containers and Fumigants on the Adult Emergence During the Management of Rice Moth in Storage

Significant variations among different containers were observed on the adult emergence by number during the management of rice moth infesting rice grains treated with different fumigants in storage throughout the storing period from 30 to 180 days after egg release (DAER) on the rice grain (Table 4 to Table 6).

3.3.1. Suitability of Containers on the Emergence of Adult Rice Moth *S. cerealella*

More or less similar but increasing trends of adult emergence of rice moth by number were observed at different days after egg release (Table 5). Among different containers, plastic container performed as the least suitable container for rice moth infestation and lowest number of adults was emerged and that was ranged from 0.07 to 7.67 adults per 100 rice grains at 30 to 180 DAER, respectively. This trend was followed by tin pot

(0.07 to 1.47 adults per 100 grains) and earthen pot (0.20 to 2.73 adults per 100 grains), whereas polyester bag performed as the most suitable container for rice moth infestation and the highest number of adult rice moths was emerged that was ranged from 0.53 to 7.67 adults per 100 grains at 30 to 180 DAER, respectively. In case of mean adult emergence, more or less similar trends of the results were observed, where plastic container performed as least suitable container for rice moth infestation and the lowest number of adults was emerged (0.57 adult per 100 grains) followed by tin pot (1.20 adults per 100 grains) and earthen pot (2.59 adults per 100 grains), whereas polyester bag performed as the most suitable container and showed highest number of adult emergence (3.55 adults per 100 grains). Considering the performance of different containers in reducing the adult emergence, plastic container reduced the highest percentage of adult emergence (83.94%) over polyester bag followed by tin pot (66.20%) and the lowest reduction of adult emergence was recorded in earthen pot (27.04%) as results depicted in Table 5.

Table 5. Effect of Containers on the Emergence of Adult Rice moth S. cerealellain Hybrid Rice grain (Hira) during Testing of Fumigants in Storage.

Containers	Number of a	Number of adult emergence per 100 seeds								
Containers	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control		
Plastic container	0.07 a	0.27 b	0.20 b	0.20 b	1.20 c	1.47 c	0.57 d	83.94		
Tin pot	0.20 a	0.53 b	0.80 b	1.20 b	1.73 c	2.73 c	1.20 c	66.20		
Earthen pot	0.53 a	0.53 b	2.67 a	3.13 a	3.60 b	5.07 b	2.59 b	27.04		
Polyester bag	0.53 a	1.27 a	2.07 a	4.20 a	5.60 a	7.67 a	3.55 a	-		
LSD(0.01)	0.6362	0.6983	0.9024	1.141	1.274	1.274	0.5586	-		
CV(%)	-	37.77	14.80	12.68	5.96	4.18	3.69	-		

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.3.2. Effect of Fumigants on the Emergence of Adult Rice Moth *S. cerealella*

Significant variations among different fumigants were observed on the adult emergence during the management of rice moth in the storage throughout the storing period from 30 to 180 DAER on the hybrid rice grain (Table 6). More or less similar but increasing trends of adult emergence of rice moth by number were observed at different DAER. Among different fumigants, Camphor performed as the most effective fumigant in reducing adult emergence and the lowest number of adult rice moth was emerged that was ranged from 0.00 to 1.17 adults per 100 grains at 30 to 180 DAER, respectively. This trend was followed by Phostoxin (0.08 to 1.08 adults per 100 grains). This was also followed by Naphthalene (0.08 to 4.17 adults per 100 grains) and organic treatment (0.08 to 6.33 adults per 100 grains), whereas the highest number of adults was emerged from untreated control rice grains and that was ranged from 1.42

to 16.40 adults per 100 rice grains at 30 to 180 DAER, respectively. In case of mean adult emergence, more or less similar trends results regarding adult emergence, where Camphor performed as the most effective fumigant in reducing the adult emergence of rice moth and the lowest number of adults was emerged (0.68 adults per 100 grains) followed by Phostoxin (0.55 adults per 100 grains). This was also followed by Naphthalene (2.02 adults per 100 grains) and organic treatment (2.31 adults per 100 grains), whereas the highest number of adults was emerged from untreated control grains (7.14 adults per 100 grains). Considering the performance of different fumigants in reducing the adult emergence over control, the Phostoxin showed the highest reduction (92.30%) followed by Camphor (90.48%) and Naphthalene (71.71%), whereas the lowest reduction of adult emergence over control was recorded in organic treatment (67.65%) as the results depicted in Table 6.

Table 6. Effect of Fumigants on the Adult Emergence of Rice moth S. cerealella Infesting Hybrid Rice grain (Hira) in Storage.

Fumigents	Number of adult emergence per 100 seeds Sumigants 400 D + DD										
rumgants	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control			
Camphor	0.00b	0.17b	0.42b	0.67d	0.92c	1.17d	0.55c	92.30			
Phostoxin	0.08b	0.25b	0.92b	0.83c	0.92c	1.08d	0.68c	90.48			
Naphthalene	0.08b	0.33b	1.75b	1.83c	3.00b	4.17c	2.02b	71.71			
Organic	0.08b	0.33b	1.83b	3.00b	4.25b	6.33b	2.31b	67.65			
Control	1.42a	2.17a	4.25a	7.58a	11.0a	16.4a	7.14a	-			
LSD(0.01)	0.6362	0.1826	0.9024	1.141	1.274	1.274	0.5586	-			
CV(%)	30.13	37.77	14.80	12.68	5.96	4.18	3.69	-			

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.4. Combined Effect of Fumigants and Containers on the Adult Emergence of Rice Moth

Adult emergence of rice moth was varied significantly among different fumigant treated rice grains stored in different containers throughout the storing period from 30 to 180 DAER. More or less similar but increasing trends of adult emergence by number were observed at different DAER (Table 6). The minimum number of adults was emerged from Camphor treated grains stored in plastic containers (0.00%) followed by tin pot (0.00 to 4.66 adults per 100 grains), earthen pot (0.00 to 6.66 adults per 100 grains) and polyester bag (0.00 to 25.33 adults per 100 grains) at 30 to 180 DAER, respectively. These trends of adult emergence were nearly followed by Phostoxin treated grains stored in plastic container (0.00 to 0.33 adults per 100 grains) followed by tin pot (0.00 to 5.00 adults per 100 grains), earthen pot (0.00 to 7.33 adults per 100 grains) and polyester bag (0.00 to 28.33 adults per 100 grains). On the other hand, the maximum adult emergence was observed in untreated control grains stored in polyester bag (0.00 to 42.33 adults per 100 grains) followed earthen pot (0.00 to 35.00 adults per 100 grains), tin pot (0.00 to 33.67 adults per 100 grains) and plastic pot (0.00 to 28.67 adults per 100 grains). These trends of adult emergence were nearly followed by organic treatment and Naphthalene treated grains stored in any containers as depicted in Table 7. In case of mean adult emergence more or less similar treads of results were also observed.

Considering the performance of different fumigants in reducing the adult emergence over control stored in different containers, the Camphor showed the highest reduction ranged from 40.16 to 100.00% over control stored in polyester bag, earthen pot, tin pot and plastic container, respectively followed by Phostoxin (33.07 to 98.84%) and Naphthalene (29.90 to 93.02%), whereas the lowest reduction of grain content loss over control was recorded in organic treatment (4.72 to 81.20%) stored in polyester bag, earthen pot, tin pot and plastic container, respectively (Table 7).

0	F • (Number of a	Number of adult emergence per 100 seeds								
Container	Fumigants	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	over control		
	Camphor	0.00	0.00f	0.00j	0.00m	0.001	0.00n	0.001	100.00		
DL (Phostoxin	0.00	0.00f	0.00j	0.00m	0.001	0.33n	0.061	98.84		
Plastic container	Naphthalene	0.00	0.00f	0.66hij	0.33m	1.00kl	2.00m	0.80kl	93.02		
container	Organic	0.00	0.00f	1.66fghi	1.66jkl	3.00ij	5.33kl	2.33ijk	81.40		
	Control	0.00	2.00d	6.33e	15.00d	21.00c	28.67d	14.60d	-		
	Camphor	0.00	0.00f	0.33ij	0.66lm	2.00jk	4.661	1.53jkl	86.16		
	Phostoxin	0.00	0.00f	0.33ij	1.00klm	2.33ij	5.001	1.73 jkl	85.15		
Tin pot	Naphthalene	0.00	0.33ef	0.66hij	2.66ij	4.66h	8.66i	3.40ij	74.28		
	Organic	0.00	0.33ef	1.00ghij	3.66hi	6.66g	10.33h	4.40hi	69.32		
	Control	0.00	3.66c	14.00d	20.33c	24.67b	33.67c	19.27c	-		
	Camphor	0.00	0.00f	1.00ghij	2.00jk	3.33ij	6.66jk	2.60ijk	80.97		
	Phostoxin	0.00	0.00f	1.00ghij	2.00jk	3.66hi	7.33ij	2.80ijk	79.05		
Earthen pot	Naphthalene	0.00	0.33ef	1.66fghi	7.66f	7.00g	13.67g	6.06gh	60.94		
-	Organic	0.00	1.00e	2.00fgh	9.00e	7.66g	15.33f	7.00g	56.20		
	Control	0.00	4.33bc	16.67c	24.67b	25.67b	35.00c	21.27b	-		
	Camphor	0.00	0.33ef	2.00fgh	4.66gh	15.33f	25.33e	9.53f	40.16		
	Phostoxin	0.00	0.33ef	2.33fg	5.00g	17.00e	28.33d	10.60ef	33.07		
Polyester bag	Naphthalene	0.00	1.00e	3.00f	8.00ef	19.67d	29.67d	12.27e	29.90		
	Organic	0.00	5.00ab	21.33b	25.33b	29.00a	40.33b	24.20a	4.72		
	Control	0.00	5.66a	22.67a	28.33a	29.33a	42.33a	25.67a	-		
LSD(0.01)		-	0.81	1.27	1.07	1.27	1.59	1.96	-		
CV(%)		-	37.77	14.80	12.68	5.96	4.18	3.69	-		

Table 7. Interaction Effect of Container and Furnigant on the Adult Emergence of Rice moth S. cerealella Infesting Hybrid Rice grain (Hira) in Storage.

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

From the above findings it was revealed that among containers, the most suitable container was plastic container in reducing the adult emergence of rice moth followed by tin pot and earthen pot, whereas polyester bag performed as least suitable container. In case of efficiency of fumigants, Camphor performed as the most effective in reducing the adult emergence of rice moth followed by phostoxin, Naphthalene and organic treatment. The fumigation gases of camphor inhibited the growth and development of rice moth as supported by [11, 12, 21]. who reported the fumigation action of camphor against pulse beetle, rice weevil and maize weevil, respectively, where 100% growth and development insects was inhibited in the laboratory conditions in Bangladesh. [2] reported that the insecticidal efficacy of camphor. [5] reported that the camphor has fumigation properties and has got a very low mammalian toxicity.

3.5. Effect of Containers and Fumigants Grain Content Loss of Rice during the Management of Rice Moth in Storage

Significant variations among different containers were observed on the grain content loss during the management of rice moth infesting rice grains treated with different fumigants in storage throughout the storing period (Table 7 to Table 9). Significant variations among different containers were observed on the grain content loss caused by rice moth in storage throughout the storing period on the hybrid rice (Table 8). More or less similar but increasing trends of grain content loss by weight were observed at different DAER from 30 to 180 DAER. Among different containers, plastic container performed as the least suitable container for rice moth infestation and lowest grain content loss was recorded that was ranged from 1.24 to 10.38% at 30 to 180 DAER, respectively. This trend of grain content loss was followed by tin pot (1.44 to 15.43%) and earthen pot (1.78 to 19.38%). whereas polyester bag performed as the most suitable container for rice moth infestation and the highest grain content loss was recorded that was ranged from 1.88 to 26.38% at 30 to 180 DAER, respectively. Considering the mean grain content loss, more or less similar trends of results were observed for different containers.

Considering the performance of different containers in reducing the grain content loss, plastic container reduced the highest (60.65%) grain content loss over polyester bag followed by tin pot (41.51%). On the other hand, the lowest reduction (26.54%) of grain content loss over polyester bag was recorded in earthen pot (Table 8).

Cantainan	Percent gra	Percent grain content loss by weight								
Containers	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control		
Plastic container	1.24a	2.61c	3.76c	7.18d	9.00d	10.38d	5.69d	60.65		
Tin pot	1.44a	2.60c	8.08b	10.86c	12.22c	15.43c	8.44c	41.51		
Earthen pot	1.78a	3.96b	8.95b	12.72b	16.56b	19.38b	10.56b	26.54		
Polyester bag	1.88a	7.50a	14.26a	21.04a	27.21a	26.38a	16.37a	-		
LSD(0.01)	1.09	0.70	0.95	0.89	0.94	0.86	0.39	-		
CV(%)	31.01	7.60	4.93	3.13	2.61	2.17	1.71	-		

Table 8. Effect of Containers on the Grain Content Loss of Hybrid rice (Hira) by Rice moth S. cerealelladuring Testing of Fumigantsin Storage.

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.5.1. Effect of Fumigants on the Grain Content Loss Caused by Rice Moth

Grain content loss varied significantly among different fumigant treated rice grains during the management of rice moth in storage throughout the storing period (Table 9). More or less similar but increasing trends of grain content loss by weight were observed at different DAER. Among different fumigants, Camphor performed as the most effective fumigant in reducing grain content loss caused by rice moth for which the lowest percentage of grain content loss was recorded that was ranged from 0.90 to 8.89% at 30 to 180 DAER, respectively. This trend for grain content loss was followed by Phostoxin treated grains (1.06 to 9.29%). This was also followed by Naphthalene treated grains (1.12 to 12.85%) and organic treatment (1.84 to 21.77%), whereas the highest percentage of grain content loss was recorded from untreated control rice grains that was ranged from 3.00 to 36.66% at 30 to 180 DAER, respectively. In case of mean grain content loss, the more or less similar trends of results were also observed (Table 8).

Considering the performance of different fumigants in reducing the grain content loss over control, the Camphor showed the highest reduction (75.75%) over control followed by Phostoxin (74.66%) and Naphthalene (64.95%), whereas the lowest reduction of grain content loss over control was recorded in organic treatment (40.15%) as depicted in Table 9.

Table 9. Effect of Fumigants on the Grain Content Loss of Hybrid rice (Hira) by Rice moth S. cerealellain Storage.

Fumiganta	Percent grain content loss by weight											
Fumigants	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control				
Camphor	0.90b	2.32d	4.87d	7.71d	9.22d	8.89d	5.65d	75.75				
Phostoxin	1.06b	2.39cd	5.00d	7.84d	9.60d	9.29d	5.85d	74.66				
Naphthalene	1.12b	3.06c	6.25c	11.76c	12.25c	12.85c	7.89c	64.95				
Organic	1.84b	4.18b	9.84b	13.38b	19.57b	21.77b	11.76b	40.62				
Control	3.00a	8.88a	17.85a	24.07a	30.61a	36.66a	20.15a	-				
LSD(0.01)	1.09	0.70	0.95	0.89	0.94	0.86	-	-				
CV(%)	31.01	7.60	4.93	3.13	2.61	2.17	1.71	-				

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

3.5.2. Combined Effect of Fumigants and Containers on the Grain Content Loss

Grain content loss caused by rice moth was varied significantly among different fumigant treated rice grains stored in different containers throughout the storing period (Table 10). More or less similar but increasing trends of grain content loss by weight were observed at different DAER. The lowest percentage of grain content loss was recorded in Camphor treated grains stored in plastic container that was ranged from 0.65 to 2.58% followed by tin pot (0.90 to 7.23%), earthen pot (1.03 to 11.20%) and polyester bag (1.03 to 14.57%) at 30 to 180 DAER, respectively. These trends of grain content loss were nearly followed by Phostoxin treated grains stored in plastic container (0.77 to 2.58%), tin pot (1.16 to 7.88%), earthen pot (1.16 to 11.47%) and polyester bag (1.16 to 15.23%). On the other hand, the highest grain content loss was observed in untreated control grains stored in polyester bag (3.61 to 43.77%) followed earthen pot (3.10 to 37.80%), tin pot (2.84 to 33.97%) and plastic pot (2.45 to 31.10%). These trends of grain content loss were nearly followed by organic treatment and Naphthalene treated grains stored in any containers as depicted in Table 10. In case of mean grain content loss, more or less similar trend of results was also observed. Considering the performance of different fumigants in reducing the grain content loss over control stored in different containers, the Camphor showed the highest reduction ranged from 66.71 to 91.70% over control stored in polyester bag, tin pot, earthen pot and plastic container, respectively followed by Phostoxin (65.20 to 91.70%) and Naphthalene (57.57 to 80.06%), whereas the lowest reduction of grain content loss over control was recorded in organic treatment (9.13 to 69.67%) stored in polyester bag, tin pot, earthen pot and plastic container, respectively (Table 10).

C	F	Percent gra	in content loss	by weight					% reduction
Container	Fumigants	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	over control
	Camphor	0.65fg	0.78j	1.161	2.33j	2.19 m	2.58p	1.61n	91.70
DI C	Phostoxin	0.77fg	0.90ij	1.031	2.32j	2.71m	2.58p	1.72n	91.70
Plastic container	Naphthalene	0.51g	1.68hi	1.801	5.30i	5.941	6.200	3.57m	80.06
container	Organic	1.80de	2.84f	3.62k	7.75h	9.04jk	9.43m	5.75k	69.67
	Control	2.45bcd	6.85d	11.20d	18.20d	25.13d	31.10e	15.80e	-
	Camphor	0.90fg	1.42hij	4.52jk	5.81i	6.331	7.23n	4.371	78.71
	Phostoxin	1.16efg	1.16ij	4.91ij	6.20i	6.461	7.88n	4.631	76.80
Tin pot	Naphthalene	1.16efg	1.16hij	5.68hi	8.65h	8.65k	12.60k	6.33j	62.90
	Organic	1.160efg	1.16ij	6.85fg	10.70g	10.53i	15.47h	7.66i	54.46
	Control	2.84bc	8.14c	18.47c	22.93c	29.13c	33.97d	19.20d	_
	Camphor	1.03efg	1.94gh	5.68hi	8.14h	9.43jk	11.201	6.24j	70.37
	Phostoxin	1.16efg	1.94gh	5.94gh	8.14h	9.79ij	11.471	6.41j	69.65
Earthen pot	Naphthalene	1.42ef	2.58fg	6.85fg	10.80g	12.00h	14.03j	7.967i	62.88
-	Organic	2.20cd	2.71f	7.23ef	12.00f	21.13f	22.40f	11.27g	40.74
	Control	3.10ab	10.67a	19.07c	24.53b	30.47b	37.80c	20.90c	-
	Camphor	1.03efg	5.17e	8.14e	14.57e	18.93g	14.57 ij	10.40h	66.71
	Phostoxin	1.16efg	5.55e	8.14e	14.70e	19.43g	15.23hi	10.67h	65.20
Polyester bag	Naphthalene	1.42ef	6.85d	10.67d	22.27c	22.40e	18.57g	13.70f	57.57
	Organic	2.20cd	10.03ab	21.67b	23.07c	37.57a	39.77 b	22.37b	9.13
	Control	3.61a	9.89b	22.67a	30.60a	37.70a	43.77a	24.70a	-
LSD(0.01)		0.68	0.70	0.95	0.89	0.94	0.86	0.39	-
CV(%)		31.01	7.60	4.93	3.13	2.61	2.17	1.71	-

Table 10. Interaction Effect of Container and Fumigant on the Grain Content Loss of Hybrid Rice (Hira) by Rice moth S. cerealellain Storage.

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

From the above findings it was also revealed that plastic container was the most effective container than others, and camphor was the most effective fumigant than others in terms of reducing the grain content loss, where fumigation gases of camphor inhibited the growth and development of rice moth as supported by Rahman*et al.* (2001), Latif*et al.* (2005), Latif and Rahman (2000), resulting the minimum grain content losses were observed.

3.6. Effect of Containers and Fumigants on the Viability of Stored Seeds During the Management of Rice Moth in Storage

Table 11. Effect of Containers on the Seed Germination during Testing of Fumigants against Rice moth S. cerealella Infesting Hybrid Rice Grain in Storage.

Containers	Percent seed	Percent seed germination									
Containers	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control			
Plastic container	96.47a	93.80a	87.73a	82.87a	72.40a	69.93a	83.86a	57.49			
Tin pot	92.87b	91.27b	80.73b	78.47b	67.53b	55.40b	77.71b	46.34			
Earthen pot	92.20b	87.80c	75.47c	70.47c	60.47c	49.13c	72.59c	39.49			
Polyester bag	91.47b	85.13d	65.47d	57.93d	43.13d	29.73d	62.14d	-			
LSD(0.01)	1.45	1.39	1.56	1.67	1.67	1.83	0.80	-			
CV(%)	0.71	0.71	0.85	0.96	1.06	1.32	0.46	-			

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

Significant variations among different containers were observed on the viability of stored rice seeds during the management of rice moth infesting rice grains treated with different fumigants in storage throughout the storing period (Table 11 to Table 12).

The rice seed germination was varied significantly among different containers used in storing rice grains against rice moth throughout the storing period (Table 11). More or less similar but decreasing trends of percent seed germination were observed at different DAER. Among different containers, plastic container performed as the least suitable container for rice moth infestation but the most effective for preserving the viability of the seeds for which the highest seed germination was achieved and that was ranged from 96.47 to 69.93% at 30 to 180 DAER, respectively. This trend was followed by tin pot (92.87 to 55.40%) and earthen pot (92.20 to 49.13%), whereas polyester bag performed as the least suitable for preserving the viability of the seeds and the

lowest seed germination was recorded that was ranged from 91.47 to 29.73% at 30 to 180 DAER, respectively. In case of mean seed germination, more or less similar trends of results were observed for different containers (Table 11). Considering the performance of different containers in increasing the seed germination over polyester bag, the highest seed germination (57.49%) was increased in plastic container followed by tin pot (46.34%), whereas the lowest increase (39.49%) was recorded in earthen pot (Table 11).

3.6.1. Effect of Fumigants on the Viability of Stored Rice Seeds

The rice seed germination was also varied significantly for different fumigants used against rice moth in storage throughout the storing period (Table 11). More or less similar but decreasing trends of percent seed germination were observed at different DAER. Among different fumigants, Camphor performed as the most effective fumigant for controlling rice moth as well as most effective for preserving the viability of the seeds for which the highest seed germination was achieved that was ranged from 95.42 to 80.08% at 30 to 180 DAER, respectively. This trend was followed by Phostoxin (94.83 to 87.02%) that was also followed by Naphthalene (93.67 to 80.67%) and organic treatment (91.75 to 77.50%), whereas the untreated control grains showed the lowest seed germination that was ranged from 90.58 to 35.83% at 30 to 180 DAER, respectively. In case of the mean seed germination, more or less similar trends of the results were also observed treated with different fumigants as depicted in Table 12.

Considering the performance of different fumigants in increasing the percent seed germination over control, Camphor increased the highest seed germination (56.34%) followed by Phostoxin (55.77%) and Naphthalene (55.58%), whereas the lowest seed germination (53.77%) was increased for organic treatment (Table 12).

Table 12. Effect of Fumigants on the Seed Germination during the Management of Rice moth S. cerealellaInfesting Hybrid Rice in Storage.

Fumigants	Percent seed	% reduction over						
	30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	control
Camphor	95.42a	93.25a	90.25a	86.83a	82.17a	82.08a	88.33a	56.34
Phostoxin	94.83ab	93.08a	89.42a	86.50a	82.17a	81.02a	87.83a	55.77
Naphthalene	93.67b	90.58b	85.42b	82.08b	77.83b	80.67b	85.05b	55.58
Organic	91.75c	88.58c	80.58c	75.50c	65.17c	77.50c	79.84c	53.77
Control	90.58c	82.00d	72.33d	61.25d	48.33d	35.83d	65.02d	-
LSD(0.01)	1.45	1.40	1.56	1.67	1.67	1.83	1.11	-
CV(%)	0.71	0.71	0.85	0.96	1.06	1.32	0.46	-

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

As depicted in Table 12, more or less similar but decreasing trends of seed germination were observed using different fumigants against rice moth at different days after egg release (DAER) from 30 to 180 DAER. At the initial stage of infestation that is 30 DAER, the seed germination was maximum (90.58 to 95.42%) for any of the fumigants because of the minimum infestation. But with the increase of the days after rice moth egg release, the seed germinations were decreased gradually, which was reached in minimum at 180 DAER that was ranged from 35.83 to 82.08%, where the lowest seed germination was recorded in untreated control grains followed by organic treatment (77.50%). This was also closely followed by Naphthalene (80.67%), Phostoxin (85.05%) and Camphor treated seeds (82.08%).

3.6.2. Combined Effect of Fumigants and Containers on the Viability of Stored Rice Seed

The seed germination was significantly varied for different fumigant treated rice grains stored in different containers throughout the storing period (Table 12). More or less similar but decreasing trends of seed germination were observed at different DAER from 30 to 180 DAER. The highest seed germination was observed in Camphor treated grains stored in plastic container that was ranged from 98.33 to 91.00% followed by tin pot (95.00 to 80.33%), earthen pot (95.00 to 68.33%) and polyester bag (93.33 to 60.670%) at 30 to 180 DAER, respectively. These trends of seed germination were nearly followed by Phostoxin treated grains stored in plastic container (98.00 to 91.33%), tin pot (95.67 to 80.00%), earthen pot (93.33 to 68.33%) and polyester bag (92.33 to 60.00%). On the other hand, the lowest seed germination was observed in untreated control grains stored in polyester bag (89.33 to 22.33%) followed earthen pot (90.00 to 31.00%), tin pot (90.33 to 41.00%) and plastic pot (92.67 to 49.00%). These trends of seed germinations were nearly followed by organic treatment and Naphthalene treated grains stored in polyester bag, earthen pot, tin pot and plastic container, respectively (Table 12). In case of mean seed germination, more or similar results were also observed.

Results depicted in Table 13, more or less similar but

decreasing trends of seed germination caused by rice moth infestation were observed at different days after egg release (DAER) from 30 to 180 DAER during the management of rice moth using fumigants on rice seeds stored in different containers. At the initial stage of infestation that is at 30 DAER, the seed germination was maximum (89.33 to 98.33%) for any of the fumigants because of the minimum infestation caused by rice moth stored in any containers. But with the increase of the days after rice moth egg release, the seed germinations were decreased gradually, which reached in minimum at 180 DAER, where the lowest seed germination was observed for grains stored in polyester bag

that was ranged from 22.33 to 60.67% for untreated control, treated with organic treatment (25.33%), naphthalene (55.33%), Phostoxin (60.00%) and Camphor (60.67%), respectively. This trend of seed germination was closely followed by the grains stored in earthen pot that was ranged from 31.00 to 68.33% for untreated control, grains treated with organic treatment (53.00%), naphthalene (65.00%), Phostoxin (68.33%) and Camphor (68.33%), respectively. This trend of seed germination was also followed by tin pot and plastic containers for untreated control, grains treated with organic treatment, naphthalene, Phostoxin and Camphor, respectively.

 Table 13. Interaction Effect of Container and Fumigant on the Seed Germination during the Management of Rice moth S. cerealellaInfesting Hybrid Rice (Hira) in Storage.

Container	Fumigants	Percent seed germination							
		30 DAER	60 DAER	90 DAER	120 DAER	150 DAER	180 DAER	Average	over control
Plastic container	Camphor	98.33a	97.67a	97.67a	94.00a	92.00a	91.00a	95.07a	46.154
	Phostoxin	98.00a	97.67a	97.00a	93.67a	92.33a	91.33a	94.97a	46.348
	Naphthalene	97.33ab	95.33b	91.33c	90.00b	90.00b	87.67b	91.90b	44.109
	Organic	96.00bc	93.67cd	90.00c	87.00c	82.33d	80.67c	88.27d	39.259
	Control	92.67d	84.67g	77.67j	69.67h	60.33i	49.00k	72.301	-
Tin pot	Camphor	95.00c	94.33bc	93.67b	90.67b	88.67b	80.33c	90.43c	48.961
	Phostoxin	95.67c	94.33bc	93.33b	90.67b	88.67b	80.00c	90.43c	48.750
	Naphthalene	92.67d	93.00cd	88.00d	88.00c	84.33c	74.67d	86.73e	45.092
	Organic	90.67e	92.67d	87.33de	82.00e	74.33f	71.00e	83.00g	42.254
	Control	90.33e	82.00h	76.33j	61.00i	51.67j	41.001	67.03m	-
Earthen pot	Camphor	95.00c	90.67e	86.33e	85.33d	77.67e	68.33f	83.87f	54.632
	Phostoxin	93.33d	90.33e	84.33f	84.33d	77.33e	68.33f	82.97g	54.632
	Naphthalene	92.33d	88.33f	81.67gh	80.33f	73.00f	65.00g	80.10h	52.308
	Organic	90.33e	88.00f	79.67i	77.67g	69.67g	53.00j	76.37j	41.509
	Control	90.00e	81.67h	70.33k	59.67i	49.67k	31.00m	63.67n	-
Polyester bag	Camphor	93.33d	90.33e	83.33f	77.33g	70.33g	60.67h	79.20i	63.194
	Phostoxin	92.33d	90.00e	83.00fg	77.33g	70.33g	60.00h	78.80i	62.783
	Naphthalene	92.33d	85.67g	80.67hi	70.00h	64.00h	55.33i	74.63k	59.642
	Organic	90.00e	80.00i	65.331	55.33j	34.331	25.33n	58.370	11.844
	Control	89.33e	79.67i	65.001	54.67 j	31.67m	22.330	57.07p	-
LSD(0.01)		1.45	1.40	1.56	1.67	1.67	1.83	0.81	-
CV(%)		0.71	0.71	0.85	0.96	1.06	1.32	0.46	-

DAER = Days after egg release, LSD = Least Significance Difference, CV= Coefficient of Variation

In column, means followed by same letters are not significantly different at 1% level of significance by LSD.

From the above findings it was revealed that among containers, the most suitable container was plastic container in preserving the viability of stored seeds by increasing their percent seed germination, from it may be concluded that rice moth could not affect the viability of seeds. This was followed by tin pot and earthen pot, whereas polyester bag performed as least suitable container. Among the containers, polyester bag could not prevent the damage caused by rice moth, resulting minimum percent seed germination was observed. In case of efficiency of fumigants, camphor performed as most effective in increasing the percent seed germination of rice grains followed by phostoxin, naphthalene and organic treatment. From this findings it was also revealed that the respiratory gaseous effect of camphor prevent the most of the grains from the caused by rice moth and preserved the viability of the seeds and showed the maximum percent seed germination.

3.7. Economic Analysis of the Fumigant Based Management Practices

Economic analysis of fumigant based management practices applied against rice moth infesting rice grains in storage is represented in Table 14. The untreated control treatment did not incur any pest management cost. The labor costs were involved in camphor, phostoxin, naphthalene and organic treatment for applying the treatments and the costs were also involved for the procurement of the items. Thus the From the economic analysis it revealed that the camphor @ 1 gm/kg rice grains considered as the most economically viable tool for the management of rice moth on rice gains in storage,

which gave the maximum BCR (11.3). Though organic treatment gave the second highest BCR (11.30), but it was unable to protect the higher amount of grains than the phostoxin and naphthalene. The reasons behind this higher BCR were achieved due to the involvement of the low cost of candle light treatment in case of large volume of grains in storing in single container.

Treatment	*Cost of management (Tk)	**Grain saved (kg/pot)	Grain saved (ton)	Gross return (Tk)	Net return (Tk)	Adjusted net return (Tk)	BCR
Camphor @ 1g/kg grains	370	0.91	910.00	16380.00	16010.00	4670.00	12.60
Phostoxin @ 0.02g/kg grains	720	0.91	910.00	16380.00	15660.00	4320.00	6.00
Naphthalene @ 0.05g/kg grains	620	0.87	870.00	15660.00	15040.00	3700.00	5.97
Organic treatment	220	0.78	780.00	14040.00	13820.00	2480.00	11.30
Control	0	0.63	630.00	11340.00	11340.00	-	-

Table 14. Economic Analysis of Fumigant based Management Practices Applied Against Rice moth on Rice grains in Storage.

Market price of rice grains 1 kg = 18.00 Tk during the study period

4. Conclusion

The Camphor was the most effective fumigant to protect the rice grain infestation in storage against rice moth in laboratory condition than phostoxin, naphthalene and organic treatment. Camphor had reduced 73.77% rice grain infestation, 92.30% adult emergence, 75.75% grain content loss and increased 56.34% seed germination over control followed by phostoxin, which reduced grain infestation, 70.65% adult emergence, 74.66% grain content loss and increased 55.77% seed germination. The Naphthalene reduced 61.34% grain infestation, 71.71% adult emergence, 64.95% grain content loss and increased 55.58% seed germination. The organic treatment reduced 48.94% grain infestation, 67.65% adult emergence, 40.15% grain content loss and increased 53.77% seed germination. Considering the fumigants, the camphor @ 1.0 gm/kg rice grains was performed as the most economically viable treatment that gave the highest BCR (12.6) applied against rice moth in storage rice grains followed by organic treatment (11.30), phostoxin (6.0) and naphthalene (5.97). Extensive works are needed to deliver the suggestions to farmers about using camphor as fumigant to protect the rice grains against rice moth infestation in storage condition in Bangladesh. Also, For economic point view, camphor as fumigant should be considered for getting maximum benefit for the management of rice moth in storage for storing rice grains.

References

- Anonymous, 1981. BRRI Annual Report for 1981. BRRI, Joydebpur, Gazipur, Bangladesh.
- [2] Abivardi, C. 1977. Effect of camphor on embryonic and post-

embryonic development *Callosobruchuschinensis* (L.), *J. Econ. Ent.* 6 (3): 818-820.

- [3] BBS (Bangladesh Bureau of Statistics). 2007. Department of Agricultural Extension Agricultural Statistical of Bangladesh. Bangladesh Bureau of Statistics, Planning Division, Ministry of Planning, Government of the people's republic of Bangladesh, Dhaka. 514 pp.
- [4] BRRI (Bangladesh Rice Research Institute). 1984. Annual Report. Bangladesh Rice Researce Institute, Joydebpur, Gazipur, pp. 135-139.
- [5] Chauvin, S. 19 and Jilani 1994. Low mammalian toxicity of camphor used as rodenticide, insecticide and fumigants for stored grains. *Agril. J* 14 (1): 29-35.
- [6] Chander, H., S. G. Kulkarni and S. K. Berry. 1991. Effectiveness of turmeric powder and mustard oil as protectant in stored milled rice against the rice weevil, *Sitophilusoryzae* Linn. *Intl. Pest Control.* 33 (4): 94-97.
- [7] Chandra, S., B. P. Khare and V. K. Sharma. 1989. Efficacy of different chemicals on rice-weevil, *Sitophilusoryzae* Linn. *Indian J. Agril. Res.* 14 (1): 19-25.
- [8] Cogburn, R. R. 1975. Stored rice insect research, *The Rice J*. 7: 78.
- [9] Dilwari, V. K., D. G. Dhaluiwal and M. S. Maha. 1991. Toxicity of allylisothiocyanate to rice weevil, *Sitophylusoryzae* Linn. J. Ins. Sci. 4 (1): 101-102.
- [10] Douglas, W. A. 1941. Field infestation of insects that injure rice in storage. *Circ. USDP*, No. 602, 8p.
- [11] Latif, M. A. and Rahman, M. M. 2000. Efficacy of camphor in protecting maize grains infested by maize weevil, (*Sitophiluszeamais*Motsch.) in storage. J. Agric. Sci. Tech. 1 (1): 65-69.
- [12] Latif, M. A., Rahman, M. M. and Alam, M. Z. 2005. Fumigation toxicity of camphor against different developmental stages of *Sitophilusoryzae* Linn. in rice. *Bangladesh J. Ent.* 15 (1): 37-44.

- [13] Mehrpour, O. and Singh, S. 2010. Rice tablet poisoning: A major concern in Iranian population. *Human & Experimental Toxicology*, 29 (8): 701–702.
- [14] Martin, D., Valdez, J., Boren, J. and Mayersohn, M. 2004. Dermal absorption of camphor, menthol, and methyl salicylate in humans. J. Clin. Pharmacol. 44 (10): 1151–1157.
- [15] Mann, J. C., Hobbs, J. B., Banthorpe, D. V. and Harborne, J. B. 1994. Natural products: their chemistry and biological significance. Harlow, Essex, England: Longman Scientific & Technical. pp. 309–311.
- [16] Prakas, A, and J. Rao. 1983. Insect pests and their management in rice storage in India, presented in National Symposium on Maximizing and Stabilizing of yields on rain fed rice production system held at CSRRI, Cuttack (India) on Feb. 23-25, 1983.
- [17] Prakash, A, J. Rao, I. C. Pasalu and K. C. Mathur. 1987. Rice Storage and insect pest management. B. R. Publishing Corporation. Delhi, pp. 15-60.
- [18] Prakash, A. and I. P. Kauraw, 1982. A package of practices for pest management in rice storage. Farmers and Parliament. 17 (11): 15-16.
- [19] Rajendran, S. and Sriranjini, V. 2008. Plant products as fumigants for stored-product insect control. *Journal of Stored Products Research.* 44 (2): 126-135.

- [20] Rahman, M. M., Shaha, S. K., and Kundu, R. 2006. Toxicity of camphor against different developmental stages of *Callosobruchuschinensis* Linn. in Chickpea. *Bangladesh J. entomol.* 16 (2): 87-94.
- [21] Rahman, M. M., Shaha, S. K., Kundu, R. and Karim, A. J. M. S. 2001. Fumigation toxicity of camphor against different developmental stages of *Callosobruchuschinensis* Linn. in Chickpea. *Bangladesh J. entomol.* 11 (2): 107-115.
- [22] Shrivastava, J. L. 1980. Pesticide resistance in food grain and pest resistance to pesticide. *Bull. Grain Tech.* 18 (1): 65-78.
- [23] Singh, D., M. S. Siddiqui and S. Sharma. 1989. Reproduction retardant and fumigant properties of essentials oils against rice weevil (Colleoptera: Cuuculionidae), in stored wheat. *J. Econ. Ent.* 82 (3): 727-733.
- [24] Stoyanova, S. and D. Shikerenov. 1983. Use of phosphene preparation for the de-infestation of wheat and flour. *RasticlnaZaschita*. 31 (2): 30-33.
- [25] Yadav, T. D. 1983. Seed fumigation as an aspect to seed storage technology. *Seed Res.* 11 (2): 240-247.
- [26] Wayne, E., White, A. and Bushey, H. 1953. Aluminum Phosphide. *Inorganic Syntheses*, 4: 23–25.