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Abstract 

A realisation, TBR, of Nigeria Treasury Bill Rates from January 2006 to December 2014 is analysed by seasonal ARIMA 

methods. The time plot of the realisation reveals an overall downward trend from 2006 to 2009 followed by an overall upward 

trend up to 2013. Twelve-monthly differencing of TBR yields the series SDTBR which has an overall upward trend. Non-

seasonal differencing of SDTBR yields the series DSDTBR with an overall horizontal trend and no clear seasonality. By the 

Augmented Dickey-Fuller Unit Root Test both TBR and SDTBR are adjudged non-stationary whereas DSDTBR is adjudged 

stationary. The correlogram of DSDTBR has a negative significant spike in the autocorrelation function at lag 12, an indication 

of seasonality of period 12 months and the presence of a seasonal moving average component of order one. By a novel 

proposal credited to Suhartono, initially the (0, 1, 1)x(0, 1, 1)12 SARIMA model is fitted. The non-significance of the lag 13 

coefficient suggests the additive SARIMA model with significant coefficients at lags 1 and 12. This model is fitted and has 

been shown to be the more adequate model and may be used to forecast future Nigeria Treasury Bill Rates.  
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1. Introduction 

Many economic and financial time series are known to be 

seasonal as well as volatile. For instance, crude oil prices, 

inflation rates, foreign exchange rates, crude oil domestic 

production are a few such series. Seasonal time series may be 

modelled using seasonal autoregressive moving average 

(SARIMA) techniques. Nigeria Treasury Bill Rates 

constitute such a time series. The purpose of this write-up is 

to model these rates by SARIMA methods.  

Nigeria Treasury Bill is a short-term debt instrument given 

out by the Federal Government of Nigeria through the 

Central Bank of Nigeria (CBN) to provide short-term 

funding for the government (Cashcraft Asset Management 

Limited, 2013). It is risk-free and re-discountable through 

licensed Money Market Dealers (Balogun, 2013). The rates 

are determined by the CBN according to market realities. 

Further descriptions of this facility include the following. It 

is a short-term negotiable bill of exchange, used by 

government to fund national borrowing requirements, quoted 

for purchase and sale in the secondary market on an annual 

percentage yield to maturity and issued at a discount. Its 

features further include being at zero coupon rate, that is, no 

interest is paid during the tenure of the bill, being issued in 

fixed tenures of one-fold, two-fold and four-fold multiples of 

91 days. Primary dealers and investment may underwrite it 
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and the interest is paid upfront. Benefits accruable include 

the fact that they are regarded as liquid assets for the purpose 

of liquidity ratio calculation and interest received on it is not 

taxable.  

A few examples of such use of the SARIMA methodology to 

model economic and financial data include the following. 

Saz(2011) highlighted the comparative advantage of using 

SARIMA models in terms of parsimony and the efficiency of 

data modelling.  Etuk et al.  (2012) modelled Nigerian 

monthly inflation rates by such methods too. Otu et al. (2014) 

fitted a SARIMA(1, 1, 1)x(0, 0, 1)12 model to Nigeria’s 

inflation rates and used it to forecast the series up to 2014. 

Luo et al. (2013) fitted a SARIMA(1, 0, 1)x(1, 1, 1)12 model  

to cucumber market prices in China. Dan et al. (2014) fitted a 

SARIMA(1, 1, 1)x(0, 0, 1)12 model to malaria mortality in 

Imo State. Lee et al. (2008) were able to observe the 

superiority of the SARIMA method over two other methods, 

a neural-based method and a Bayesian based one. Eni and 

Adesola (2013) fitted a SARIMA(1, 1, 0)x(1, 0, 1) to predict 

the future volume of traffic from Cross Lines Limited, a 

transport Company. Osarunwense (2013) fitted a SARIMA(0, 

0, 0)x(2, 1, 0) model to quarterly rainfall data in Port 

Harcourt. Teye-Okutu (2011) fitted a SARIMA(1, 

1,1,1)x(0,0,1)12 and used it to forecast Ghanaian inflation. 

Monthly precipitation in Mount Kenya region has been 

modelled as a SARIMA (1,0,1)x(1,0,0)12 by Kibunja et al. 

(2014). 

Where seasonal series are involved they have been observed 

to exhibit comparative advantage (see for instance Lee et al. 

(2008)). It is noteworthy that most fitted SARIMA models 

are multiplicative as defined by Box and Jenkins (1976). For 

instance all the above-mentioned works applied 

multiplicative models. Box and Jenkins (1976) however 

considered the possibility of a non-multiplicative such model. 

They did not define an additive SARIMA model. 

It is Suhartono (2011) and Suhartono and Lee (2011) that 

defined a subset, multiplicative and additive SARIMA model. 

Using airline data Suhartono observed that the subset model 

outdid the additive one. However with the tourist arrival to 

Bali data, the additive model displayed some supremacy over 

the subset model.  Suhartono and Lee (2011) observed that 

the additive model outdid the others in terms forecasting the 

number of tourist arrivals at Bali. Both works aimed at 

proposing a new algorithm for SARIMA fitting. This 

algorithm shall be considered in detail in the methodology 

section. The SARIMA models fitted by Etuk et al. (2013) and 

Etuk et al.(2014) to monthly Nigerian Naira-CFA Franc 

Exchange Rates and Monthly Nigerian Savings Deposit 

Rates respectively turned out to be additive. 

2. Methodology 

The data for this work are monthly Nigeria Treasury Bill 

Rates from January 2006 to December 2014 retrievable from 

the Money Market Indicators, Data and Statistics publication 

of the CBN in its website www.cenbank.org.   

2.1. Sarima Models 

A stationary time series {Xt} is said to follow an 

autoregressive moving average model of orders p and q, 

designated ARMA(p, q), if it satisfies the following 

difference equation 

1 1 2 2

1 1 2 2

...

...

t t t p t p

t t t q t q

X X X Xα α α
ε β ε β ε β ε

− − −

− − −

− − − −

= + + + +
                       (1) 

where {εt} is a white noise process and the α’s and β’s are 

constants such that the model is both stationary and 

invertible. Model (1) may be written as 

A(L)Xt = B(L)εt                                      (2) 

where A(L) = 1 - α1L - α2L
2
 - ... - αpL

p
 and B(L) = 1 + β1L + 

β2L
2
 + ... +βqL

q
 and L is the backward shift operator defined 

by L
k
Xt = Xt-k.  

Most real life time series are non-stationary. Box and 

Jenkins(1976) proposed that differencing to a sufficient order 

could render a non-stationary time series stationary. Suppose 

the series {Xt} is non-stationary. Let d be the minimum order 

such that the d
th

 difference of Xt , namely, ∇d
Xt, is stationary 

where ∇ = 1 - L. Stationarity may be tested using Augmented 

Dickey-Fuller(ADF) Unit Root Test. If the series {∇d
Xt} 

follows an ARMA(p, q) the original series {Xt} is said to 

follow an autoregressive integrated moving average model of 

orders p, d and q designated ARIMA(p, d, q). 

For a seasonal time series of order s, Box and Jenkins(1976) 

proposed that {Xt} be modelled by 

t

s

t

D

s

ds LLBXLLA ε)()()()( Θ=∇∇Φ              (3) 

where the series must have been subjected to seasonal 

differencing D times and non-seasonal differencing d times, 

∇s = 1 – L
s
, being the seasonal differencing operator. 

Moreover Φ(L) and Θ(L) are the seasonal autoregressive and 

moving average operators respectively. These seasonal 

operators are polynomials in L. Suppose that Φ(L) = 1 + φ1L 

+ φ2L
2
 + ... +φPL

P
 and Θ(L) = 1 + θ1L + θ2L

2
 + ... + θQL

Q
 

then the time series {Xt} is said to follow a multiplicative 

seasonal autoregressive integrated moving average model of 

orders p, d, q, P, D, Q and s, designated (p, d, q)x(P, D, Q)s 

SARIMA model. 
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Suhartono(2011), using moving average (MA) symbolism, 

defines a subset SARIMA model as 

1111 ... −−+−− ++++=∇∇ stsststtt

D

s

d X εβεβεβε     (4) 

where βs+1 ≠ β1βs. Otherwise, it is a multiplicative SARIMA 

model. If βs+1 = 0, the model (4) is said to be an additive 

SARIMA model. He goes on to propose the following set of 

steps for SARIMA fitting: 

1) Fit a subset SARIMA model. 

2) Find out if βs = 0. If so, the model is additive. If not, 

find out if the model is multiplicative. If not, the model 

is subset. 

2.2. Model Estimation 

In order to fit the model (3) the orders p, d, q, P, D, Q and s 

must first be determined.  Often seasonality is not evident 

from the time plot. After due differencing a spike in the 

autocorrelation function (ACF) and often in the partial 

autocorrelation function (PACF) indicates seasonality of 

period equal to the corresponding lag s. In order to avoid 

undue model complexity it has been advised that d + D < 3. 

Most often it is allowed that d= D=1. The non-seasonal 

autoregressive order p is estimated by the non-seasonal cut-

off lag of the PACF and q by the non-seasonal cut-off lag of 

the autocorrelation function ACF. The seasonal orders P and 

Q are respectively determined by the seasonal cut-off lags of 

the PACF and ACF. 

The parameters of the model are invariably estimated by 

non-linear optimization techniques because of the 

involvement of items of the white noise process in the model. 

An initial estimate of the parameters is usually made and on 

its basis further estimates are obtained iteratively, each 

estimate expected to be an improvement on its predecessor 

until optimality is attained depending on the degree of 

accuracy required. The optimality criterion employed is 

usually the least squares criterion, the maximum likelihood 

criterion, the maximum entropy criterion, etc. 

After model fitting analysis of the residuals is usually done 

with a view to ascertaining the adequacy of the model. This 

is called diagnostic checking. Assuming model adequacy the 

residuals should have zero mean, be uncorrelated and follow 

a Gaussian distribution. In this write-up all analytical work is 

done using the Eviews 7 software which uses the least 

squares approach to estimation. Besides Eviews 7 displays 

values of three information criteria on the basis of which 

model comparison could be done. The information criteria 

are Akaike Information criterion (AIC) (Akaike, 1977), 

Schwarz information criterion (Schwarz, 1978) and Hannan-

Quinn information criterion (Hannan and Quinn, 1979). A 

low criterion value is an indication of relative model 

adequacy. 

3. Results 

 

Figure 1. TBR 

 

Figure 2. SDTBR 

 

Figure 3. DSDTBR 

The time plot of the realization TBR in Figure 1 reveals an 

overall negative trend between 2006 and 2009, followed by 

an overall positive trend from 2010 onwards. Regular 

seasonality is not obvious. However an inspection of the data 

reveals that yearly minimums occur in May, July, December, 

February, March, July, December, February and September 

respectively. That means that six of the nine minimums lie 



 International Journal of Life Science and Engineering Vol. 1, No. 1, 2015, pp. 20-25  23 

 

between February and July of the same year. Similarly, five 

of the nine maximums lie in the remaining part of the year. 

This is an indication of a 12-monthly seasonality. This 

justifies a SARIMA modelling approach. 

A twelve-month differencing of this original series yields the 

series SDTBR which has an overall slightly upward trend 

with no observable regular seasonality as evident from 

Figure 2. A non-seasonal differencing results in the series 

DSDTBR which shows no trend on the overall and no clear 

seasonality (See Figure 3). The ADF unit root test statistic for 

TBR, SDTBR and DSDTBR is equal to -1.9, -2.4 and -8.6 

respectively. With the 1%, 5% and 10% critical values equal 

to -3.5, -2.9 and -2.6 respectively, the ADF test adjudges both 

TBR and SDTBR non-stationary but DSDTBR stationary.  In 

the correlogram of DSDTBR in Figure 4, there is a negative 

significant spike at lag 12 in the ACF. This shows that the 

series is seasonal of period 12 months. Moreover, this is an 

indication of the presence of a seasonal MA component of 

order one. 

Adopting Suhartono’s (2011) set of steps, a (0, 1, 1)x(0, 1, 

1)12 SARIMA model fit yields the model (5) as summarized 

in Table 1: 

1 12 130.1540 0.9163 0.1232

( 0.1028) ( 0.0310) ( 0.1039)

t t t t tX ε ε ε ε− − −= − + +
± ± ±

     (5) 

Clearly the lag 13 coefficient is non-significant. Hence the 

model is additive which is re-estimated as summarized in 

Table 2 as 

120.0420 0.9161

( 0.0371) ( 0.0307)

t t t tX ε ε ε−= − +
± ±

                       (6) 

which is clearly superior to model (5) on the grounds of the 

minimum of the information criteria: Akaike information 

criterion, Schwarz information criterion and Hannan-Quinn 

information criterion. The adequacy of model (6) is evident 

from 

1) The close agreement of the fitted model and the actual 

model (See Figure 5). 

2) The uncorrelatedness of the residuals as seen from their 

correlogram of Figure 6. None of the 36 

autocorrelations is significant (i.e. outside of the range 

±2/√n, where n is the sample size). 

4. Conclusion 

It may be concluded that Nigeria Treasury Bill Rates follow 

the additive SARIMA model (6). That means that a current 

value of the time series depends on the past value of a month 

ago and that of a year ago of shocks or its error terms. This 

model has been shown to be adequate and could be used for 

the forecasting of Nigeria treasury Bill rates. However efforts 

should be made to explore the possibility of models that 

better account for the variability in the time series.  

 

Figure 4. Correlogram of Dsdtbr 

Table 1. (0, 1, 1)X(0, 1, 1)12 Sarima Model Estimation 

Dependent Variable: DSDTBR   Method: Least Squares 

Variable Coefficient Std. Error t-Statistic Prob. 

MA(1) 0.154011 0.102767 1.498643 0.1374 

MA(12) -0.916250 0.030967 -29.58813 0.0000 

MA(13) -0.123210 .103857 -1.186342 0.2385 

 Akaike info criterion  2.956466 

 Schwarz criterion  3.0337114  

Hannan-Quinn criter.  2.989054 

Inverted MA Roots  ±.99,   .86±.50i, .49±.86i,  ±.99i,        -0.13, -.50±.86i, -.86±.50i 
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Table 2. Additive Sarima Model Estimation 

Dependent Variable: DSDTBR    Method: Least Squares 

Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) 0.042042 0.037105 1.133043 0.2601 

MA(12) -0.916117 0.030681 -29.85973 0.0000 

Akaike info criterion  2.951810 

Schwarz  criterion  3.005576 

Hannan-Quinn criter.  2.973535 

 

 

Figure 5. ---- Residual ---- Actual ---- Fitted 

 

Figure 6. Correlogram of the Residuals of the Additive Sarima Model 
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